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Context

The problem (again)

We consider the unconstrained nonlinear programming problem:

minimize F (x)

for x ∈ IRn and F ∶ IRn → IR smooth, with Lipschitz continuous (exact)
gradient G(x) = ∇F (x).

In the Big Data Era we often encounter

minimize f (x) = 1
N ∑

N
j=1 `(aj , yj ; x) (sample mean)

In ML, e.g.,

`(aj , yj ; x) = (a⊺j x − yj)2 or `(aj , yj ; x) = log(1 + e−yj(a
⊺

j x−b))

and sampling can be very aggressive
For now, focus on the

unconstrained case
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Context

The problem (again)

We consider algorithms for noisy problems

that use derivatives for the step computation

do not rely on function evaluations for the step size control

with Lipschitz continuous (exact) gradient G(x) = ∇F (x).

Hence, we consider now

gradient based methods for noisy problems
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Context

Stepsize adaptivity

The Lipschitz constant L in the step-
size 1/L

is very hard to compute. Often
trial and error.

is too global to be locally
efficient

Adaptively tune the step size: trust-region idea
Compute

ρ = True decrease

First order decrease

ρ action

≥ η2 increase α
∈]η1, η2] keep α
≤ η1 decrease α

Ô⇒
convergent algorithm ,
complexity in O(ε−2) ,
d = −∇f (x) and f (x) both needed /
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Context

Drama: effect of noise

In ML, severe sampling in the data results in noise in f and in ∇f .
Convergence typically provable provided

accuracy(f ) ≈ accuracy(∇f )2 (i.e. high sensitivity to noise in f )
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⇒ very inconvenient when inexactness results from sampling!

Can one dispense with �����
evaluating using f altogether???

Objective-Function Free Optimization (OFFO)
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Context

Objective Function Free Optimization

1 Minimization algorithms when objective function and gradient are
noisy have motivated many papers over the years

2 In the convergence theory, the noise in the function has to be smaller
than that on the gradient. See literature on TR, and regularization
algorithms

3 Stochastic methods have been developped in Machine Learning such
as Adagrad (adaptative gradient algorithm) for finite sum
minimization

4 Convergence theory exists in, e.g., [Défossez, Bottou, Bach,
Usunier’2020], with complexity in expected square norm of the

gradient: O(N− 1
2 ) ln(N)

5 See recent work, e.g., by G. Grapiglia, and F. Curtis, D. Robinson and
co-authors.

6 In what follows, gk = g(xk) is a stochastic gradient of F at xk
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A first order method

The algorithm

Algorithm 2.1: The ASGRAD framework

Step 0: Initialization. Define x0, k = 0, and γlow ∈ (0,1].
Step 1: Step computation. Evaluate gk and set

sk = γksLk and sLi ,k = −
gi ,k

wi ,k

for a stepsize γk ∈ [γlow,1] and positive scaling factors wi ,k .
[ADAGRAD: vi ,k = vi ,k−1 + (∇i f (xk))2 and wi ,k =

√
ε + vi ,k ]

Step 2: New iterate. Define
xk+1 = xk + sk ,

increment k by one and return to Step 1.
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A first order method

One may then wonder. . .

Is it possible improve the complexity bound of [Défossez et al. ]???

Is is possible to derive OFFO variants that do better than ADAGRAD
complexity wise ???

How about the numerical performance of such variants ???
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A first order method

A stochastic process

1 The source of randomness is the approximate gradient gk
2 It generates a stochastic process

{xk ,gk , γk , sLk , sk}

3 Ek[⋅] will stand for the conditional expectation knowing
{g0, . . . ,gk−1}

Assumption 1 :
We have that, for all k ≥ 0, Ek[gk] = G(xk).
Moreover, there exists a constant κg ≥ 1 such that ∥gk∥∞ ≤ κg for
all k ≥ 0

The scaling factors wi ,k are left unspecified:
ASGRAD is an algorithmic framework
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A first order method

Some assumptions on wi ,k

1 There exist a constant ςi > 0 and a random variable vi ,k such
that vi ,k ≥ ςi and wi ,k = (vi ,k)µ for some µ ∈ (0,1)

2 A variance condition,

∣Ek[vi ,k] − vi ,k ∣ ≤ κv(Ek[g2
i ,k] + g2

i ,k)

3 In addition, g2
i ,k ≤ vi ,k

ADGRAD is covered with µ = 1
2

and vi ,k = ς +∑k
`=0 g

2
i ,`.

1 vi ,k ≥ mini∈{1,...,n} ςi
def= ςmin

2 Ek[g2
i ,k] ≤ Ek[vi ,k]
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A first order method

A decrease lemma

Generalizing a technique from [Défossez et al. 20, Ward 19 ], we derive a
parametric bound on the decrease obtained with step sk

Let Gj be the true gradient of F at xj . Then, there exists κ∆ > 0
such that, for all i ∈ {1, . . . ,n},

Ej[γjGi ,js
L
i ,j]≤−(1 − µ

2
)
γlowG

2
i ,j

(Ej[vi ,j])µ
+ 2κ∆Ej

⎡⎢⎢⎢⎢⎣

g2
i ,j

w2
i ,j

⎤⎥⎥⎥⎥⎦
.

Remember wi ,k = (vi ,k)µ.
This shows that sL provides a descent direction on the true F as long as
the square of the true gradient’s norm remains large compared with the
stepsizes.
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A first order method

Convergence of ASGRAD (I)

It is clear from

wi ,k = (ς +
k

∑
`=0

g2
i ,`)

µ

that wi ,k ≥ ςµ.

Moreover, if we define vi ,k
def= ς +∑k

`=0 g
2
i ,`, then

wi ,k = vµi ,k and vi ,k ≥ g2
i ,k

and
∣Ek[vi ,k] − vi ,k ∣ = ∣Ek[g2

i ,k] − g2
i ,k ∣ ≤ Ek[g2

i ,k] + g2
i ,k .

Thus the proposed scaling factors verify our Assumptions with κv = 1.
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A first order method

Convergence of ASGRAD (I)

Starting from the Taylor bound

Ej[F (xj+1)] ≤ F (xj) +
n

∑
i=1

Ej[γjGi ,js
L
i ,j] +

L

2
Ej[∥sLj ∥2] ,

and using the descent direction Lemma, we obtain that

Ej[F (xj+1)] ≤ F (xj) − (1 − µ
2
)γlow

∥Gj∥2

κ2µ
g (k + 2)µ

+ (L
2
+ 2κ∆)Ej[∥sLj ∥2] .

By summing up and taking full expectation,

E[F (xk+1)] ≤ F (x0) − (1 − µ
2
) γlow

κ2µ
g (k + 2)µ

k

∑
j=0

E[∥Gj∥2]

+ (L
2
+ 2κ∆)

n

∑
i=1

k

∑
j=0

E[(sLi ,j)2] .
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A first order method

Convergence of ASGRAD (II)

Within our assumptions, consider : wi ,k = (ς +∑k
`=0 g

2
i ,`)

µ

The second order terms can be expanded as

k

∑
j=0

(sLi ,j)2 =
k

∑
j=0

g2
i ,j

(ς +∑k
j=0 g

2
i ,j)2µ

,

One has the technical result on non-negative sequences

Set bk = ∑k
j=0 aj .

1 If α ≠ 1, ∑k
j=0

aj
(ς+bj)α ≤ 1

(1−α)((ς + bk)1−α − ς1−α).

2 If α = 1, ∑k
j=0

aj
ς+bj ≤ log ( ς+bk

ς
) .
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A first order method

Convergence of ASGRAD (III)

For wi ,k = (ς +∑k
`=0 g

2
i ,`)

µ
we get

E
⎡⎢⎢⎢⎣

average
j∈{0,...,k}

∥Gj∥
⎤⎥⎥⎥⎦
≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O ( 1

(k + 1)
1
2
µ
) (µ ∈ (0, 1

2
)),

O (
√

log(k + 1)
(k + 1)

1
4

) (µ = 1
2
),

O ( 1

(k + 1)
1
2
(1−µ))(µ ∈ ( 1

2
,1)).

1 This proves the convergence of the algorithm for µ ∈ (0,1)
2 Recover complexity obtained for the standard Adagrad algorithm

Is this optimal ???
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A first order method

Convergence of ASGRAD (III)

For wi ,k = (ς +∑k
`=0 g

2
i ,`)

µ
, suppose the variance condition

Vark [gi ,k] = Ek[g2
i ,k −G 2

i ,k] ≤ κvarG
2
i ,k

holds. Then there exists jθ, implicitly defined, such that

E
⎡⎢⎢⎢⎣

average
j∈{jθ+1,...,k}

∥Gj∥
⎤⎥⎥⎥⎦
= O

⎛
⎝

1

(k + 1)
1
2
(1−µ)

⎞
⎠

.

The index jθ depends on the particular realization considered

Better bound than the existing ones for Adagrad (no log term)

For small µ this result is close to bounds obtained by standard
algorithms that do evaluate F (TR, LS)
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A first order method

Divergent weights

Let ν ∈ (0,1) and µ ∈ [ν,max(1, 4
3ν)), ρi ,k and ξi ,k be uniformy bounded

random variables. Take ρi ,k(k + 1)ν ≤ wi ,k ≤ ξi ,k(k + 1)µ, with ς ≤ ρi ,k and
ξi ,k ≤ κξ for some constants 0 < ς ≤ κξ.
Then, for any θ ∈ (0, γlowκξ )),

E
⎡⎢⎢⎢⎣

average
j∈{jθ+1,...,k}

∥Gj∥
⎤⎥⎥⎥⎦
= O

⎛
⎝

1

(k + 1)
1
2
(1−µ)

⎞
⎠
.

This hold with

jθ
def=

⎢⎢⎢⎢⎢⎢⎣

⎛
⎝

Lκ3
ξ(1 + κvar)

21−µς4(γlow − θκξ)
⎞
⎠

1
4ν−3µ

⎥⎥⎥⎥⎥⎥⎦
+ 1.

This results are identical to the Adagrad family, with now an explicit
formula for jθ.
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A first order method

Numerical experiments: weights

Take fix learning rates γ = 5e − 5 or 5e − 4.
The following strategies satisfy our assumptions:

1 the µ−strategy:

wi ,k = (ς +
k

∑
`=0

g2
i ,`)

µ

,

2 the maxgi strategy:

ξk = max(ς, ξk−1, ∣gk ∣) and wi ,k = ξk(k + 1)ν ,
3 the avrgi strategy:

wi ,k = max(ς, 1

k + 1

k

∑
j=0

∣gi ,k ∣)(k + 1)ν .

Remember ρi ,k(k + 1)ν ≤ wi ,k ≤ ξi ,k(k + 1)µ for the maxgi and avrgi
strategies.

We use µ ∈ {0.1,0.5,0.9}, ν = 0.1 and ς = 0.01.
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A first order method

Numerical experiments: data bases, architectures, software

Two network architectures: cifar-nv convolutional network of
[Gitman, Ginsburg’17] and a small resnet18 model [He et al.’15]

Four standard datasets of 32 × 32 images: CIFAR10 and CIFAR100(1),
SVHN(2) and FMNIST [Xiao et al.’17]

We used haiku [Henn et al.’20] and optax [Hess et al.’20], two JAX
[Brad et al.’18] based libraries

A workstation with four GTX 1080TI

(1)https://www.cs.toronto.edu/˜kriz/cifar.html
(2)http://ufldl.stanford.edu/housenumbers
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A first order method

CIFAR10 - cifar-nv

γ = 5.10−4 γ = 5.10−5
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A first order method

CIFAR10 - resnet18
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A first order method

CIFAR100 - cifar-nv
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A first order method

CIFAR100 - resnet18
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A first order method

SVSH - cifar-nv
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A first order method

SVSH - resnet18
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A first order method

FMNIST - resnet18

Serge Gratton (Univ. of Toulouse, France) Bath-RAL 2023 28 / 38



Some extensions
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Some extensions

Second order models

We allow the use of second-order information by defining a quadratic
model

gT
k s + 1

2
sTBks

where Bk can of course be chosen as the true second-derivative matrix of
f at xk or an approximation. Choosing Bk = 0 results in a purely first-order
algorithm.
For given ς ∈ (0,1], ϑ ∈ (0,1] and µ ∈ (0,1), define, for all i ∈ {1, . . . ,n}
and for all k ≥ 0,

wi ,k ∈ [
√
ϑ vi ,k , vi ,k] where vi ,k

def= (ς +
k

∑
`=0

g2
i ,`)

µ

. (3.1)

Clearly, the Adagrad scaling factors are recovered by µ = 1
2
, and Bk = 0 is

the (deterministic) Adagrad method.
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Some extensions

The algorithm

Algorithm 3.1: ASTR1

Step 0: Initialization. x0, κB ≥ 1 and τ ∈ (0,1] given. Let k = 0.

Step 1: Define the TR. Compute gk = g(xk) and define ∆i ,k =
∣gi,k ∣
wi,k

Step 2: Hessian approximation. Select a symmetric Hessian
approximation Bk such that ∥Bk∥ ≤ κB .

Step 3: GCP. Compute a step sk such that ∣si ,k ∣ ≤ ∆i ,k , and

gT
k sk + 1

2
sTk Bksk ≤ τ (gT

k sQk + 1
2
(sQk )TBks

Q
k ) , where

sLi ,k = −sgn(gi ,k)∆i ,k , s
Q
k = γksLk , with

γk =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

min [1,
∣gT
k sLk ∣

(sLk )
TBks

L
k

] if (sLk )
TBks

L
k > 0,

1 otherwise.

Step 4: New iterate. xk+1 = xk + sk
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Some extensions

The algorithm

For ASTR1 algorithm we have for all µ ∈ (0,1)

min
j∈{0,...,k}

∥gj∥ ≤
κ○√
k + 1

No assumption on the gradient boundedness

This complexity bound can be reached
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Some extensions

Some results on small OPM problems
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Some extensions

Regularization method

Compute H = ∇2
x f (xk) and consider

f (x + s) ∼ m(s) = f (x) + α∇f (x)⊺s + 1
2
s⊺Hs + 1

6
σ∥s∥3

Approximately minimize m to get s such that

∇f (x)⊺s + 1
2
sTHs + 1

6
σ∥s∥3 < 0 and ∥g +Hs∥ ≤ σ∥s∥2

Take σk essentially equal to ∏i<k(1 + ∥si∥3)

Suppose that f has a Lipschitz continuous Hessian. Our algorithm
requires at most

O (ε−3/2)
iterations to produce an iterate with ∥gk∥ ≤ ε.
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Some extensions

Some numerics with OFFAR2: the framework

Does this work in practice?

Some numerical experiments with

AR2 (the standard adaptive regularization method using second-order
models) and an instance of OFFAR2

a set of 117 small-dimensional CUTEst problems
(as available in Matlab in the OPM collection)

increasing levels of relative Gaussian noise (both in function values
and derivatives): 0%, 5%, 15%, 25%, 50%

search for an approximate first-order point (ε = 10−6)

Reporting:

a performance measure: πalgo (see paper for details)

a reliability ratio: ρalgo
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Some extensions

Enhanced robustness of ε−3/2 smethods

πalgo ρalgo
with f 0.99 97.48
OFFO 0.83 88.24

No obvious reason to use new method in the absence of noise. . .

ρalgo 5% 15% 25% 50%

with f 40.67 30.84 24.54 6.81
OFFO 85.97 80.67 72.69 47.98

. . . but the picture is very different when noise is present (e.g. in ML)!
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Some extensions

Conclusions and perspectives

Summary:

The methods maxgi and avrgi seem to produce relatively good
results. They often outperform the Adagrad-like variants

The relative behaviour of all variants is not significantly affected by
the network architectures. Same for learning rate

Among Adagrad-like variants of the first class, those with a larger µ
handle smaller learning rates better

Still some gaps between theory and experiments to be filled-in

Perspectives:

Deterministic and stochastic OFFO methods of higher degree
(cubic?) for a better complexity and better performance ??

The usual: constraints, infinite dimension, multilevel

More numerical results

Thank you for your attention!
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Some extensions
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