Science and
Technology Facilities Council

Robust Algebraic Multilevel Domain Decomposition Preconditioner for General Sparse Matrices

Hussam AI Daas
STFC, Rutherford Appleton Laboratory
Bath-RAL Day
RAL, 14 April 2023

Collaborators

- Pierre Jolivet (CNRS, LIP6, Sorbonne Uni.)
- Frédéric Nataf (CNRS, LJLL, Sorbonne Uni.)
- Tyrone Rees (STFC, RAL)
- Jennifer Scott (STFC, RAL)
- Pierre-Henri Tournier (CNRS, LJLL, Sorbonne Uni.)

Outline

Introduction to (Algebraic) Additive Schwarz

Adaptive Coarse Spaces
Some Existing CS
New CS
Normal Eqs.
More CS

Summary

Motivation

Solving sparse linear systems is omnipresent in scientific computing.

$$
A x=b
$$

$A \in \mathbb{K}^{n \times n}$ very large, sparse, and ill conditioned.

Motivation

Solving sparse linear systems is omnipresent in scientific computing.

$$
A x=b
$$

$A \in \mathbb{K}^{n \times n}$ very large, sparse, and ill conditioned. Important aspects required by users:

Motivation

Solving sparse linear systems is omnipresent in scientific computing.

$$
A x=b
$$

$A \in \mathbb{K}^{n \times n}$ very large, sparse, and ill conditioned. Important aspects required by users:

- Effectiveness: need a solution with a desired accuracy

Motivation

Solving sparse linear systems is omnipresent in scientific computing.

$$
A x=b
$$

$A \in \mathbb{K}^{n \times n}$ very large, sparse, and ill conditioned. Important aspects required by users:

- Effectiveness: need a solution with a desired accuracy
- Efficiency: need it as fast as possible

Motivation

Solving sparse linear systems is omnipresent in scientific computing.

$$
A x=b
$$

$A \in \mathbb{K}^{n \times n}$ very large, sparse, and ill conditioned.
Important aspects required by users:

- Effectiveness: need a solution with a desired accuracy
- Efficiency: need it as fast as possible
- Scalability: more computing resources yields faster solver

Motivation

Solving sparse linear systems is omnipresent in scientific computing.

$$
A x=b
$$

$A \in \mathbb{K}^{n \times n}$ very large, sparse, and ill conditioned.
Important aspects required by users:

- Effectiveness: need a solution with a desired accuracy
- Efficiency: need it as fast as possible
- Scalability: more computing resources yields faster solver
- Black box: prefer non-intrusive solvers. Only provide A and b

Motivation

Solving sparse linear systems is omnipresent in scientific computing.

$$
A x=b
$$

$A \in \mathbb{K}^{n \times n}$ very large, sparse, and ill conditioned.
Important aspects required by users:

- Effectiveness: need a solution with a desired accuracy
- Efficiency: need it as fast as possible
- Scalability: more computing resources yields faster solver
- Black box: prefer non-intrusive solvers. Only provide A and b
- Easy setup: Few knowledge on linear solvers. Not worry how to set it up perfectly. As minimal parameters as possible.
(Type: Hermitian, saddle-point, etc; Accuracy; Max iter)

Overlapping DD

Solve the Poisson equation in Ω

Overlapping DD

Solve the Poisson equation in Ω

$$
R_{1} A R_{1}^{T} x=R_{1} b
$$

Overlapping DD

Solve the Poisson equation in Ω

$$
R_{2} A R_{2}^{\top} x=R_{2} b
$$

Overlapping DD

Solve the Poisson equation in Ω

$$
R_{1}^{T}\left(R_{1} A R_{1}^{T}\right)^{-1} R_{1}+R_{2}^{T}\left(R_{2} A R_{2}^{T}\right)^{-1} R_{2}
$$

Iterate updating the solution values.

Overlapping DD

Figure: Semistructured mesh decomposed into 32 overlapping subdomains
Science and
Technology
Facilities Council

Ingredients: Overlapping Subdomain

The sparsity graph of A has n nodes.
N non-overlapping sudbomains $\left\{\Omega_{l i}\right\}_{1 \leq i \leq N}: N$ disjoint subsets of $\Omega=\llbracket 1, n \rrbracket . n_{l i}=\# \Omega_{l i}$

Ingredients: Overlapping Subdomain

The sparsity graph of A has n nodes.
N non-overlapping sudbomains $\left\{\Omega_{l i}\right\}_{1 \leq i \leq N}: N$ disjoint subsets of
$\Omega=\llbracket 1, n \rrbracket . n_{l i}=\# \Omega_{l i}$
The connections in the graph define the overlapping subdomain:
If $k \in \Omega_{l i}, j \notin \Omega_{l i}$ and $A(k, j) \neq 0$ then $j \in \Omega_{\Gamma i}$.

Ingredients: Overlapping Subdomain

The sparsity graph of A has n nodes.
N non-overlapping sudbomains $\left\{\Omega_{l i}\right\}_{1 \leq i \leq N}: N$ disjoint subsets of
$\Omega=\llbracket 1, n \rrbracket . n_{l i}=\# \Omega_{l i}$
The connections in the graph define the overlapping subdomain:
If $k \in \Omega_{l i}, j \notin \Omega_{l i}$ and $A(k, j) \neq 0$ then $j \in \Omega_{\Gamma i}$.

$$
A=\left(\begin{array}{llll}
a_{11} & a_{12} & & \\
a_{21} & a_{22} & a_{23} & \\
& a_{32} & a_{33} & a_{34} \\
& & a_{43} & a_{44}
\end{array}\right), \quad N=2
$$

Ingredients: Overlapping Subdomain

The sparsity graph of A has n nodes.
N non-overlapping sudbomains $\left\{\Omega_{l i}\right\}_{1 \leq i \leq N}: N$ disjoint subsets of
$\Omega=\llbracket 1, n \rrbracket . n_{l i}=\# \Omega_{l i}$
The connections in the graph define the overlapping subdomain:
If $k \in \Omega_{l i}, j \notin \Omega_{l i}$ and $A(k, j) \neq 0$ then $j \in \Omega_{\Gamma i}$.

$$
A=\left(\begin{array}{llll}
a_{11} & a_{12} & & \\
a_{21} & a_{22} & a_{23} & \\
& a_{32} & a_{33} & a_{34} \\
& & a_{43} & a_{44}
\end{array}\right), \quad N=2
$$

- $\Omega_{11}=\{1,2\} \Omega_{12}=\{3,4\}$

Ingredients: Overlapping Subdomain

The sparsity graph of A has n nodes.
N non-overlapping sudbomains $\left\{\Omega_{l i}\right\}_{1 \leq i \leq N}: N$ disjoint subsets of
$\Omega=\llbracket 1, n \rrbracket . n_{l i}=\# \Omega_{l i}$
The connections in the graph define the overlapping subdomain:
If $k \in \Omega_{l i}, j \notin \Omega_{l i}$ and $A(k, j) \neq 0$ then $j \in \Omega_{\Gamma i}$.

$$
A=\left(\begin{array}{llll}
a_{11} & a_{12} & & \\
a_{21} & a_{22} & a_{23} & \\
& a_{32} & a_{33} & a_{34} \\
& & a_{43} & a_{44}
\end{array}\right), \quad N=2
$$

- $\Omega_{11}=\{1,2\} \Omega_{12}=\{3,4\}$
- $\Omega_{\Gamma 1}=\{3\}, \Omega_{\Gamma 2}=\{2\}$

Ingredients: Restriction and Partition of Unity

Restriction to subset nodes:

- $R_{l i}=I_{n}\left(\Omega_{l i},:\right)$: to nonoverlapping nodes

Ingredients: Restriction and Partition of Unity

Restriction to subset nodes:

- $R_{l i}=I_{n}\left(\Omega_{l i},:\right)$: to nonoverlapping nodes
- $R_{\Gamma i}=I_{n}\left(\Omega_{\Gamma i},:\right):$ to interface nodes

Ingredients: Restriction and Partition of Unity

Restriction to subset nodes:

- $R_{l i}=I_{n}\left(\Omega_{l i},:\right)$: to nonoverlapping nodes
- $R_{\Gamma i}=I_{n}\left(\Omega_{\Gamma i},:\right):$ to interface nodes
- $R_{i}=\left[R_{l i} ; R_{\Gamma i}\right]$: to overlapping sudomain nodes

Ingredients: Restriction and Partition of Unity

Restriction to subset nodes:

- $R_{l i}=I_{n}\left(\Omega_{l i},:\right)$: to nonoverlapping nodes
- $R_{\Gamma i}=I_{n}\left(\Omega_{\Gamma i},:\right):$ to interface nodes
- $R_{i}=\left[R_{l i} ; R_{\Gamma i}\right]$: to overlapping sudomain nodes
- $R_{c i}$: to the rest

Ingredients: Restriction and Partition of Unity

Restriction to subset nodes:

- $R_{l i}=I_{n}\left(\Omega_{l i},:\right)$: to nonoverlapping nodes
- $R_{\Gamma i}=I_{n}\left(\Omega_{\Gamma i},:\right):$ to interface nodes
- $R_{i}=\left[R_{l i} ; R_{\Gamma i}\right]$: to overlapping sudomain nodes
- $R_{c i}$: to the rest

Partition of unity: D_{i} : diagonal 1 if $\in \Omega_{l i}$ and 0 if $\in \Omega_{\Gamma i}$

Ingredients: Restriction and Partition of Unity

Restriction to subset nodes:

- $R_{l i}=I_{n}\left(\Omega_{l i},:\right)$: to nonoverlapping nodes
- $R_{\Gamma i}=I_{n}\left(\Omega_{\Gamma i},:\right):$ to interface nodes
- $R_{i}=\left[R_{l i} ; R_{\Gamma i}\right]$: to overlapping sudomain nodes
- $R_{c i}$: to the rest

Partition of unity: D_{i} : diagonal 1 if $\in \Omega_{l i}$ and 0 if $\in \Omega_{\Gamma i}$

$$
\sum_{i=1}^{N} R_{i}^{T} D_{i} R_{i}=I_{n}
$$

Ingredients: Restriction and Partition of Unity

$$
A=\left(\begin{array}{llll}
a_{11} & a_{12} & & \\
a_{21} & a_{22} & a_{23} & \\
& a_{32} & a_{33} & a_{34} \\
& & a_{43} & a_{44}
\end{array}\right), \quad N=2
$$

- $\Omega_{11}=\{1,2\} \Omega_{12}=\{3,4\}$
- $\Omega_{\Gamma 1}=\{3\}, \Omega_{\Gamma 2}=\{2\}$

Ingredients: Restriction and Partition of Unity

$$
A=\left(\begin{array}{llll}
a_{11} & a_{12} & & \\
a_{21} & a_{22} & a_{23} & \\
& a_{32} & a_{33} & a_{34} \\
& & a_{43} & a_{44}
\end{array}\right), \quad N=2
$$

- $\Omega_{11}=\{1,2\} \Omega_{12}=\{3,4\}$
- $\Omega_{\Gamma 1}=\{3\}, \Omega_{\Gamma 2}=\{2\}$
- $R_{/ 1}=I\left(\left[\begin{array}{ll}1 & 2\end{array}\right],:\right), R_{\Gamma 1}=I(3,:), R_{1}=I\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right],:\right)$
$-R_{I 2}=I\left(\left[\begin{array}{ll}3 & 4\end{array}\right],:\right), R_{\Gamma 2}=I(2,:), R_{2}=I\left(\left[\begin{array}{lll}3 & 4 & 2\end{array}\right],:\right)$

Ingredients: Restriction and Partition of Unity

$$
A=\left(\begin{array}{llll}
a_{11} & a_{12} & & \\
a_{21} & a_{22} & a_{23} & \\
& a_{32} & a_{33} & a_{34} \\
& & a_{43} & a_{44}
\end{array}\right), \quad N=2
$$

- $\Omega_{/ 1}=\{1,2\} \Omega_{I 2}=\{3,4\}$
- $\Omega_{\Gamma 1}=\{3\}, \Omega_{\Gamma 2}=\{2\}$
- $R_{/ 1}=I\left(\left[\begin{array}{ll}1 & 2\end{array}\right],:\right), R_{\Gamma 1}=I(3,:), R_{1}=I\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right],:\right)$
$-R_{I 2}=I\left(\left[\begin{array}{ll}3 & 4\end{array}\right],:\right), R_{\Gamma 2}=I(2,:), R_{2}=I\left(\left[\begin{array}{ll}3 & 4\end{array}\right],:\right)$

$$
D_{1}=\left(\begin{array}{ccc}
1 & & \\
& 1 & \\
& & 0
\end{array}\right) \quad D_{2}=\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 0
\end{array}\right)
$$

Ingredients: Local Problems

$$
A_{i i}=R_{i} A R_{i}^{T} .
$$

Ingredients: Local Problems

$$
\begin{gathered}
A_{i i}=R_{i} A R_{i}^{T} \\
A=\left(\begin{array}{llll}
a_{11} & a_{12} & \\
a_{21} & a_{22} & a_{23} & \\
& a_{32} & a_{33} & a_{34} \\
& & a_{43} & a_{44}
\end{array}\right), \quad N=2 .
\end{gathered}
$$

- $R_{l 1}=I\left(\left[\begin{array}{ll}1 & 2\end{array}\right],:\right), R_{\Gamma 1}=I(3,:), R_{1}=I\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right],:\right)$
- $R_{I 2}=I\left(\left[\begin{array}{ll}3 & 4\end{array}\right],:\right), R_{\Gamma 2}=I(2,:), R_{2}=I\left(\left[\begin{array}{lll}3 & 4 & 2\end{array}\right],:\right)$

Ingredients: Local Problems

$$
A_{i i}=R_{i} A R_{i}^{T} .
$$

$$
A=\left(\begin{array}{llll}
a_{11} & a_{12} & & \\
a_{21} & a_{22} & a_{23} & \\
& a_{32} & a_{33} & a_{34} \\
& & a_{43} & a_{44}
\end{array}\right), \quad N=2 .
$$

- $R_{l 1}=I\left(\left[\begin{array}{ll}1 & 2\end{array}\right],:\right), R_{\Gamma 1}=I(3,:), R_{1}=I\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right],:\right)$
$-R_{l 2}=I\left(\left[\begin{array}{ll}3 & 4\end{array}\right],:\right), R_{\Gamma 2}=I(2,:), R_{2}=I\left(\left[\begin{array}{lll}3 & 4 & 2\end{array}\right],:\right)$

$$
A_{11}=\left(\begin{array}{lll}
a_{11} & a_{12} & \\
a_{21} & a_{22} & a_{23} \\
& a_{32} & a_{33}
\end{array}\right)
$$

Ingredients: Local Problems

$$
\begin{gathered}
A_{i i}=R_{i} A R_{i}^{T} \\
A=\left(\begin{array}{llll}
a_{11} & a_{12} & \\
a_{21} & a_{22} & a_{23} & \\
& a_{32} & a_{33} & a_{34} \\
& & a_{43} & a_{44}
\end{array}\right), \quad N=2 .
\end{gathered}
$$

$-R_{l 1}=I\left(\left[\begin{array}{ll}1 & 2\end{array}\right],:\right), R_{\Gamma 1}=I(3,:), R_{1}=I\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right],:\right)$

- $R_{I 2}=I\left(\left[\begin{array}{ll}3 & 4\end{array}\right],:\right), R_{\Gamma 2}=I(2,:), R_{2}=I\left(\left[\begin{array}{lll}3 & 4 & 2\end{array}\right],:\right)$

$$
A_{11}=\left(\begin{array}{lll}
a_{11} & a_{12} & \\
a_{21} & a_{22} & a_{23} \\
& a_{32} & a_{33}
\end{array}\right)
$$

Ingredients: Local Problems

$$
\begin{gathered}
A_{i i}=R_{i} A R_{i}^{T} . \\
A=\left(\begin{array}{llll}
a_{11} & a_{12} & \\
a_{21} & a_{22} & a_{23} & \\
& a_{32} & a_{33} & a_{34} \\
& & a_{43} & a_{44}
\end{array}\right), \quad N=2 .
\end{gathered}
$$

- $R_{I 1}=I\left(\left[\begin{array}{ll}1 & 2\end{array}\right],:\right), R_{\Gamma 1}=I(3,:), R_{1}=I\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right],:\right)$
- $R_{I 2}=I\left(\left[\begin{array}{ll}3 & 4\end{array}\right],:\right), R_{\Gamma 2}=I(2,:), R_{2}=I\left(\left[\begin{array}{lll}3 & 4 & 2\end{array}\right],:\right)$

$$
A_{11}=\left(\begin{array}{lll}
a_{11} & a_{12} & \\
a_{21} & a_{22} & a_{23} \\
& a_{32} & a_{33}
\end{array}\right) \quad A_{22}=\left(\begin{array}{lll}
a_{33} & a_{34} & a_{32} \\
a_{43} & a_{44} & \\
a_{23} & & a_{22}
\end{array}\right)
$$

Define $P_{i}=I\left(\left[R_{l i}, R_{\Gamma i}, R_{c i}\right],:\right)$,

$$
P_{i} A P_{i}^{\top}=\left(\begin{array}{lll}
A_{l i, l i} & A_{l i, \Gamma i} & \\
A_{\Gamma i, l i} & A_{\Gamma i, \Gamma i} & A_{\Gamma i, c i} \\
& A_{c i, \Gamma i} & A_{c i, c i}
\end{array}\right)
$$

δ-Overlap

Through the sparsity graph, define $\Omega_{\Gamma_{1: \delta} i}$ Define

$$
P_{i}=I\left(\left[R_{l i}, R_{\Gamma_{1: \delta-1} i}, R_{\Gamma_{\delta} i}, R_{c i}\right],:\right),
$$

$$
P_{i} A P_{i}^{\top}=\left(\begin{array}{cccc}
A_{l i, l i} & A_{l i, \Gamma_{1: \delta-1} i} & & \\
A_{\Gamma_{1: \delta-1} i, l i} & A_{\Gamma_{1: \delta-1} i, \Gamma_{1: \delta-1} i} & A_{\Gamma_{1: \delta-1} i, \Gamma_{\delta} i} & \\
& A_{\Gamma_{\delta} i, \Gamma_{1: \delta-1} i} & A_{\Gamma_{\delta} i, \Gamma_{\delta} i} & A_{\Gamma_{\delta} i, c i} \\
& & A_{c i, \Gamma_{\delta} i} & A_{c i, c i}
\end{array}\right)
$$

δ-Overlap

Through the sparsity graph, define $\Omega_{\Gamma_{1: \delta i}}$ Define

$$
P_{i}=I\left(\left[R_{l i}, R_{\Gamma_{1: \delta-1} i}, R_{\Gamma_{\delta} i}, R_{c i}\right],:\right),
$$

$$
P_{i} A P_{i}^{\top}=\left(\begin{array}{cccc}
A_{l i, l i} & A_{l i, \Gamma_{1: \delta-1} i} & & \\
A_{\Gamma_{1: \delta-1} i, l i} & A_{\Gamma_{1: i-\infty} i, \Gamma_{1: \delta-1} i} & A_{\Gamma_{1: \delta-1} i, \Gamma_{\delta i} i} & \\
& A_{\Gamma_{\delta} i, \Gamma_{1: \delta-1} i} & A_{\Gamma_{\delta i}, \Gamma_{\delta i} i} & A_{\Gamma_{\delta i}, c i} \\
& & A_{c i, \Gamma_{\delta} i} & A_{c i, c i}
\end{array}\right)
$$

$R_{i}=\left[R_{l i}, R_{\Gamma_{1: \delta-1} i}, R_{\Gamma_{\delta}}\right]$.

One-Level Schwarz

Four stages:

1. Restrict
2. Solve locally
3. Augment
4. Update

$$
M_{1}^{-1}=\sum_{i=1}^{N} R_{i}^{T} A_{i i}^{-1} R_{i}
$$

One-Level Schwarz

Four stages:

1. Restrict
2. Solve locally
3. Augment
4. Update

$$
M_{1}^{-1}=\sum_{i=1}^{N} R_{i}^{T} A_{i i}^{-1} R_{i}
$$

One-Level Schwarz

Four stages:

1. Restrict
2. Solve locally
3. Augment
4. Update

$$
M_{1}^{-1}=\sum_{i=1}^{N} R_{i}^{T} A_{i i}^{-1} R_{i}
$$

One-Level Schwarz

Four stages:

1. Restrict
2. Solve locally
3. Augment
4. Update

$$
M_{1}^{-1}=\sum_{i=1}^{N} R_{i}^{T} A_{i i}^{-1} R_{i}
$$

One-Level Schwarz Not Scalable

$$
M_{1}^{-1}=\sum_{i=1}^{N} R_{i}^{T} A_{i i}^{-1} R_{i}
$$

N	2	4	8	16	32	64
It	42	53	66	74	84	97

Table: 2D Poisson on 300×300 mesh. Metis partitioning.

One-Level Schwarz Not Scalable

$$
M_{1}^{-1}=\sum_{i=1}^{N} R_{i}^{T} A_{i i}^{-1} R_{i}
$$

N	2	4	8	16	32	64
It	42	53	66	74	84	97

Table: 2D Poisson on 300×300 mesh. Metis partitioning.

Iteration count $=f(N)$. Not scalable

One-Level Schwarz Not Scalable

\[

\]

Table: 2D Poisson on 300×300 mesh. Metis partitioning.

Iteration count $=f(N)$. Not scalable
Need a second level (coarse space correction) to maintain robustness

$$
M_{2}^{-1}=R_{0}^{H} A_{00}^{-1} R_{0}+\sum_{i=1}^{N} R_{i}^{T} A_{i i}^{-1} R_{i}
$$

Adaptive Coarse Spaces (for Overlapping Schwarz) I

PDE based (Two-level)

- A coarse space construction based on local Dirichlet-to-Neumann maps [Nataf et al., 2011]
- Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps [Spillane et al., 2014]
- SHEM: an optimal coarse space for RAS and Its multiscale approximation [Gander and Loneland, 2017]
- Adaptive GDSW coarse spaces of reduced dimension for overlapping Schwarz methods [Heinlein et al., 2020]
- A multilevel Schwarz preconditioner based on a hierarchy of robust coarse spaces [Al Daas et al., 2021]
- A comparison of coarse spaces for Helmholtz problems in the high frequency regime [Bootland et al., 2021]
- Multilevel spectral domain decomposition [Bastian et al., 2022]
- A fully algebraic and robust two-level Schwarz method based on optimal local approximation spaces [Heinlein and Smetana, 2022]

Adaptive Coarse Spaces (for Overlapping Schwarz) II

Fully Algebraic

- A class of efficient locally constructed preconditioners based on coarse spaces [Al Daas and Grigori, 2019]
- Fully algebraic domain decomposition preconditioners with adaptive spectral bounds [Gouarin and Spillane, 2021]
- A Robust Algebraic Domain Decomposition Preconditioner for Sparse Normal Equations [Al Daas et al., 2022b]
- A robust algebraic multilevel domain decomposition preconditioner for sparse symmetric positive definite matrices [AI Daas and Jolivet, 2022]
- Efficient algebraic two-level Schwarz preconditioner for sparse matrices [Al Daas et al., 2022a]

Interface-to-Interior Operator

$$
\begin{aligned}
& P_{i}=I\left(\left[R_{l i}, R_{\Gamma_{1: \delta-1} i}, R_{\Gamma_{\delta i} i}, R_{c i}\right],:\right), \\
& \quad P_{i} A P_{i}^{\top}=\left(\begin{array}{cccc}
A_{l i, l i} & A_{l i, \Gamma_{1: \delta-1} i} & \\
A_{\Gamma_{1: \delta-1} i, l i} & A_{\Gamma_{1: \delta-1} i, \Gamma_{1: \delta-1} i} & A_{\Gamma_{1: \delta-1} i, \Gamma_{\delta} i} & \\
& A_{\Gamma_{\delta} i, \Gamma_{1: \delta-1} i} & A_{\Gamma_{\delta} i, \Gamma_{\delta} i} & A_{\Gamma_{\delta} i, c i} \\
& & A_{c i, \Gamma_{\delta} i} & A_{c i, c i}
\end{array}\right)
\end{aligned}
$$

Interface-to-Interior Operator

$$
P_{i}=I\left(\left[R_{l i}, R_{\Gamma_{1: \delta-1} i}, R_{\Gamma_{\delta} i}, R_{c i}\right],:\right)
$$

$$
P_{i} A P_{i}^{\top}=\left(\begin{array}{cccc}
A_{l i, l i} & A_{l i, \Gamma_{1: \delta-1} i} & & \\
A_{\Gamma_{1: \delta-1} i, l i} & A_{\Gamma_{1: \delta-1} i, \Gamma_{1: \delta-1} i} & A_{\Gamma_{1: \delta-1} i, \Gamma_{\delta} i} & \\
& A_{\Gamma_{\delta} i, \Gamma_{1: \delta-1} i} & A_{\Gamma_{\delta} i, \Gamma_{\delta} i} & A_{\Gamma_{\delta} i, c i} \\
& & A_{c i, \Gamma_{\delta} i} & A_{c i, c i}
\end{array}\right)
$$

Consider $T_{i}: x_{\delta i} \in \Omega_{\Gamma_{\delta} i} \mapsto x_{l i} \in \Omega_{l i}$, the restriction of the corresponding local solution.

$$
\left(\begin{array}{ccc}
A_{l i, l i} & A_{l i, \Gamma_{1: \delta-1} i} & \\
A_{\Gamma_{1: \delta-1} i, l i} & A_{\Gamma_{1: \delta-1} i, \Gamma_{1: \delta-1} i} & A_{\Gamma_{1: \delta-1} i, \Gamma_{\delta i} i}
\end{array}\right)\left(\begin{array}{c}
x_{l i} \\
x_{\Gamma_{1: \delta-1} i} \\
x_{\delta i}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
x_{\delta i}
\end{array}\right)
$$

Interface-to-Interior Operator

$$
\begin{aligned}
& P_{i}=I\left(\left[R_{l i}, R_{\Gamma_{1: \delta-1} i}, R_{\Gamma_{\delta i} i}, R_{c i}\right],:\right), \\
& P_{i} A P_{i}^{\top}=\left(\begin{array}{ccc}
A_{l i, l i} & A_{l i, \Gamma_{1: \delta-1} i} & A_{\Gamma_{1: \delta-1} i, \Gamma_{\delta} i} \\
A_{\Gamma_{1: \delta-1} i, l i} & A_{\Gamma_{1: \delta-1} i, \Gamma_{1: \delta-1} i} & A_{\Gamma_{\delta} i, c i} \\
& A_{\Gamma_{\delta} i, \Gamma_{1: \delta-1} i} & A_{\Gamma_{\delta} i, \Gamma_{\delta} i} \\
& A_{c i, \Gamma_{\delta} i} & A_{c i, c i}
\end{array}\right) \\
& \left.T_{i}\left(x_{\delta i}\right)=x_{l i}=\left(\begin{array}{cc}
A_{l i, l i} & A_{l i, \Gamma_{1: \delta-1} i} \\
A_{\Gamma_{1: \delta-1} i, l i} & A_{\Gamma_{1: \delta-1} i, \Gamma_{1: \delta-1} i}
\end{array}\right)\binom{0}{-A_{\Gamma_{1: \delta-1} i, \Gamma_{\delta} i} x_{\delta i}}\right)_{l i}
\end{aligned}
$$

Theorem

To be submitted [HAD, Jolivet, Nataf, Tournier]

Theorem

Set $R_{0}^{H}=\left[R_{I 1} Z_{1}, \ldots, R_{I N} Z_{N}\right]$, where $Z_{i}=\operatorname{Im}\left(T_{i}\right)$

$$
M_{2}^{-1}=R_{0}^{H} A_{00}^{-1} R_{0}+\sum_{i=1}^{N} R_{i}^{T} A_{i i}^{-1} R_{i}
$$

If A is HPD:

$$
\kappa\left(M_{2}^{-1} A\right)=C
$$

C depends only on the largest number of neighbouring overlapping subdomains

SVD Interface-to-Interior Operator

Figure: $N=32$. Subdomain 1. Singular values of the interface-to-interior operator for a Poisson equation.

SVD Interface-to-Interior Operator

Figure: $N=32$. Subdomain 1. Singular values of the interface-to-interior operator for the matrix $A^{T} A$, where A is the Ruccil matrix (SSMC).

Theorem

To be submitted [HAD, Jolivet, Nataf, Tournier]

Theorem

Set $R_{0}^{H}=\left[R_{/ 1} Z_{1}, \ldots, R_{I N} Z_{N}\right]$, where $Z_{i}=t S V D\left(\operatorname{Im}\left(T_{i}\right), \varepsilon\right)$

$$
M_{2}^{-1}=R_{0}^{H} A_{00}^{-1} R_{0}+\sum_{i=1}^{N} R_{i}^{T} A_{i i}^{-1} R_{i}
$$

If A is HPD:

$$
\kappa\left(M_{2}^{-1} A\right)=C\left(1+\kappa\left(M_{1}^{-1} A\right) \varepsilon\right)
$$

C depends only on the largest number of neighbouring overlapping subdomains

Numerical experiments

N	4	8	16	32
Diffusion	$14(160)$	$12(320)$	$11(640)$	$8(1280)$
Adv-Diff	$14(160)$	$13(320)$	$14(640)$	$12(1280)$
Stokes	$47(320)$	$42(640)$	$43(1280)$	$49(2559)$
Biharmonic	$51(240)$	$55(480)$	$34(960)$	$22(1920)$
Elasticity	$50(320)$	$37(640)$	$36(1267)$	$28(2529)$

Table: Strong scaling on variety of problems

Numerical experiments

N	8	32
Diffusion	$10(160)$	$13(640)$
Adv-Diff	$12(160)$	$13(640)$
Stokes	$32(614)$	$49(2555)$
Biharmonic	$11(639)$	$15(2560)$
Elasticity	$18(554)$	$28(2529)$

Table: Weak scaling on variety of problems

Nornal Equations

[HAD, Jolivet, Scott. SISC 22']

Theorem

For a sparse A with $A=B^{H} B$, or $A=B^{H} \operatorname{diag}(g) B, g \geq 0$

$$
\kappa\left(M_{2}^{-1} A\right)=C(1+\tau)
$$

where $\tau>0$ is a user-specified.

PDE-CO

Solve

$$
\min _{y}\|y-\hat{y}\|_{\Omega_{1}}^{2}+\beta\|u\|_{\Omega_{2}}^{2} \quad \text { subject to } \mathcal{L} y=u \text { in } \Omega
$$

The resulting matrix

$$
\left(\begin{array}{ccc}
M & & K^{*} \\
& \beta R & L^{*} \\
K & L &
\end{array}\right)
$$

Mass lumping yields an equivalent diagonal matrix W to the (1:2,1:2)-block. $\widetilde{S}=J^{*} J$, where $J^{*}=[K L] W^{-1 / 2}$.

Poisson PDE-CO

IFISS: Grid $2^{8} \times 2^{8}, \beta=0.01, Q_{2}-F E$, matrix length $\approx 200 K$.

Figure: Residual history

Helmholtz PDE-CO

Test case inspired by Kouri et al. 21'
Grid $160 \times 160, \beta=10^{-5}, P_{1}$-FE, matrix length $\approx 50 K$.

Figure: State (real part): Desired (left), solution (right)

Helmholtz PDE-CO

Test case inspired by Kouri et al. 21'
Grid $160 \times 160, \beta=10^{-5}, P_{1}$-FE, matrix length $\approx 50 \mathrm{~K}$.

Figure: 3D view of the state (real part)

Helmholtz PDE-CO

Test case inspired by Kouri et al. 21'
Grid $160 \times 160, \beta=10^{-5}, P_{1}-$ FE, matrix length $\approx 50 K$.

Figure: Control (real part)

Helmholtz PDE-CO

Test case inspired by Kouri et al. 21'
Grid $160 \times 160, \beta=10^{-5}, P_{1}-$ FE, matrix length $\approx 50 K$.

Figure: Residual history

Diagonally Dominant HPD

[HAD, Jolivet, Rees. SISC 23']

Theorem

For a sparse A HPD

$$
\kappa\left(M_{2}^{-1} A\right)=C(1+\tau)
$$

where $\tau>0$ is a user-specified.

Highly Non Symmetric

$$
\nabla \cdot(V u)-\nu \nabla \cdot(\kappa \nabla u)=0 \text { in } \Omega \quad u=0 \text { on } \Gamma_{0} \quad u=1 \text { on } \Gamma_{1}
$$

(a) Mesh

(b) $\nu=10^{-2}$

(c) $\nu=10^{-4}$

Highly Non Symmetric

$$
\nabla \cdot(V u)-\nu \nabla \cdot(\kappa \nabla u)=0 \text { in } \Omega \quad u=0 \text { on } \Gamma_{0} \quad u=1 \text { on } \Gamma_{1}
$$

(a) Mesh

(b) $\nu=10^{-2}$

(c) $\nu=10^{-4}$

$$
0
$$

Prec	Dimension	k	N	n	1	10^{-1}	10^{-2}	10^{-3}	10^{-4}
M_{2}^{-1}	2	1	1,024	$6.3 \cdot 10^{6}$	23 (52,875)	$20(52,872)$	$19_{(52,759)}$	$20(47,497)$	$21(28,235)$
	3	2	4,096	$8.1 \cdot 10^{6}$	18 (1.8 • 10^{5})	$14\left(1.8 \cdot 10^{5}\right)$	11 (1.6-10 ${ }^{5}$)	$16{ }_{(97,657)}$	$29(76,853)$
GAMG	23and3 y Council3	1	1,024	$6.3 \cdot 10^{6}$	42	48	88	\dagger	\dagger
		2	4,096	$8.1 \cdot 10^{6}$	40	38	65	\dagger	\dagger
		1	1,024	$6.3 \cdot 10^{6}$	50	49	19	7	\dagger
		2	4,096	$8.1 \cdot 10^{6}$	12	9	7	\dagger	\dagger

Summary \& Perspectives

Summary:

- Algebraic DD provides a simple way to construct preconditioners that are effective, efficient, black-box and easy to set up
- Provable: Diagonally weighted normal equations matrix (Schur complement); HPD; Diagonally dominant HPD
- All preconditioner are accessible in PETSc PCHPDDM

Perspectives:

- Extension to general Schur complement $B^{H} G^{-1} B$
- Extend theory to non-Hermitian matrices

Thank you for your attention!

Bibliographies I

Al Daas, H. and Grigori, L. (2019).
A class of efficient locally constructed preconditioners based on coarse spaces.
SIAM Journal on Matrix Analysis and Applications, 40(1):66-91.

Al Daas, H., Grigori, L., Jolivet, P., and Tournier, P.-H. (2021).
A multilevel Schwarz preconditioner based on a hierarchy of robust coarse spaces.
SIAM Journal on Scientific Computing, 43(3):A1907-A1928.
Al Daas, H. and Jolivet, P. (2022).
A robust algebraic multilevel domain decomposition preconditioner for sparse symmetric positive definite matrices.
SIAM Journal on Scientific Computing, 44(4):A2582-A2598.
Al Daas, H., Jolivet, P., and Rees, T. (2022a).
Efficient algebraic two-level schwarz preconditioner for sparse matrices.
AI Daas, H., Jolivet, P., and Scott, J. A. (2022b).
A robust algebraic domain decomposition preconditioner for sparse normal equations.
SIAM Journal on Scientific Computing, 44(3):A1047-A1068.
Bastian, P., Scheichl, R., Seelinger, L., and Strehlow, A. (2022).
Multilevel spectral domain decomposition.
SIAM Journal on Scientific Computing, pages S1-S26.
Bootland, N., Dolean, V., Jolivet, P., and Tournier, P.-H. (2021).
A comparison of coarse spaces for Helmholtz problems in the high frequency regime.
Computers \& Mathematics with Applications, 98:239-253.
Science and
Technology
Facilities Council

Bibliographies II

Gander, M. J. and Loneland, A. (2017).
SHEM: an optimal coarse space for RAS and its multiscale approximation.
In Lee, C.-O., Cai, X.-C., Keyes, D. E., Kim, H. H., Klawonn, A., Park, E.-J., and Widlund, O. B., editors, Domain Decomposition Methods in Science and Engineering XXIII, pages 313-321, Cham. Springer International Publishing.

Gouarin, L. and Spillane, N. (2021).
Fully algebraic domain decomposition preconditioners with adaptive spectral bounds.
Preprint.

Heinlein, A., Klawonn, A., Knepper, J., Rheinbach, O., and Widlund, O. B. (2020).
Adaptive GDSW coarse spaces of reduced dimension for overlapping Schwarz methods. Technical report, Universität zu Köln.

Heinlein, A. and Smetana, K. (2022).
A fully algebraic and robust two-level schwarz method based on optimal local approximation spaces.
Nataf, F., Xiang, H., Dolean, V., and Spillane, N. (2011).
A coarse space construction based on local Dirichlet-to-Neumann maps.
SIAM Journal on Scientific Computing, 33(4):1623-1642.
Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., and Scheichl, R. (2014).
Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps.
Numerische Mathematik, 126(4):741-770.

$$
\begin{gathered}
\nabla \cdot(V u)-\nu \nabla \cdot(\kappa \nabla u)=0 \text { in } \Omega \quad u=0 \text { on } \Gamma_{0} \quad u=1 \text { on } \Gamma_{1} \\
v(x, y)=\binom{x(1-x)(2 y-1)}{-y(1-y)(2 x-1)} \quad \text { or } \quad v(x, y, z)=\left(\begin{array}{c}
2 x(1-x)(2 y-1) z \\
-y(1-y)(2 x-1) \\
-(1-z)(2 x-1)(2 y-1)
\end{array}\right),
\end{gathered}
$$

Two to multi-level [H.A., P.J., L.G.,P.-H.T. SISC '21]

$$
A_{00}=R_{0} A R_{0}^{H}
$$

Two to multi-level [H.A., P.J., L.G.,P.-H.T. SISC '21]

$$
\begin{gathered}
A_{00}=R_{0} A R_{0}^{H} \\
u^{H} \sum_{i=1}^{N} \widetilde{A}_{i} u \leq k_{m} u^{H} A u
\end{gathered}
$$

Two to multi-level [H.A., P.J., L.G.,P.-H.T. SISC '21]

$$
\begin{gathered}
A_{00}=R_{0} A R_{0}^{H} \\
u^{H} \sum_{i=1}^{N} \widetilde{A}_{i} u \leq k_{m} u^{H} A u \\
\left(R_{0} v\right)^{H} \sum_{i=1}^{N} \widetilde{A}_{i}\left(R_{0} v\right) \leq k_{m}\left(R_{0} v\right)^{H} A\left(R_{0} v\right)
\end{gathered}
$$

Two to multi-level [H.A., P.J., L.G.,P.-H.T. SISC '21]

$$
\begin{gathered}
A_{00}=R_{0} A R_{0}^{H} \\
u^{H} \sum_{i=1}^{N} \tilde{A}_{i} u \leq k_{m} u^{H} A u \\
\left(R_{0} v\right)^{H} \sum_{i=1}^{N} \widetilde{A}_{i}\left(R_{0} v\right) \leq k_{m}\left(R_{0} v\right)^{H} A\left(R_{0} v\right) \\
v^{H} \sum_{i=1}^{N}\left(R_{0}^{H} \widetilde{A}_{i} R_{0}\right) v \leq k_{m} v^{H}\left(R_{0}^{H} A R_{0}\right) v=k_{m} v^{H} A_{00} v
\end{gathered}
$$

Two to multi-level [H.A., P.J., L.G.,P.-H.T. SISC '21]

$$
\begin{gathered}
A_{00}=R_{0} A R_{0}^{H} \\
u^{H} \sum_{i=1}^{N} \widetilde{A}_{i} u \leq k_{m} u^{H} A u \\
\left(R_{0} v\right)^{H} \sum_{i=1}^{N} \widetilde{A}_{i}\left(R_{0} v\right) \leq k_{m}\left(R_{0} v\right)^{H} A\left(R_{0} v\right) \\
v^{H} \sum_{i=1}^{N}\left(R_{0}^{H} \widetilde{A}_{i} R_{0}\right) v \leq k_{m} v^{H}\left(R_{0}^{H} A R_{0}\right) v=k_{m} v^{H} A_{00} v \\
v^{H} \sum_{\substack{H=1}}^{N_{2}} \underbrace{\left(\sum_{i \in G_{j}}\left(R_{0}^{H} \widetilde{A}_{i} R_{0}\right)\right)}_{\substack{\text { Science and } \\
\text { Technoligy } \\
\text { Facilities council }}} v \leq k_{m} v^{H}\left(R_{0}^{H} A R_{0}\right) v=k_{m} v^{H} A_{00} v \\
\widetilde{A}_{00, j}
\end{gathered}
$$

GenEO FEM [Dolean et al '15]

$$
\begin{aligned}
a(u, v) & =\sum_{K \in \mathcal{T}} \int_{K} u v \rightarrow A \\
\widetilde{a}(u, v) & =\sum_{K \in \mathcal{T}_{i}} \int_{K} u v \rightarrow \widetilde{A}_{i}
\end{aligned}
$$

