A class of noise-tolerant algorithms

Serge Gratton with S. Jerad and Ph.L. Toint

University of Toulouse - IRIT - ANITI serge.gratton@toulouse-inp.fr

Bath-RAL Day, April 2023

Outline for section 1

2 A first order method

3 Some extensions

The problem (again)

We consider the unconstrained nonlinear programming problem:

minimize F(x)

for $x \in \mathbb{R}^n$ and $F : \mathbb{R}^n \to \mathbb{R}$ smooth, with Lipschitz continuous (exact) gradient $G(x) = \nabla F(x)$.

In the Big Data Era we often encounter

minimize $f(x) = \frac{1}{N} \sum_{j=1}^{N} \ell(a_j, y_j; x)$ (sample mean)

In ML, e.g.,

$$\ell(a_j, y_j; x) = (a_j^{\mathsf{T}} x - y_j)^2 \text{ or } \ell(a_j, y_j; x) = \log(1 + e^{-y_j(a_j^{\mathsf{T}} x - b)})$$

and sampling can be very aggressive For now, focus on the

unconstrained case

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Bath-RAL 2023

-38

The problem (again)

We consider algorithms for noisy problems

- that use derivatives for the step computation
- do not rely on function evaluations for the step size control

with Lipschitz continuous (exact) gradient $G(x) = \nabla F(x)$.

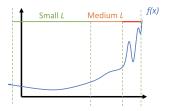
Hence, we consider now

gradient based methods for noisy problems

Stepsize adaptivity

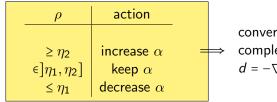
The Lipschitz constant L in the stepsize 1/L

- is very hard to compute. Often trial and error.
- is too global to be locally efficient



Adaptively tune the step size: trust-region idea Compute

 $p = \frac{\text{True decrease}}{\text{First order decrease}}$



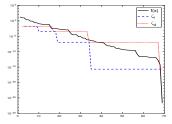
convergent algorithm complexity in $O(\epsilon^{-2})$ $d = -\nabla f(x)$ and f(x) both needed

6

Drama: effect of noise

In ML, severe sampling in the data results in noise in f and in ∇f . Convergence typically provable provided

 $\operatorname{accuracy}(f) \approx \operatorname{accuracy}(\nabla f)^2$ (i.e. high sensitivity to noise in f)



⇒ very inconvenient when inexactness results from sampling!

Can one dispense with evaluating using *f* altogether???

Objective-Function Free Optimization (OFFO)

Bath-RAL 2023

38

Objective Function Free Optimization

- Minimization algorithms when objective function and gradient are noisy have motivated many papers over the years
- In the convergence theory, the noise in the function has to be smaller than that on the gradient. See literature on TR, and regularization algorithms
- Stochastic methods have been developped in Machine Learning such as Adagrad (adaptative gradient algorithm) for finite sum minimization
- Convergence theory exists in, e.g., [Défossez, Bottou, Bach, Usunier'2020], with complexity in expected square norm of the gradient: O(N^{-1/2}) ln(N)
- See recent work, e.g., by G. Grapiglia, and F. Curtis, D. Robinson and co-authors.

Bath-RAL 2023

() In what follows, $g_k = g(x_k)$ is a stochastic gradient of F at x_k

Outline for section 2

The algorithm

Algorithm 2.1: The ASGRAD framework

Step 0: Initialization. Define x_0 , k = 0, and $\gamma_{low} \in (0, 1]$. Step 1: Step computation. Evaluate g_k and set

$$s_k = \gamma_k s_k^L$$
 and $s_{i,k}^L = -\frac{g_{i,k}}{w_{i,k}}$

for a stepsize $\gamma_k \in [\gamma_{\text{low}}, 1]$ and positive scaling factors $w_{i,k}$. [ADAGRAD: $v_{i,k} = v_{i,k-1} + (\nabla_i f(x_k))^2$ and $w_{i,k} = \sqrt{\epsilon + v_{i,k}}$] Step 2: New iterate. Define

$$x_{k+1} = x_k + s_k,$$

Bath-RAL 2023

38

increment k by one and return to Step 1.

One may then wonder...

Is it possible improve the complexity bound of [Défossez et al.]???

Is is possible to derive OFFO variants that do better than ADAGRAD complexity wise ???

How about the numerical performance of such variants ???

A stochastic process

- Interstation of randomness is the approximate gradient g_k
- It generates a stochastic process

$$\{x_k, g_k, \gamma_k, s_k^L, s_k\}$$

E_k[·] will stand for the conditional expectation knowing
 {g₀,...,g_{k-1}}

Assumption 1 : We have that, for all $k \ge 0$, $\mathbb{E}_k[g_k] = G(x_k)$. Moreover, there exists a constant $\kappa_g \ge 1$ such that $\|g_k\|_{\infty} \le \kappa_g$ for all $k \ge 0$

Bath-RAL 2023

11 / 38

The scaling factors $w_{i,k}$ are left unspecified: ASGRAD is an algorithmic framework

Some assumptions on $w_{i,k}$

- There exist a constant $\varsigma_i > 0$ and a random variable $v_{i,k}$ such that $v_{i,k} \ge \varsigma_i$ and $w_{i,k} = (v_{i,k})^{\mu}$ for some $\mu \in (0,1)$
- A variance condition,

$$|\mathbb{E}_{k}[v_{i,k}] - v_{i,k}| \leq \kappa_{v} (\mathbb{E}_{k}[g_{i,k}^{2}] + g_{i,k}^{2})$$

3 In addition,
$$g_{i,k}^2 \leq v_{i,k}$$

ADGRAD is covered with $\mu = \frac{1}{2}$ and $v_{i,k} = \varsigma + \sum_{\ell=0}^{k} g_{i,\ell}^2$.

1
$$v_{i,k} \ge \min_{i \in \{1,...,n\}} \varsigma_i \stackrel{\text{def}}{=} \varsigma_{\min}$$

2 $\mathbb{E}_k [g_{i,k}^2] \le \mathbb{E}_k [v_{i,k}]$

Bath-RAL 2023

12 / 38

A decrease lemma

Generalizing a technique from [Défossez et al. 20, Ward 19], we derive a parametric bound on the decrease obtained with step s_k

Let G_j be the true gradient of F at x_j . Then, there exists $\kappa_{\Delta} > 0$ such that, for all $i \in \{1, ..., n\}$,

$$\mathbb{E}_{j}\left[\gamma_{j} G_{i,j} S_{i,j}^{L}\right] \leq -(1-\frac{\mu}{2}) \frac{\gamma_{\text{low}} G_{i,j}^{2}}{(\mathbb{E}_{j}\left[v_{i,j}\right])^{\mu}} + 2\kappa_{\Delta} \mathbb{E}_{j}\left[\frac{g_{i,j}^{2}}{w_{i,j}^{2}}\right]$$

Remember $w_{i,k} = (v_{i,k})^{\mu}$.

This shows that s^{L} provides a descent direction on the true F as long as the square of the true gradient's norm remains large compared with the stepsizes.

Bath-RAL 2023

13

Convergence of ASGRAD (I)

It is clear from

$$w_{i,k} = \left(\varsigma + \sum_{\ell=0}^{k} g_{i,\ell}^{2}\right)^{\mu}$$

that $w_{i,k} \ge \varsigma^{\mu}$.

Moreover, if we define $v_{i,k} \stackrel{\text{def}}{=} \varsigma + \sum_{\ell=0}^{k} g_{i,\ell}^2$, then

 $w_{i,k} = v_{i,k}^{\mu}$ and $v_{i,k} \ge g_{i,k}^2$

and

$$|\mathbb{E}_k\left[\mathbf{v}_{i,k}\right] - \mathbf{v}_{i,k}| = |\mathbb{E}_k\left[g_{i,k}^2\right] - g_{i,k}^2| \le \mathbb{E}_k\left[g_{i,k}^2\right] + g_{i,k}^2.$$

Bath-RAL 2023

14 / 38

Thus the proposed scaling factors verify our Assumptions with $\kappa_v = 1$.

Convergence of ASGRAD (I)

Starting from the Taylor bound

$$\mathbb{E}_{j}\left[F(x_{j+1})\right] \leq F(x_{j}) + \sum_{i=1}^{n} \mathbb{E}_{j}\left[\gamma_{j}G_{i,j}s_{i,j}^{L}\right] + \frac{L}{2}\mathbb{E}_{j}\left[\|s_{j}^{L}\|^{2}\right],$$

and using the descent direction Lemma, we obtain that

$$\mathbb{E}_{j}\left[F(x_{j+1})\right] \leq F(x_{j}) - \left(1 - \frac{\mu}{2}\right)\gamma_{\text{low}}\frac{\|G_{j}\|^{2}}{\kappa_{g}^{2\mu}(k+2)^{\mu}} + \left(\frac{L}{2} + 2\kappa_{\Delta}\right)\mathbb{E}_{j}\left[\|s_{j}^{L}\|^{2}\right].$$

By summing up and taking full expectation,

$$\begin{split} \mathbb{E}[F(x_{k+1})] &\leq F(x_0) - (1 - \frac{\mu}{2}) \frac{\gamma_{\text{low}}}{\kappa_g^{2\mu} (k+2)^{\mu}} \sum_{j=0}^k \mathbb{E}\left[\|G_j\|^2 \right] \\ &+ \left(\frac{L}{2} + 2\kappa_{\Delta}\right) \sum_{i=1}^n \sum_{j=0}^k \mathbb{E}\left[(s_{i,j}^L)^2 \right]. \end{split}$$

Image: Image:

Bath-RAL 2023

15 / 38

Convergence of ASGRAD (II)

Within our assumptions, consider :
$$w_{i,k} = \left(\varsigma + \sum_{\ell=0}^{k} g_{i,\ell}^2\right)^{\mu}$$

The second order terms can be expanded as

$$\sum_{j=0}^{k} (s_{i,j}^{L})^{2} = \sum_{j=0}^{k} \frac{g_{i,j}^{2}}{(\varsigma + \sum_{j=0}^{k} g_{i,j}^{2})^{2\mu}},$$

One has the technical result on non-negative sequences

Set
$$b_k = \sum_{j=0}^k a_j$$
.
If $\alpha \neq 1$, $\sum_{j=0}^k \frac{a_j}{(\varsigma+b_j)^{\alpha}} \leq \frac{1}{(1-\alpha)} ((\varsigma+b_k)^{1-\alpha} - \varsigma^{1-\alpha})$.
If $\alpha = 1$, $\sum_{j=0}^k \frac{a_j}{\varsigma+b_j} \leq \log\left(\frac{\varsigma+b_k}{\varsigma}\right)$.

Bath-RAL 2023

16 / 38

Convergence of ASGRAD (III)

For
$$w_{i,k} = \left(\varsigma + \sum_{\ell=0}^{k} g_{i,\ell}^{2}\right)^{\mu}$$
 we get

$$\mathbb{E}\left[\operatorname{average}_{j \in \{0,...,k\}} \| G_{j} \| \right] \leq \begin{cases} \mathcal{O}\left(\frac{1}{(k+1)^{\frac{1}{2}\mu}}\right) & (\mu \in (0, \frac{1}{2})), \\ \mathcal{O}\left(\frac{\sqrt{\log(k+1)}}{(k+1)^{\frac{1}{4}}}\right) & (\mu = \frac{1}{2}), \\ \mathcal{O}\left(\frac{1}{(k+1)^{\frac{1}{2}(1-\mu)}}\right) & (\mu \in (\frac{1}{2}, 1)). \end{cases}$$

This proves the convergence of the algorithm for µ ∈ (0,1)
Recover complexity obtained for the standard Adagrad algorithm

< A

Bath-RAL 2023

38

Is this optimal ???

Convergence of ASGRAD (III)

For $w_{i,k} = \left(\varsigma + \sum_{\ell=0}^{k} g_{i,\ell}^{2}\right)^{\mu}$, suppose the variance condition $\operatorname{Var}_{k}\left[g_{i,k}\right] = \mathbb{E}_{k}\left[g_{i,k}^{2} - G_{i,k}^{2}\right] \leq \kappa_{\operatorname{var}}G_{i,k}^{2}$ holds. Then there exists j_{θ} , implicitly defined, such that $\mathbb{E}\left[\operatorname{average}_{j\in\{j_{\theta}+1,...,k\}} \|G_{j}\|\right] = \mathcal{O}\left(\frac{1}{(k+1)^{\frac{1}{2}(1-\mu)}}\right)$

- The index j_{θ} depends on the particular realization considered
- Better bound than the existing ones for Adagrad (no log term)
- For small μ this result is close to bounds obtained by standard algorithms that do evaluate F (TR, LS)

Bath-RAL 2023

38

Divergent weights

Let $\nu \in (0,1)$ and $\mu \in [\nu, \max(1, \frac{4}{3}\nu))$, $\rho_{i,k}$ and $\xi_{i,k}$ be uniformy bounded random variables. Take $\rho_{i,k}(k+1)^{\nu} \leq w_{i,k} \leq \xi_{i,k}(k+1)^{\mu}$, with $\varsigma \leq \rho_{i,k}$ and $\xi_{i,k} \leq \kappa_{\xi}$ for some constants $0 < \varsigma \leq \kappa_{\xi}$. Then, for any $\theta \in (0, \frac{\gamma_{low}}{\kappa_{\xi}}))$, $\mathbb{E}\left[\operatorname{average}_{j \in \{j_{\theta}+1,...,k\}} \|G_{j}\|\right] = \mathcal{O}\left(\frac{1}{(k+1)^{\frac{1}{2}(1-\mu)}}\right).$

This hold with

$$j_{\theta} \stackrel{\text{def}}{=} \left[\left(\frac{L \kappa_{\xi}^{3} (1 + \kappa_{\text{var}})}{2^{1 - \mu_{\zeta}^{4}} (\gamma_{\text{low}} - \theta \kappa_{\xi})} \right)^{\frac{1}{4\nu - 3\mu}} \right] + 1.$$

19 / 38

This results are identical to the Adagrad family, with now an explicit formula for j_{β} .

Numerical experiments: weights

Take fix learning rates $\gamma = 5e - 5$ or 5e - 4. The following strategies satisfy our assumptions:

• the μ -strategy:

$$w_{i,k} = \left(\varsigma + \sum_{\ell=0}^{k} g_{i,\ell}^2\right)^{\mu},$$

the maxgi strategy:

$$\xi_k = \max(\varsigma, \xi_{k-1}, |g_k|) \text{ and } w_{i,k} = \xi_k (k+1)^{\nu},$$

Ithe avrgi strategy:

$$w_{i,k} = \max(\varsigma, \frac{1}{k+1}\sum_{j=0}^{k} |g_{i,k}|)(k+1)^{\nu}.$$

• • • • • • • • • • •

Bath-RAL 2023

20 / 38

Remember $\rho_{i,k}(k+1)^{\nu} \leq w_{i,k} \leq \xi_{i,k}(k+1)^{\mu}$ for the *maxgi* and *avrgi* strategies.

We use $\mu \in \{0.1, 0.5, 0.9\}$, $\nu = 0.1$ and $\varsigma = 0.01$.

Numerical experiments: data bases, architectures, software

- Two network architectures: cifar-nv convolutional network of [Gitman, Ginsburg'17] and a small resnet18 model [He et al.'15]
- Four standard datasets of 32×32 images: CIFAR10 and CIFAR100⁽¹⁾, SVHN⁽²⁾ and FMNIST [Xiao et al.'17]
- We used haiku [Henn et al.'20] and optax [Hess et al.'20], two JAX [Brad et al.'18] based libraries

Bath-RAL 2023

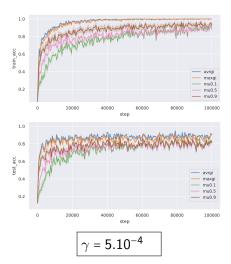
38

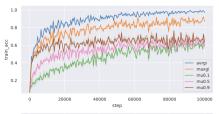
• A workstation with four GTX 1080TI

⁽¹⁾https://www.cs.toronto.edu/~kriz/cifar.html

⁽²⁾http://ufldl.stanford.edu/housenumbers

CIFAR10 - cifar-nv





 γ = 5.10⁻⁵

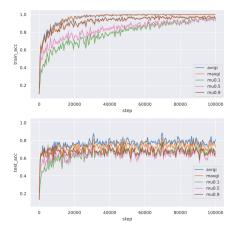
▶A NELT

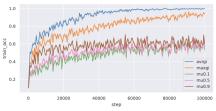
22 / 38

Bath-RAL 2023

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

CIFAR10 - resnet18





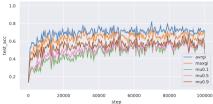


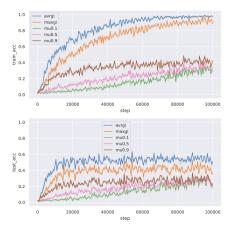
Image: A matrix and a matrix

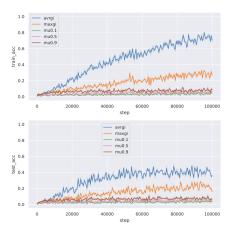
►A NEI

23 / 38

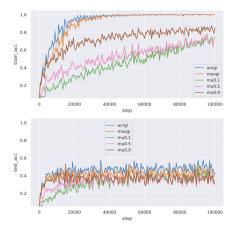
Bath-RAL 2023

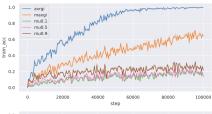
CIFAR100 - cifar-nv



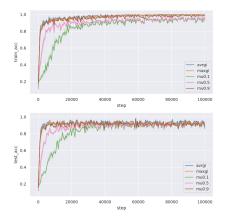


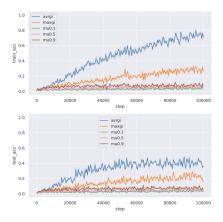
CIFAR100 - resnet18



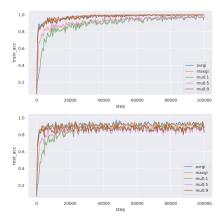


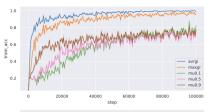
SVSH - cifar-nv

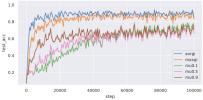




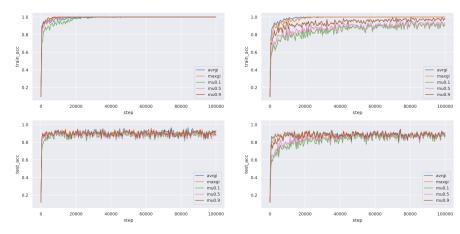
SVSH - resnet18







FMNIST - resnet18



Outline for section 3

2 A first order method

Second order models

We allow the use of second-order information by defining a quadratic model

$$g_k^T s + \frac{1}{2} s^T B_k s$$

where B_k can of course be chosen as the true second-derivative matrix of f at x_k or an approximation. Choosing $B_k = 0$ results in a purely first-order algorithm.

For given $\varsigma \in (0,1]$, $\vartheta \in (0,1]$ and $\mu \in (0,1)$, define, for all $i \in \{1, \ldots, n\}$ and for all $k \ge 0$,

$$w_{i,k} \in \left[\sqrt{\vartheta} \, v_{i,k}, v_{i,k}\right] \quad \text{where} \quad v_{i,k} \stackrel{\text{def}}{=} \left(\varsigma + \sum_{\ell=0}^{k} g_{i,\ell}^{2}\right)^{\mu}. \tag{3.1}$$

A D > A B > A B

Bath-RAL 2023

30

Clearly, the Adagrad scaling factors are recovered by $\mu = \frac{1}{2}$, and $B_k = 0$ is the (deterministic) Adagrad method.

The algorithm

Algorithm 3.1: ASTR1

Step 0: Initialization. $x_0, \kappa_B \ge 1$ and $\tau \in (0, 1]$ given. Let k = 0. Step 1: Define the TR. Compute $g_k = g(x_k)$ and define $\Delta_{i,k} = \frac{|g_{i,k}|}{w_{i,k}}$ Step 2: Hessian approximation. Select a symmetric Hessian approximation B_k such that $||B_k|| \leq \kappa_B$. Step 3: GCP. Compute a step s_k such that $|s_{i,k}| \leq \Delta_{i,k}$, and $g_{L}^{T} s_{k} + \frac{1}{2} s_{L}^{T} B_{k} s_{k} \leq \tau \left(g_{L}^{T} s_{L}^{Q} + \frac{1}{2} (s_{L}^{Q})^{T} B_{k} s_{L}^{Q} \right),$ where $s_{i,k}^{L} = -\text{sgn}(g_{i,k})\Delta_{i,k}, \ s_{k}^{Q} = \gamma_{k}s_{k}^{L}, \text{ with}$ $\gamma_{k} = \begin{cases} \min \left[1, \frac{|g_{k}' s_{k}^{L}|}{(s_{k}^{L})^{T} B_{k} s_{k}^{L}} \right] & \text{if } (s_{k}^{L})^{T} B_{k} s_{k}^{L} > 0, \\ 1 & \text{otherwise.} \end{cases}$

Bath-RAL 2023

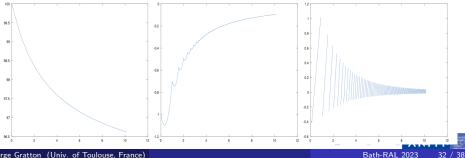
31 / 38

Step 4: New iterate. $x_{k+1} = x_k + s_k$

The algorithm

For ASTR1 algorithm we have for all $\mu \in (0, 1)$ $\min_{j\in\{0,\ldots,k\}} \|g_j\| \le \frac{\kappa_\circ}{\sqrt{k+1}}$

- No assumption on the gradient boundedness ٠
- This complexity bound can be reached



Some extensions

Some results on small OPM problems

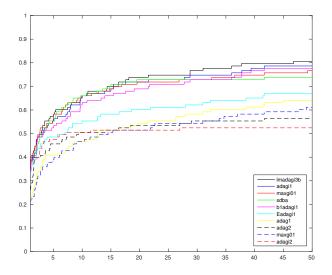


Image: Image:

Bath-RAL 2023

33 / 38

Regularization method

• Compute
$$H = \nabla_x^2 f(x_k)$$
 and consider

$$f(x+s) \sim m(s) = f(x) + \alpha \nabla f(x)^{\mathsf{T}} s + \frac{1}{2} s^{\mathsf{T}} H s + \frac{1}{6} \sigma \|s\|^3$$

• Approximately minimize *m* to get *s* such that $\nabla f(x)^{\mathsf{T}}s + \frac{1}{2}s^{\mathsf{T}}Hs + \frac{1}{6}\sigma \|s\|^{3} < 0 \text{ and } \|g + Hs\| \leq \sigma \|s\|^{2}$

• Take σ_k essentially equal to $\prod_{i < k} (1 + ||s_i||^3)$

Suppose that f has a Lipschitz continuous Hessian. Our algorithm requires at most $\mathcal{O}\left(\epsilon^{-3/2}\right)$ iterations to produce an iterate with $\|g_k\| \leq \epsilon$.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Bath-RAL 2023

34 / 38

Some numerics with OFFAR2: the framework

Does this work in practice?

Some numerical experiments with

- AR2 (the standard adaptive regularization method using second-order models) and an instance of OFFAR2
- a set of 117 small-dimensional CUTEst problems (as available in Matlab in the OPM collection)
- increasing levels of relative Gaussian noise (both in function values and derivatives): 0%, 5%, 15%, 25%, 50%

Bath-RAL 2023

• search for an approximate first-order point ($\epsilon = 10^{-6}$)

Reporting:

- a performance measure: π_{algo} (see paper for details)
- a reliability ratio: ρ_{algo}

Some extensions

Enhanced robustness of $\epsilon^{-3/2}$ smethods

	$\pi_{\texttt{algo}}$	$ ho_{\texttt{algo}}$
with f	0.99	97.48
OFFO	0.83	88.24

No obvious reason to use new method in the absence of noise...

$ ho_{\texttt{algo}}$	5%	15%	25%	50%
with f	40.67	30.84	24.54	6.81
OFFO	85.97	80.67	72.69	47.98

... but the picture is very different when noise is present (e.g. in ML)!

Conclusions and perspectives

Summary:

- The methods *maxgi* and *avrgi* seem to produce relatively good results. They often outperform the Adagrad-like variants
- The relative behaviour of all variants is not significantly affected by the network architectures. Same for learning rate
- Among Adagrad-like variants of the first class, those with a larger μ handle smaller learning rates better
- Still some gaps between theory and experiments to be filled-in

Perspectives:

- Deterministic and stochastic OFFO methods of higher degree (cubic?) for a better complexity and better performance ??
- The usual: constraints, infinite dimension, multilevel
- More numerical results

Thank you for your attention!

< 口 > < 同 >

Bath-RAL 2023

Reference on OFFO

• S. Gratton, S. Jerad, Ph. L. Toint,

Convergence properties of an Objective-Function-Free Optimization regularization algorithm including an ${\cal O}(\epsilon^{-3/2})$ SIOPT , 2022 hal-03718813

- S. Gratton, S. Jerad, Ph. L. Toint, First-Order Objective-Function-Free Optimization Algorithms and Their Complexity, 2022 hal-03718811
- S. Gratton, S. Jerad, Ph. L. Toint, Parametric complexity analysis for a class of first-order Adagrad-like algorithms, 2022 hal-03718810

Bath-RAL 2023

38