

Robust Algebraic Multilevel Domain Decomposition Preconditioner for General Sparse Matrices

Hussam AI Daas STFC, Rutherford Appleton Laboratory

Bath–RAL Day RAL, 14 April 2023

Collaborators

- Pierre Jolivet (CNRS, LIP6, Sorbonne Uni.)
- Frédéric Nataf (CNRS, LJLL, Sorbonne Uni.)
- Tyrone Rees (STFC, RAL)
- Jennifer Scott (STFC, RAL)
- Pierre-Henri Tournier (CNRS, LJLL, Sorbonne Uni.)

Outline

Introduction to (Algebraic) Additive Schwarz

Adaptive Coarse Spaces

Some Existing CS New CS Normal Eqs. More CS

Summary

Solving sparse linear systems is omnipresent in scientific computing.

$$Ax = b.$$

 $A \in \mathbb{K}^{n \times n}$ very large, *sparse*, and ill conditioned.

Solving sparse linear systems is omnipresent in scientific computing.

Ax = b.

Solving sparse linear systems is omnipresent in scientific computing.

Ax = b.

 $A \in \mathbb{K}^{n \times n}$ very large, *sparse*, and ill conditioned. Important aspects required by users:

Effectiveness: need a solution with a desired accuracy

Solving sparse linear systems is omnipresent in scientific computing.

$$Ax = b$$
.

 $A \in \mathbb{K}^{n \times n}$ very large, *sparse*, and ill conditioned. Important aspects required by users:

Effectiveness: need a solution with a desired accuracy
 Efficiency: need it as fast as possible

Solving sparse linear systems is omnipresent in scientific computing.

$$Ax = b$$
.

- ▶ Effectiveness: need a solution with a desired accuracy
- Efficiency: need it as fast as possible
- **Scalability**: more computing resources yields faster solver

Solving sparse linear systems is omnipresent in scientific computing.

$$Ax = b.$$

- ▶ Effectiveness: need a solution with a desired accuracy
- Efficiency: need it as fast as possible
- **Scalability**: more computing resources yields faster solver
- Black box: prefer non-intrusive solvers. Only provide A and b

Solving sparse linear systems is omnipresent in scientific computing.

$$Ax = b$$
.

- ▶ Effectiveness: need a solution with a desired accuracy
- Efficiency: need it as fast as possible
- **Scalability**: more computing resources yields faster solver
- Black box: prefer non-intrusive solvers. Only provide A and b
- Easy setup: Few knowledge on linear solvers. Not worry how to set it up perfectly. As minimal parameters as possible. (Type: Hermitian, saddle-point, etc; Accuracy; Max iter)

Solve the Poisson equation in $\boldsymbol{\Omega}$

Solve the Poisson equation in $\boldsymbol{\Omega}$

 $R_1 A R_1^T x = R_1 b$

Solve the Poisson equation in $\boldsymbol{\Omega}$

 $R_2 A R_2^T x = R_2 b$

Solve the Poisson equation in $\boldsymbol{\Omega}$

$R_1^{T}(R_1AR_1^{T})^{-1}R_1 + R_2^{T}(R_2AR_2^{T})^{-1}R_2$

Iterate updating the solution values.

Figure: Semistructured mesh decomposed into 32 overlapping subdomains

The sparsity graph of A has n nodes. N non-overlapping sudbomains $\{\Omega_{Ii}\}_{1 \le i \le N}$: N disjoint subsets of $\Omega = [\![1, n]\!]$. $n_{Ii} = \#\Omega_{Ii}$

The sparsity graph of A has n nodes.

N non-overlapping sudbomains $\{\Omega_{Ii}\}_{1 \le i \le N}$: *N* disjoint subsets of $\Omega = [\![1, n]\!]$. $n_{Ii} = \#\Omega_{Ii}$

The connections in the graph define the overlapping subdomain:

If $k \in \Omega_{Ii}$, $j \notin \Omega_{Ii}$ and $A(k,j) \neq 0$ then $j \in \Omega_{\Gamma i}$.

The sparsity graph of A has n nodes.

N non-overlapping sudbomains $\{\Omega_{Ii}\}_{1 \le i \le N}$: *N* disjoint subsets of $\Omega = [\![1, n]\!]$. $n_{Ii} = \#\Omega_{Ii}$

The connections in the graph define the overlapping subdomain:

If $k \in \Omega_{Ii}$, $j \notin \Omega_{Ii}$ and $A(k,j) \neq 0$ then $j \in \Omega_{\Gamma i}$.

$$A = \begin{pmatrix} a_{11} & a_{12} & & \\ a_{21} & a_{22} & a_{23} & \\ & a_{32} & a_{33} & a_{34} \\ & & & a_{43} & a_{44} \end{pmatrix}, \quad N = 2.$$

The sparsity graph of A has n nodes.

N non-overlapping subbomains $\{\Omega_{Ii}\}_{1 \le i \le N}$: *N* disjoint subsets of $\Omega = [\![1, n]\!]$. $n_{Ii} = \#\Omega_{Ii}$

The connections in the graph define the overlapping subdomain:

If $k \in \Omega_{Ii}$, $j \notin \Omega_{Ii}$ and $A(k,j) \neq 0$ then $j \in \Omega_{\Gamma i}$.

$$A = \begin{pmatrix} a_{11} & a_{12} & & \\ a_{21} & a_{22} & a_{23} & \\ & a_{32} & a_{33} & a_{34} \\ & & a_{43} & a_{44} \end{pmatrix}, \quad N = 2.$$

• $\Omega_{I1} = \{1, 2\} \ \Omega_{I2} = \{3, 4\}$

The sparsity graph of A has n nodes.

N non-overlapping sudbomains $\{\Omega_{Ii}\}_{1 \le i \le N}$: *N* disjoint subsets of $\Omega = [\![1, n]\!]$. $n_{Ii} = \#\Omega_{Ii}$

The connections in the graph define the overlapping subdomain:

If $k \in \Omega_{Ii}$, $j \notin \Omega_{Ii}$ and $A(k,j) \neq 0$ then $j \in \Omega_{\Gamma i}$.

$$A = \begin{pmatrix} a_{11} & a_{12} & & \\ a_{21} & a_{22} & a_{23} & \\ & a_{32} & a_{33} & a_{34} \\ & & a_{43} & a_{44} \end{pmatrix}, \quad N = 2.$$

•
$$\Omega_{I1} = \{1, 2\} \ \Omega_{I2} = \{3, 4\}$$

• $\Omega_{\Gamma 1} = \{3\}, \ \Omega_{\Gamma 2} = \{2\}$

Restriction to subset nodes:

• $R_{Ii} = I_n(\Omega_{Ii}, :)$: to nonoverlapping nodes

Restriction to subset nodes:

- $R_{Ii} = I_n(\Omega_{Ii}, :)$: to nonoverlapping nodes
- $R_{\Gamma i} = I_n(\Omega_{\Gamma i}, :)$: to interface nodes

Restriction to subset nodes:

- $R_{Ii} = I_n(\Omega_{Ii}, :)$: to nonoverlapping nodes
- ► $R_{\Gamma i} = I_n(\Omega_{\Gamma i}, :)$: to interface nodes
- $R_i = [R_{Ii}; R_{\Gamma i}]$: to overlapping sudomain nodes

Restriction to subset nodes:

- $R_{Ii} = I_n(\Omega_{Ii}, :)$: to nonoverlapping nodes
- ► $R_{\Gamma i} = I_n(\Omega_{\Gamma i}, :)$: to interface nodes
- $R_i = [R_{Ii}; R_{\Gamma i}]$: to overlapping sudomain nodes
- \blacktriangleright R_{ci} : to the rest

Restriction to subset nodes:

- $R_{Ii} = I_n(\Omega_{Ii}, :)$: to nonoverlapping nodes
- $R_{\Gamma i} = I_n(\Omega_{\Gamma i}, :)$: to interface nodes
- $R_i = [R_{Ii}; R_{\Gamma i}]$: to overlapping sudomain nodes
- ► *R_{ci}*: to the rest

Partition of unity: D_i : diagonal 1 if $\in \Omega_{Ii}$ and 0 if $\in \Omega_{\Gamma i}$

Restriction to subset nodes:

- $R_{Ii} = I_n(\Omega_{Ii}, :)$: to nonoverlapping nodes
- ► $R_{\Gamma i} = I_n(\Omega_{\Gamma i}, :)$: to interface nodes
- $R_i = [R_{Ii}; R_{\Gamma i}]$: to overlapping sudomain nodes
- ► *R_{ci}*: to the rest

Partition of unity: D_i : diagonal 1 if $\in \Omega_{Ii}$ and 0 if $\in \Omega_{\Gamma i}$

 $\sum_{i=1}^{N} R_i^T D_i R_i = I_n$

$$A = \begin{pmatrix} a_{11} & a_{12} & & \\ a_{21} & a_{22} & a_{23} & \\ & a_{32} & a_{33} & a_{34} \\ & & a_{43} & a_{44} \end{pmatrix}, \quad N = 2.$$

•
$$\Omega_{I1} = \{1, 2\} \ \Omega_{I2} = \{3, 4\}$$

• $\Omega_{\Gamma 1} = \{3\}, \ \Omega_{\Gamma 2} = \{2\}$

$$A = \begin{pmatrix} a_{11} & a_{12} & & \\ a_{21} & a_{22} & a_{23} & \\ & a_{32} & a_{33} & a_{34} \\ & & & a_{43} & a_{44} \end{pmatrix}, \quad N = 2.$$

$$\begin{split} & \Omega_{I1} = \{1,2\} \ \Omega_{I2} = \{3,4\} \\ & \square \ \Omega_{\Gamma 1} = \{3\}, \ \Omega_{\Gamma 2} = \{2\} \\ & \square \ R_{I1} = I([1\ 2],:), \ R_{\Gamma 1} = I(3,:), \ R_{1} = I([1\ 2\ 3],:) \\ & \square \ R_{I2} = I([3\ 4],:), \ R_{\Gamma 2} = I(2,:), \ R_{2} = I([3\ 4\ 2],:) \end{split}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & & \\ a_{21} & a_{22} & a_{23} & \\ & a_{32} & a_{33} & a_{34} \\ & & & a_{43} & a_{44} \end{pmatrix}, \quad N = 2.$$

$$\begin{array}{l} \label{eq:relation} \Omega_{I1} = \{1,2\} \ \Omega_{I2} = \{3,4\} \\ \label{eq:relation} \Omega_{\Gamma 1} = \{3\}, \ \Omega_{\Gamma 2} = \{2\} \\ \label{eq:relation} R_{I1} = I([1\ 2],:), \ R_{\Gamma 1} = I(3,:), \ R_{1} = I([1\ 2\ 3],:) \\ \label{eq:relation} R_{I2} = I([3\ 4],:), \ R_{\Gamma 2} = I(2,:), \ R_{2} = I([3\ 4\ 2],:) \\ \ D_{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad D_{2} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \end{array}$$

$$A_{ii} = R_i A R_i^T$$
.

$$A_{ii} = R_i A R_i^T.$$

$$A = \begin{pmatrix} a_{11} & a_{12} & & \\ a_{21} & a_{22} & a_{23} & \\ & a_{32} & a_{33} & a_{34} \\ & & a_{43} & a_{44} \end{pmatrix}, \quad N = 2.$$

$$R_{I1} = I([1 \ 2], :), R_{\Gamma 1} = I(3, :), R_1 = I([1 \ 2 \ 3], :) R_{I2} = I([3 \ 4], :), R_{\Gamma 2} = I(2, :), R_2 = I([3 \ 4 \ 2], :)$$

$$A_{ii} = R_i A R_i^T.$$

$$A = \begin{pmatrix} a_{11} & a_{12} & & \\ a_{21} & a_{22} & a_{23} & \\ & a_{32} & a_{33} & a_{34} \\ & & & a_{43} & a_{44} \end{pmatrix}, \quad N = 2.$$

$$R_{I1} = I([1 \ 2], :), R_{\Gamma 1} = I(3, :), R_{1} = I([1 \ 2 \ 3], :)$$

$$R_{I2} = I([3 \ 4], :), R_{\Gamma 2} = I(2, :), R_{2} = I([3 \ 4 \ 2], :)$$

$$A_{11} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$$

$$A_{ii} = R_i A R_i^T$$
.

$$A = \begin{pmatrix} a_{11} & a_{12} & & \\ a_{21} & a_{22} & a_{23} & \\ & a_{32} & a_{33} & a_{34} \\ & & & a_{43} & a_{44} \end{pmatrix}, \quad N = 2.$$

$$R_{I1} = I([1 \ 2], :), R_{\Gamma 1} = I(3, :), R_{1} = I([1 \ 2 \ 3], :)$$

$$R_{I2} = I([3 \ 4], :), R_{\Gamma 2} = I(2, :), R_{2} = I([3 \ 4 \ 2], :)$$

$$A_{11} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$$

$$A_{ii} = R_i A R_i^T$$
.

$$A = \begin{pmatrix} a_{11} & a_{12} & & \\ a_{21} & a_{22} & a_{23} & \\ & a_{32} & a_{33} & a_{34} \\ & & & a_{43} & a_{44} \end{pmatrix}, \quad N = 2.$$

$$R_{I1} = I([1 \ 2], :), R_{\Gamma 1} = I(3, :), R_1 = I([1 \ 2 \ 3], :)$$

$$R_{I2} = I([3 \ 4], :), R_{\Gamma 2} = I(2, :), R_2 = I([3 \ 4 \ 2], :)$$

$$A_{11} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} A_{22} = \begin{pmatrix} a_{33} & a_{34} & a_{32} \\ a_{43} & a_{44} \\ a_{23} & a_{22} \end{pmatrix}$$

Define $P_i = I([R_{li}, R_{\Gamma i}, R_{ci}], :)$,

$$P_{i}AP_{i}^{\top} = \begin{pmatrix} A_{li,li} & A_{li,\Gamma i} \\ A_{\Gamma i,li} & A_{\Gamma i,\Gamma i} & A_{\Gamma i,ci} \\ A_{ci,\Gamma i} & A_{ci,ci} \end{pmatrix}$$

δ -Overlap

Through the sparsity graph, define $\Omega_{\Gamma_{1:\delta}i}$ Define $P_i = I([R_{Ii}, R_{\Gamma_{1:\delta-1}i}, R_{\Gamma_{\delta}i}, R_{ci}], :),$

$$P_{i}AP_{i}^{\top} = \begin{pmatrix} A_{Ii,Ii} & A_{Ii,\Gamma_{1:\delta-1}i} & & \\ A_{\Gamma_{1:\delta-1}i,Ii} & A_{\Gamma_{1:\delta-1}i,\Gamma_{1:\delta-1}i} & A_{\Gamma_{1:\delta-1}i,\Gamma_{\delta}i} & \\ & A_{\Gamma_{\delta}i,\Gamma_{1:\delta-1}i} & A_{\Gamma_{\delta}i,\Gamma_{\delta}i} & A_{\Gamma_{\delta}i,ci} \\ & & & A_{ci,\Gamma_{\delta}i} & A_{ci,ci} \end{pmatrix}$$

δ -Overlap

Through the sparsity graph, define $\Omega_{\Gamma_{1:\delta}i}$ Define $P_i = I([R_{Ii}, R_{\Gamma_{1:\delta-1}i}, R_{\Gamma_{\delta}i}, R_{ci}], :),$

$$P_{i}AP_{i}^{\top} = \begin{pmatrix} A_{li,li} & A_{li,\Gamma_{1:\delta-1}i} & & \\ A_{\Gamma_{1:\delta-1}i,li} & A_{\Gamma_{1:\delta-1}i,\Gamma_{1:\delta-1}i} & A_{\Gamma_{1:\delta-1}i,\Gamma_{\delta}i} & \\ & A_{\Gamma_{\delta}i,\Gamma_{1:\delta-1}i} & A_{\Gamma_{\delta}i,\Gamma_{\delta}i} & A_{\Gamma_{\delta}i,ci} \\ & & & A_{ci,\Gamma_{\delta}i} & A_{ci,ci} \end{pmatrix}$$

 $R_i = [R_{Ii}, R_{\Gamma_{1:\delta-1}i}, R_{\Gamma_{\delta}i}].$

- 1. Restrict
- 2. Solve locally
- 3. Augment
- 4. Update

$$M_1^{-1} = \sum_{i=1}^N R_i^T A_{ii}^{-1} R_i.$$

- 1. Restrict
- 2. Solve locally
- 3. Augment
- 4. Update

$$M_1^{-1} = \sum_{i=1}^N R_i^T A_{ii}^{-1} R_i.$$

- 1. Restrict
- 2. Solve locally
- 3. Augment
- 4. Update

$$M_1^{-1} = \sum_{i=1}^N R_i^T A_{ii}^{-1} R_i.$$

- 1. Restrict
- 2. Solve locally
- 3. Augment
- 4. Update

$$M_1^{-1} = \sum_{i=1}^{N} R_i^T A_{ii}^{-1} R_i.$$

One-Level Schwarz Not Scalable

$$M_1^{-1} = \sum_{i=1}^N R_i^T A_{ii}^{-1} R_i.$$

Ν	2	4	8	16	32	64	
lt	42	53	66	74	84	97	

Table: 2D Poisson on 300×300 mesh. Metis partitioning.

One-Level Schwarz Not Scalable

$$M_1^{-1} = \sum_{i=1}^N R_i^T A_{ii}^{-1} R_i.$$

Ν	2	4	8	16	32	64
lt	42	53	66	74	84	97

Table: 2D Poisson on 300×300 mesh. Metis partitioning.

Iteration count = f(N). Not scalable

One-Level Schwarz Not Scalable

$$M_1^{-1} = \sum_{i=1}^N R_i^T A_{ii}^{-1} R_i.$$

Ν	2	4	8	16	32	64
Ιt	42	53	66	74	84	97

Table: 2D Poisson on 300×300 mesh. Metis partitioning.

Iteration count = f(N). Not scalable Need a second level (coarse space correction) to maintain robustness

$$M_2^{-1} = R_0^H A_{00}^{-1} R_0 + \sum_{i=1}^N R_i^T A_{ii}^{-1} R_i,$$

where $A_{00} = R_0 A R_0^H$

Adaptive Coarse Spaces (for Overlapping Schwarz) I

PDE based (Two-level)

- A coarse space construction based on local Dirichlet-to-Neumann maps [Nataf et al., 2011]
- Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps [Spillane et al., 2014]
- SHEM: an optimal coarse space for RAS and Its multiscale approximation [Gander and Loneland, 2017]
- Adaptive GDSW coarse spaces of reduced dimension for overlapping Schwarz methods [Heinlein et al., 2020]
- A multilevel Schwarz preconditioner based on a hierarchy of robust coarse spaces [Al Daas et al., 2021]
- A comparison of coarse spaces for Helmholtz problems in the high frequency regime [Bootland et al., 2021]
- Multilevel spectral domain decomposition [Bastian et al., 2022]
- A fully algebraic and robust two-level Schwarz method based on optimal local approximation spaces [Heinlein and Smetana, 2022] rechnology Facilities Scuncil

Adaptive Coarse Spaces (for Overlapping Schwarz) II

Fully Algebraic

- A class of efficient locally constructed preconditioners based on coarse spaces [Al Daas and Grigori, 2019]
- Fully algebraic domain decomposition preconditioners with adaptive spectral bounds [Gouarin and Spillane, 2021]
- A Robust Algebraic Domain Decomposition Preconditioner for Sparse Normal Equations [Al Daas et al., 2022b]
- A robust algebraic multilevel domain decomposition preconditioner for sparse symmetric positive definite matrices [AI Daas and Jolivet, 2022]
- Efficient algebraic two-level Schwarz preconditioner for sparse matrices [Al Daas et al., 2022a]

Interface-to-Interior Operator

$$P_{i} = I([R_{li}, R_{\Gamma_{1:\delta-1}i}, R_{\Gamma_{\delta}i}, R_{ci}], :),$$

$$P_{i}AP_{i}^{\top} = \begin{pmatrix} A_{li,li} & A_{li,\Gamma_{1:\delta-1}i} & & \\ A_{\Gamma_{1:\delta-1}i,li} & A_{\Gamma_{1:\delta-1}i,\Gamma_{1:\delta-1}i} & A_{\Gamma_{1:\delta-1}i,\Gamma_{\delta}i} & \\ & A_{\Gamma_{\delta}i,\Gamma_{1:\delta-1}i} & A_{\Gamma_{\delta}i,\Gamma_{\delta}i} & A_{\Gamma_{\delta}i,ci} \\ & & A_{ci,\Gamma_{\delta}i} & A_{ci,ci} \end{pmatrix}$$

Interface-to-Interior Operator

$$P_{i} = I([R_{li}, R_{\Gamma_{1:\delta-1}i}, R_{\Gamma_{\delta}i}, R_{ci}], :),$$

$$P_{i}AP_{i}^{\top} = \begin{pmatrix} A_{li,li} & A_{li,\Gamma_{1:\delta-1}i} & & \\ A_{\Gamma_{1:\delta-1}i,li} & A_{\Gamma_{1:\delta-1}i,\Gamma_{1:\delta-1}i} & A_{\Gamma_{1:\delta-1}i,\Gamma_{\delta}i} & \\ & A_{\Gamma_{\delta}i,\Gamma_{1:\delta-1}i} & A_{\Gamma_{\delta}i,\Gamma_{\delta}i} & A_{\Gamma_{\delta}i,ci} \\ & & A_{ci,\Gamma_{\delta}i} & A_{ci,ci} \end{pmatrix}$$

Consider $T_i : x_{\delta i} \in \Omega_{\Gamma_{\delta} i} \mapsto x_{li} \in \Omega_{li}$, the restriction of the corresponding local solution.

$$\begin{pmatrix} A_{Ii,Ii} & A_{Ii,\Gamma_{1:\delta-1}i} \\ A_{\Gamma_{1:\delta-1}i,Ii} & A_{\Gamma_{1:\delta-1}i,\Gamma_{1:\delta-1}i} & A_{\Gamma_{1:\delta-1}i,\Gamma_{\delta}i} \\ I \end{pmatrix} \begin{pmatrix} x_{Ii} \\ x_{\Gamma_{1:\delta-1}i} \\ x_{\delta i} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ x_{\delta i} \end{pmatrix}$$

Interface-to-Interior Operator

$$P_{i} = I([R_{li}, R_{\Gamma_{1:\delta-1}i}, R_{\Gamma_{\delta}i}, R_{ci}], :),$$

$$P_{i}AP_{i}^{\top} = \begin{pmatrix} A_{li,li} & A_{li,\Gamma_{1:\delta-1}i} & & \\ A_{\Gamma_{1:\delta-1}i,li} & A_{\Gamma_{1:\delta-1}i}, \Gamma_{1:\delta-1}i & A_{\Gamma_{1:\delta-1}i,\Gamma_{\delta}i} & \\ & A_{\Gamma_{\delta}i,\Gamma_{1:\delta-1}i} & A_{\Gamma_{\delta}i,\Gamma_{\delta}i} & A_{\Gamma_{\delta}i,ci} \\ & & A_{ci,\Gamma_{\delta}i} & A_{ci,ci} \end{pmatrix}$$

$$T_{i}(x_{\delta i}) = x_{li} = \left(\begin{pmatrix} A_{li,li} & A_{li,\Gamma_{1:\delta-1}i} \\ A_{\Gamma_{1:\delta-1}i,li} & A_{\Gamma_{1:\delta-1}i,\Gamma_{1:\delta-1}i} \end{pmatrix} \begin{pmatrix} 0 \\ -A_{\Gamma_{1:\delta-1}i,\Gamma_{\delta}i} x_{\delta i} \end{pmatrix} \right)_{li}$$

Theorem

To be submitted [HAD, Jolivet, Nataf, Tournier]

Theorem

Set
$$R_0^H = [R_{I1}Z_1, ..., R_{IN}Z_N]$$
, where $Z_i = Im(T_i)$

$$M_2^{-1} = R_0^H A_{00}^{-1} R_0 + \sum_{i=1}^N R_i^T A_{ii}^{-1} R_i.$$

If A is HPD:

$$\kappa\left(M_2^{-1}A\right)=C$$

C depends only on the largest number of neighbouring overlapping subdomains

SVD Interface-to-Interior Operator

Figure: N = 32. Subdomain 1. Singular values of the interface-to-interior operator for a Poisson equation.

SVD Interface-to-Interior Operator

Figure: N = 32. Subdomain 1. Singular values of the interface-to-interior operator for the matrix $A^T A$, where A is the *Rucci1* matrix (SSMC).

Theorem

To be submitted [HAD, Jolivet, Nataf, Tournier]

Theorem

Set $R_0^H = [R_{I1}Z_1, \ldots, R_{IN}Z_N]$, where $Z_i = tSVD(Im(T_i), \varepsilon)$

$$M_2^{-1} = R_0^H A_{00}^{-1} R_0 + \sum_{i=1}^N R_i^T A_{ii}^{-1} R_i.$$

If A is HPD:

$$\kappa\left(M_{2}^{-1}A\right)=C\left(1+\kappa\left(M_{1}^{-1}A\right)\varepsilon\right)$$

C depends only on the largest number of neighbouring overlapping subdomains

Numerical experiments

N	4	8	16	32
Diffusion	14 (160)	12 (320)	11 (640)	8 (1280)
Adv-Diff	14 (160)	13 (320)	14 (640)	12 (1280)
Stokes	47 (320)	42 (640)	43 (1280)	49 (2559)
Biharmonic	51 (240)	55 (480)	34 (960)	22 (1920)
Elasticity	50 (320)	37 (640)	36 (1267)	28 (2529)

Table: Strong scaling on variety of problems

Numerical experiments

N	8	32
Diffusion	10 (160)	13 (640)
Adv-Diff	12 (160)	13 (640)
Stokes	32 (614)	49 (2555)
Biharmonic	11 (639)	15 (2560)
Elasticity	18 (554)	28 (2529)

Table: Weak scaling on variety of problems

Nornal Equations

[HAD, Jolivet, Scott. SISC 22']

Theorem

For a sparse A with $A = B^H B$, or $A = B^H diag(g)B$, $g \ge 0$

$$\kappa\left(M_{2}^{-1}A\right)=C\left(1+\tau\right)$$

where $\tau > 0$ is a user-specified.

PDE-CO

Solve

$$\min_{y} \|y - \hat{y}\|_{\Omega_1}^2 + \beta \|u\|_{\Omega_2}^2 \quad \text{ subject to } \mathcal{L}y = u \text{ in } \Omega$$

The resulting matrix

$$\begin{pmatrix} M & K^* \\ \beta R & L^* \\ K & L \end{pmatrix}$$

Mass lumping yields an equivalent diagonal matrix W to the (1:2,1:2)-block. $\tilde{S} = J^*J$, where $J^* = [KL]W^{-1/2}$.

Poisson PDE-CO

Science and Technology Facilities Council

IFISS: Grid $2^8 \times 2^8$, $\beta = 0.01$, Q_2 -FE, matrix length $\approx 200K$.

25

Test case inspired by Kouri et al. 21' Grid 160 × 160, $\beta = 10^{-5}$, P_1 -FE, matrix length $\approx 50K$.

Figure: State (real part): Desired (left), solution (right)

Test case inspired by Kouri et al. 21' Grid 160 \times 160, $\beta = 10^{-5},$ $P_{1}\text{-FE},$ matrix length \approx 50K.

Figure: 3D view of the state (real part)

Test case inspired by Kouri et al. 21' Grid 160 × 160, $\beta = 10^{-5}$, P₁-FE, matrix length $\approx 50K$.

Figure: Control (real part)

Test case inspired by Kouri et al. 21' Grid 160 × 160, $\beta = 10^{-5}$, P_1 -FE, matrix length $\approx 50K$.

Figure: Residual history

Diagonally Dominant HPD

[HAD, Jolivet, Rees. SISC 23']

Theorem

For a sparse A HPD

$$\kappa\left(M_{2}^{-1}A\right)=C\left(1+\tau\right)$$

where $\tau > 0$ is a user-specified.

Highly Non Symmetric

$$abla \cdot (Vu) -
u
abla \cdot (\kappa
abla u) = 0 ext{ in } \Omega \quad u = 0 ext{ on } \Gamma_0 \quad u = 1 ext{ on } \Gamma_1$$

(a) Mesh

Highly Non Symmetric

$$abla \cdot (Vu) -
u
abla \cdot (\kappa
abla u) = 0 ext{ in } \Omega \quad u = 0 ext{ on } \Gamma_0 \quad u = 1 ext{ on } \Gamma_1$$

(a) N	/lesh
-------	-------

(b) $\nu = 10^{-2}$

	Prec	Dimension	k	N	п	1	10^{-1}	$^{\nu}_{10^{-2}}$	10 ⁻³	10^{-4}
	M_1	2	1	1,024	$6.3 \cdot 10^{6}$	23 (52,875)	20 (52,872)	19 (52,759)	20 (47,497)	21 (28,235)
	11/2	3	2	4,096	$8.1 \cdot 10^6$	$18 \ ({\rm 1.8} \cdot {\rm 10^5})$	$14_{\ (1.8\cdot10^5)}$	$11 \ ({\rm 1.6} \cdot {\rm 10^5})$	16 (97,657)	$29_{\ (76,853)}$
	CAMC	2	1	1,024	$6.3 \cdot 10^{6}$	42	48	88	†	†
_	GAING	. 3	2	4,096	$8.1 \cdot 10^6$	40	38	65	†	t
ĿĶ	Technolo	and gy 2	1	1,024	$6.3 \cdot 10^{6}$	50	49	19	7	t
X .1	- Facilities	Council	2	4,096	$8.1 \cdot 10^6$	12	9	7	†	†

Summary & Perspectives

Summary:

- Algebraic DD provides a simple way to construct preconditioners that are effective, efficient, black-box and easy to set up
- Provable: Diagonally weighted normal equations matrix (Schur complement); HPD; Diagonally dominant HPD
- All preconditioner are accessible in PETSc PCHPDDM

Perspectives:

- Extension to general Schur complement $B^H G^{-1} B$
- Extend theory to non-Hermitian matrices

Thank you for your attention!

Bibliographies I

Al Daas, H. and Grigori, L. (2019).

A class of efficient locally constructed preconditioners based on coarse spaces. SIAM Journal on Matrix Analysis and Applications, 40(1):66–91.

Al Daas, H., Grigori, L., Jolivet, P., and Tournier, P.-H. (2021).

A multilevel Schwarz preconditioner based on a hierarchy of robust coarse spaces. SIAM Journal on Scientific Computing, 43(3):A1907–A1928.

Al Daas, H. and Jolivet, P. (2022).

A robust algebraic multilevel domain decomposition preconditioner for sparse symmetric positive definite matrices.

SIAM Journal on Scientific Computing, 44(4):A2582-A2598.

Al Daas, H., Jolivet, P., and Rees, T. (2022a).

Efficient algebraic two-level schwarz preconditioner for sparse matrices.

Al Daas, H., Jolivet, P., and Scott, J. A. (2022b).

A robust algebraic domain decomposition preconditioner for sparse normal equations. *SIAM Journal on Scientific Computing*, 44(3):A1047–A1068.

Bastian, P., Scheichl, R., Seelinger, L., and Strehlow, A. (2022).

Multilevel spectral domain decomposition. SIAM Journal on Scientific Computing, pages S1–S26.

Bootland, N., Dolean, V., Jolivet, P., and Tournier, P.-H. (2021).

A comparison of coarse spaces for Helmholtz problems in the high frequency regime. Computers & Mathematics with Applications, 98:239–253.

Science and Technology Facilities Council

Bibliographies II

	_

Gander, M. J. and Loneland, A. (2017).

SHEM: an optimal coarse space for RAS and its multiscale approximation. In Lee, C.-O., Cai, X.-C., Keyes, D. E., Kim, H. H., Klawonn, A., Park, E.-J., and Widlund, O. B., editors, *Domain Decomposition Methods in Science and Engineering XXIII*, pages 313–321, Cham. Springer International Publishing.

Gouarin, L. and Spillane, N. (2021).

Fully algebraic domain decomposition preconditioners with adaptive spectral bounds. Preprint.

Heinlein, A., Klawonn, A., Knepper, J., Rheinbach, O., and Widlund, O. B. (2020). Adaptive GDSW coarse spaces of reduced dimension for overlapping Schwarz methods. Technical report. Universität zu Köln.

Heinlein, A. and Smetana, K. (2022).

A fully algebraic and robust two-level schwarz method based on optimal local approximation spaces.

Nataf, F., Xiang, H., Dolean, V., and Spillane, N. (2011).

A coarse space construction based on local Dirichlet-to-Neumann maps. *SIAM Journal on Scientific Computing*, 33(4):1623–1642.

Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., and Scheichl, R. (2014). Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. *Numerische Mathematik*, 126(4):741–770.

$$\nabla \cdot (Vu) - \nu \nabla \cdot (\kappa \nabla u) = 0 \text{ in } \Omega \quad u = 0 \text{ on } \Gamma_0 \quad u = 1 \text{ on } \Gamma_1$$

$$v_{(x, y)} = \begin{pmatrix} x(1-x)(2y-1) \\ -y(1-y)(2x-1) \end{pmatrix} \quad \text{or} \quad v_{(x, y, z)} = \begin{pmatrix} 2x(1-x)(2y-1)z \\ -y(1-y)(2x-1) \\ -z(1-z)(2x-1)(2y-1) \end{pmatrix},$$

Two to multi-level [H.A., P.J., L.G., P.-H.T. SISC '21]

 $A_{00} = R_0 A R_0^H$

Two to multi-level [H.A., P.J., L.G., P.-H.T. SISC '21]

$$A_{00} = R_0 A R_0^H$$

$$u^{H}\sum_{i=1}^{N}\widetilde{A}_{i}u \leq k_{m}u^{H}Au$$

Two to multi-level [H.A., P.J., L.G., P.-H.T. SISC '21]

$$A_{00} = R_0 A R_0^H$$

$$u^{H}\sum_{i=1}^{N}\widetilde{A}_{i}u\leq k_{m}u^{H}Au$$

$$(R_0v)^H\sum_{i=1}^N\widetilde{A}_i(R_0v)\leq k_m(R_0v)^HA(R_0v)$$

Two to multi-level [H.A., P.J., L.G., P.-H.T. SISC '21]

$$A_{00} = R_0 A R_0^H$$

$$u^{H}\sum_{i=1}^{N}\widetilde{A}_{i}u\leq k_{m}u^{H}Au$$

$$(R_0v)^H \sum_{i=1}^N \widetilde{A}_i(R_0v) \leq k_m(R_0v)^H A(R_0v)$$

$$v^{H}\sum_{i=1}^{N}(R_{0}^{H}\widetilde{A}_{i}R_{0})v \leq k_{m}v^{H}(R_{0}^{H}AR_{0})v = k_{m}v^{H}A_{00}v$$

Two to multi-level [H.A., P.J., L.G., P.-H.T. SISC '21]

$$A_{00} = R_0 A R_0^H$$

$$u^{H}\sum_{i=1}^{N}\widetilde{A}_{i}u\leq k_{m}u^{H}Au$$

$$(R_0v)^H\sum_{i=1}^N\widetilde{A}_i(R_0v)\leq k_m(R_0v)^HA(R_0v)$$

$$v^{H}\sum_{i=1}^{N}(R_{0}^{H}\widetilde{A}_{i}R_{0})v\leq k_{m}v^{H}(R_{0}^{H}AR_{0})v=k_{m}v^{H}A_{00}v$$

$$v^{H} \sum_{j=1}^{N_{2}} \underbrace{\left(\sum_{i \in G_{j}} (R_{0}^{H} \widetilde{A}_{i} R_{0})\right)}_{\substack{\text{Science and}\\ \text{Technology}\\ \text{Facilities Council}} v \leq k_{m} v^{H} (R_{0}^{H} A R_{0}) v = k_{m} v^{H} A_{00} v$$

GenEO FEM [Dolean et al '15]

$$a(u,v) = \sum_{K \in \mathcal{T}} \int_{K} uv \to A$$
$$\widetilde{a}(u,v) = \sum_{K \in \mathcal{T}_{i}} \int_{K} uv \to \widetilde{A}_{i}$$

