Convergence of an Ambrosio-Torterelli approximation scheme for image segmentation

Lisa Maria Kreusser

University of Bath

Joint work with I. Fonseca, C.-B. Schönlieb and M. Thorpe

Bath-RAL Day April 14, 2023

Unified framework for getting more out of information

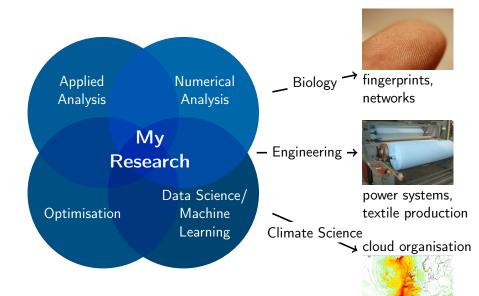


Image Segmentation

Motivation

- Image data is one of the largest and fastest growing sources of information
- Partitioning an image into disjoint regions with certain characteristics

- One of the most fundamental and ubiquitous tasks in image analysis
- Examples: Object detection, scene parsing, organ reconstruction, tumor detection, etc.
- Mathematical model for image segmentation

Variational models for image segmentation

Question: How to incorporate boundary in segmentation problem?

Variational models for image segmentation

Question: How to incorporate boundary in segmentation problem? ⇒ Implicit/explicit representation of boundaries, e.g. active contours, level-sets, graph cut, etc.

Variational models for image segmentation

Question: How to incorporate boundary in segmentation problem? ⇒ Implicit/explicit representation of boundaries, e.g. active contours, level-sets, graph cut, etc.

Variational approaches:

- Mumford-Shah model
- Chan-Vese active contour model without edges
- Chan-Vese multiphase level set framework

Implementation via the level set method of Osher and Sethian

Mumford-Shah model

Notation:

- Domain $\Omega \subset \mathbb{R}^d$ with $d \geqslant 1$
- Given image $u_0: \Omega \to \mathbb{R}^m$ with $m \ge 1$ to be segmented into two regions, e.g. bounded scalar (gray-scale) or vector-valued (color) image
- ullet Closed subset C in Ω , made up of a finite set of smooth curves
- Connected components Ω_i of $\Omega \setminus C$, i.e. $\Omega = \cup_i \Omega_i \cup C$
- Goal: Find a decomposition Ω_i of Ω and an optimal piecewise smooth approximation u of a given image u_0 such that
 - u varies smoothly within each Ω_i
 - u varies rapidly or discontinuously across the boundaries of Ω_i
- Mathematical formulation: Minimisation of the energy functional

$$\mathbb{E}^{MS}(C, u) = \int_{\Omega} (u - u_0)^2 dx + \mu \int_{\Omega \setminus C} |\nabla u|^2 dx + \nu |C|$$

for fixed parameters $\mu, \nu > 0$

Mumford-Shah model

Mathematical formulation: Minimisation of the energy functional

$$\mathbb{E}^{MS}(C, u) = \int_{\Omega} (u - u_0)^2 dx + \mu \int_{\Omega \setminus C} |\nabla u|^2 dx + \nu |C|$$

- **Interpretation**: For minimizer (*u*, *C*):
 - u is an 'optimal' piecewise smooth approximation of the possibly noisy image u_0
 - C can be regarded as approximating the edges of u_0
- Theoretical results on the existence/regularity of minimizers: Mumford and Shah, Morel and Solimini and De Giorgi et al., ...
- Analysis based on weak formulation of Mumford-Shah model: Ambrosio, Chambolle, Dal Maso, De Giorgi, March, Tortorelli, . . .

Chan-Vese active contours model

Motivation:

• particular case of the Mumford-Shah model by restricting the segmented image u to piecewise constant functions \Rightarrow Neglect $\mu \int_{\Omega \setminus C} |\nabla u|^2 \, \mathrm{d}x$ for now, i.e.

$$\mathbb{E}^{MS}(C,u) = \int_{\Omega} (u - u_0)^2 dx + \nu |C|$$

motivates the generalized, widely used multiphase level set model

Chan-Vese active contours model

Motivation:

• particular case of the Mumford-Shah model by restricting the segmented image u to piecewise constant functions \Rightarrow Neglect $\mu \int_{\Omega \setminus C} |\nabla u|^2 \, \mathrm{d}x$ for now, i.e.

$$\mathbb{E}^{MS}(C,u) = \int_{\Omega} (u - u_0)^2 dx + \nu |C|$$

motivates the generalized, widely used multiphase level set model
 Mathematical model: Minimisation of the energy

$$\mathbb{E}^{PC}(C,c^{(1)},c^{(2)}) = \int_{E} (c^{(1)}-u_0)^2 \,\mathrm{d}x + \int_{\Omega \setminus E} (c^{(2)}-u_0)^2 \,\mathrm{d}x + \nu |C|$$

with respect to $c^{(1)},c^{(2)}$ and C where $\nu>0$ is a given parameter and set $E\subset\Omega$ depends on C

Chan-Vese active contours model

- Notation: Let $E \subset \Omega$ be an open subset of Ω such that the set E is the area inside the boundary curve $C = \partial E$ of length |C| and let $c^{(1)}, c^{(2)}$ be unknown constants
- Minimisation of the energy functional

$$\mathbb{E}^{PC}(C, c^{(1)}, c^{(2)}) = \int_{E} (c^{(1)} - u_0)^2 dx + \int_{\Omega \setminus E} (c^{(2)} - u_0)^2 dx + \nu |C|$$

with respect to constants $c^{(1)}, c^{(2)}$ and C where $\nu > 0$ is a given parameter

Level set formulation of the Chan-Vese model

Original energy:

$$\mathbb{E}^{PC}(C,c^{(1)},c^{(2)}) = \int_{E} (c^{(1)}-u_0)^2 \,\mathrm{d}x + \int_{\Omega \setminus E} (c^{(2)}-u_0)^2 \,\mathrm{d}x + \nu |C|$$

Representation of C as the zero-crossing of a level set function $\phi \colon \Omega \to \mathbb{R}$, i.e. $C = \{x \in \Omega \colon \phi(x) = 0\}$, and

$$\phi(x) > 0$$
 in E , $\phi(x) < 0$ in $\Omega \setminus E$, $\phi(x) = 0$ on ∂E .

Level set formulation of the Chan-Vese model

Original energy:

$$\mathbb{E}^{PC}(C,c^{(1)},c^{(2)}) = \int_{E} (c^{(1)}-u_0)^2 \,\mathrm{d}x + \int_{\Omega \setminus E} (c^{(2)}-u_0)^2 \,\mathrm{d}x + \nu |C|$$

Representation of C as the zero-crossing of a level set function $\phi \colon \Omega \to \mathbb{R}$, i.e. $C = \{x \in \Omega \colon \phi(x) = 0\}$, and

$$\phi(x) > 0$$
 in E , $\phi(x) < 0$ in $\Omega \backslash E$, $\phi(x) = 0$ on ∂E .

Level-set energy $E^{PC}(\phi, c^{(1)}, c^{(2)})$

$$= \int_{\Omega} (c^{(1)} - u_0)^2 H(\phi) \, \mathrm{d}x + \int_{\Omega} (c^{(2)} - u_0)^2 (1 - H(\phi)) \, \mathrm{d}x + \nu \int_{\Omega} |\nabla H(\phi)| \, \mathrm{d}x$$

for $u(x) = c^{(1)}H(\phi(x)) + c^{(2)}(1 - H(\phi(x)))$ and Heaviside function H

4D > 4B + 4B > 4B + 900

Level set formulation of the Chan-Vese model

$$\begin{split} &\mathbb{E}^{PC}(\phi,c^{(1)},c^{(2)}) \\ &= \int_{\Omega} (c^{(1)} - u_0)^2 H(\phi) \, \mathrm{d}x + \int_{\Omega} (c^{(2)} - u_0)^2 (1 - H(\phi)) \, \mathrm{d}x + \nu \int_{\Omega} |\nabla H(\phi)| \, \mathrm{d}x \\ &\text{for } u(x) = c^{(1)} H(\phi(x)) + c^{(2)} (1 - H(\phi(x))) \text{ and Heaviside function } H : \end{split}$$

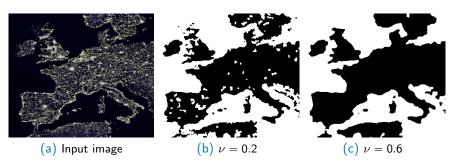


Figure: Image segmentation results for different parameter values $\nu>0$

Extension of the model to piecewise smooth segmentations

- Replacing the constants $c^{(1)}, c^{(2)}$ by smooth functions on E and $\Omega \setminus E$ proposed independently by Vese and Chan, and Tsai et al.
- Extension to vector-valued functions such as color images
- Energy functional:

$$\begin{split} &\mathbb{E}^{PC}(\phi,c^{(1)},c^{(2)}) \\ &= \int_{\Omega} |c^{(1)} - u_0|^2 H(\phi) \, \mathrm{d}x + \int_{\Omega} |c^{(2)} - u_0|^2 (1 - H(\phi)) \, \mathrm{d}x \\ &+ \mu \int_{\Omega} |\nabla c^{(1)}|^2 H(\phi) + |\nabla c^{(2)}|^2 (1 - H(\phi)) \, \mathrm{d}x + \nu \int_{\Omega} |\nabla H(\phi)| \, \mathrm{d}x \end{split}$$

- Numerical results have been obtained independently and contemporaneously by Vese and Chan, and Tsai et al.
- Very good reconstruction of piecewise smooth regions possible with the model, jumps are well located and without smearing, and the piecewise constant case can be recovered.

Reformulation of the energy functional via the Ambrosio-Tortorelli approximation

Numerical minimization difficult:

- Non-smoothness of energy functional, particularly $\nu \int_{\Omega} |\nabla H(\phi)| \, \mathrm{d}x$ \Rightarrow Replace by suitable approximation
- ullet Dependency on the unknown form of the level set function ϕ

Ambrosio-Tortorelli approximation

- one of the most computationally efficient approximations of the Mumford-Shah functional
- uses the Ginzburg-Landau functional

$$\mathbb{E}_{\epsilon}^{GL}(v) = \int_{\Omega} \epsilon |\nabla v|^2 + \frac{1}{\epsilon} W(v) \, \mathrm{d}x$$

where $\epsilon > 0$ is a positive constant and $W : \mathbb{R} \to [0, +\infty)$ is a double well potential with wells at 0 and 1, e.g. $W(x) = x^2(x-1)^2$

Reformulation of the energy functional via the Ambrosio-Tortorelli approximation

Reformulated energy functional

$$\begin{split} \bar{\mathbb{E}}_{\mu_{\epsilon},\epsilon}(v,c^{(1)},c^{(2)}) &= \int_{\Omega} |c^{(1)} - u_0|^p |v| + |c^{(2)} - u_0|^p |1 - v| \, \mathrm{d}x \\ &+ \mu_{\epsilon} \int_{\Omega} |\nabla c^{(1)}|^p |v| + |\nabla c^{(2)}|^p |1 - v| \, \mathrm{d}x + \frac{\nu}{c_W} \int_{\Omega} \epsilon |\nabla v|^2 + \frac{1}{\epsilon} W(v) \, \mathrm{d}x \end{split}$$

where $c_W := 2 \int_0^1 \sqrt{W(t)} \, dt > 0$

- \bullet Aim: Study convergence of minimisers as $\epsilon \to 0$ to show consistency of numerical method
- **Problem:** For piecewise smooth approximations $c^{(1)}, c^{(2)}$ any Γ -convergence result requires $c^{(1)}, c^{(2)}$ to be defined only for $x \in \Omega$ such that $v(x) \neq 0$ and $1 v(x) \neq 0$, respectively \Rightarrow introduce appropriate definition of differentiability, appropriate definition of domain functions, . . .

Energy functionals for Γ -convergence

Approximative energy functional:

$$\begin{split} &\mathbb{E}_{\mu_{\epsilon},\epsilon}(v,c^{(1)},c^{(2)}) \\ &= \|c^{(1)} - u_0\|_{L^p(\nu_{|v|};\mathbb{R}^m)} + \|c^{(2)} - u_0\|_{L^p(\nu_{|1-v|};\mathbb{R}^m)} + \mu_{\epsilon}\|c^{(1)}\|_{L^{1,p}(\nu_{|v|})}^p \\ &+ \mu_{\epsilon}\|c^{(2)}\|_{L^{1,p}(\nu_{|1-v|})}^p + \frac{\nu}{c_W} \int_{\Omega} \epsilon |\nabla v|^2 + \frac{1}{\epsilon} W(v) \, \mathrm{d}x \end{split}$$

Two cases: $\mu_{\epsilon} \to \mu$ with $\mu > 0$, and $\mu_{\epsilon} \to +\infty$ as $\epsilon \to 0$

Limiting energy functional (as $\epsilon \to 0$):

$$\mathbb{E}_{\mu}(v, c^{(1)}, c^{(2)}) = \|c^{(1)} - u_0\|_{L^p(\nu_{|v|}; \mathbb{R}^m)} + \|c^{(2)} - u_0\|_{L^p(\nu_{|1-v|}; \mathbb{R}^m)}$$
$$+ \mu \|c^{(1)}\|_{L^{1,p}(\nu_{|v|})}^p + \mu \|c^{(2)}\|_{L^{1,p}(\nu_{|1-v|})}^p + \nu \operatorname{TV}(v)$$

for any $v = \chi_E \in \mathsf{BV}(\Omega; \{0,1\})$ with $E = \{x \in \Omega \colon v(x) = 1\}$, $c^{(1)} \in W^{1,p}((\Omega,\nu_{|v|});\mathbb{R}^m)$ and $c^{(2)} \in W^{1,p}((\Omega,\nu_{|1-v|});\mathbb{R}^m)$, and $\mathbb{E}_{\mu}(v,c^{(1)},c^{(2)}) = +\infty$ otherwise.

Γ-convergence

Definition

Let (X, d) be a metric space and let \mathbb{E}_n be a sequence of functions $\mathbb{E}_n \colon X \to [-\infty, +\infty]$. We say that $\{\mathbb{E}_n\}$ Γ -converges to a function $\mathbb{E} \colon X \to [-\infty, +\infty]$ if the following two properties are satisfied:

• (Liminf inequality) For every $x \in X$ and every sequence $\{x_n\} \subset X$ such that $x_n \to x$ with respect to d,

$$\mathbb{E}(x) \leqslant \liminf_{n \to \infty} \mathbb{E}_n(x_n).$$

• (Limsup inequality) For every $x \in X$ there exists a sequence $\{x_n\} \subset X$ such that $x_n \to x$ with respect to d and

$$\limsup_{n\to\infty}\mathbb{E}_n(x_n)\leqslant\mathbb{E}(x).$$

The limit function \mathbb{E} is called the Γ -limit of the sequence $\{\mathbb{E}_n\}$.

Compactness property

Definition

A sequence of nonnegative functionals $\{\mathbb{E}_n\}$ satisfies the **compactness property** if for any increasing subsequence $\{n_k\}$ of natural numbers and any bounded sequence $\{x_k\} \subset X$ such that

$$\sup_{k\in\mathbb{N}}\mathbb{E}_{n_k}(x_k)<\infty,$$

the sequence $\{x_k\}$ is relatively compact in X.

Compactness, Γ -convergence and the convergence of minimizers

Proposition

Let $\mathbb{E}_n\colon X\to [0,\infty]$ be a sequence of nonnegative functionals which are not identically equal to $+\infty$, satisfy the compactness property and Γ -converge to the functional $\mathbb{E}\colon X\to [0,\infty]$ which is not identically equal to $+\infty$. Then,

$$\lim_{n\to\infty}\inf_{x\in X}\mathbb{E}_n(x)=\min_{x\in X}\mathbb{E}(x).$$

Γ-convergence for piecewise constant segmentations

• For constants $c^{(1)}, c^{(2)}$, we define $\bar{\mathbb{E}}_{\epsilon} \colon L^1(\Omega; \mathbb{R}) \times \mathbb{R}^m \times \mathbb{R}^m$ by

$$\begin{split} \bar{\mathbb{E}}_{\epsilon}(v,c^{(1)},c^{(2)}) := \int_{\Omega} |c^{(1)} - u_0|^p |v| + |c^{(2)} - u_0|^p |1 - v| \, \mathrm{d}x \\ + \frac{\nu}{c_W} \int_{\Omega} \epsilon |\nabla v|^2 + \frac{1}{\epsilon} W(v) \, \mathrm{d}x, \end{split}$$

$$\begin{split} \bar{\mathbb{E}}(v,c^{(1)},c^{(2)}) := \begin{cases} \int_{E} |c^{(1)} - u_{0}|^{p} \, \mathrm{d}x + \int_{\Omega \setminus E} |c^{(2)} - u_{0}|^{p} \, \mathrm{d}x + \nu \, \mathsf{TV}(v), \\ v &= \chi_{E} \in \mathsf{BV}(\Omega;\{0,1\}), \\ +\infty, & \text{otherwise.} \end{cases} \end{split}$$

ullet Γ -convergence of $ar{\mathbb{E}}_\epsilon$ to $ar{\mathbb{E}}$ for piecewise constant segmentations

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

Compactness property for piecewise constant approximations

Theorem (Compactness)

Let $\Omega \subset \mathbb{R}^d$ be an open set with finite measure, let $\epsilon_n \to 0$ and let $\{v_n\} \subset W^{1,2}(\Omega;\mathbb{R}), \{c_n^{(1)}\}, \{c_n^{(2)}\} \subset \mathbb{R}^m$ such that

$$M:=\sup_{n\in\mathbb{N}}\bar{\mathbb{E}}_{\epsilon_n}(v_n,c_n^{(1)},c_n^{(2)})<+\infty.$$

Then, there exist a subsequence $\{v_{n_k}\}$ of $\{v_n\}$ and $v \in BV(\Omega; \{0,1\})$ with $v = \chi_E$ for some Lebesgue measurable set $E \subset \Omega$ such that $v_{n_k} \to v$ in $L^1(\Omega; \mathbb{R})$. If $\lambda^d(E) > 0$, then there exists a converging subsequence $\{c_{n_k}^{(1)}\}$ of $\{c_n^{(1)}\}$ with limit $c^{(1)} \in \mathbb{R}^m$. If $\lambda^d(\Omega \setminus E) > 0$ then there exists a converging subsequence $\{c_{n_k}^{(2)}\}$ of $\{c_n^{(2)}\}$ with limit $c^{(2)} \in \mathbb{R}^m$.

Idea of compactness proof

Set

$$f(t) := \frac{2\nu}{c_W} \int_0^t \sqrt{W(s)} \, \mathrm{d}s, \quad t \in \mathbb{R}.$$

• For every $n \in \mathbb{N}$ we have

$$M \geqslant \mathbb{E}_{\mu_{\epsilon_{n}},\epsilon_{n}}(v_{n},c_{n}^{(1)},c_{n}^{(2)}) \geqslant \frac{\nu}{c_{W}} \int_{\Omega} \epsilon |\nabla v|^{2} + \frac{1}{\epsilon} W(v) dx$$
$$\geqslant \frac{2\nu}{c_{W}} \int_{\Omega} \sqrt{W(v_{n})} |\nabla v_{n}| dx = \int_{\Omega} |\nabla (f \circ v_{n})| dx$$

- Rellich–Kondrachov theorem implies that $\{f \circ v_n\}$ has a converging subsequence, i.e. there exists a subsequence $\{v_n\}$ (not relabeled) and a function $w \in \mathsf{BV}(\Omega;\mathbb{R})$ such that $w_n := f \circ v_n \to w$ in $L^1_{\mathsf{loc}}(\Omega;\mathbb{R})$
- Hence, f^{-1} is continuous with

$$v_n(x) = f^{-1}(w_n(x)) \to f^{-1}(w(x)) =: v(x) \quad \lambda^d$$
-a.e. $x \in \Omega$

• Since $W(v_n) \to 0$ λ^d -a.s., we have $v(x) \in \{0,1\}$ for λ^d -a.e. $x \in \Omega$

Liminf inequality for piecewise constant approximations

Theorem (Liminf inequality)

Let $\Omega \subset \mathbb{R}^d$ be an open, bounded set. Let $v \in L^1(\Omega; \mathbb{R})$, $c^{(1)}$, $c^{(2)} \in \mathbb{R}^m$ and consider a sequence $\epsilon_n \to 0$. Assume that $\{v_n\} \subset L^1(\Omega; \mathbb{R})$ such that $v_n \to v$ in $L^1(\Omega; \mathbb{R})$. Further, let $\{c_n^{(1)}\}, \{c_n^{(2)}\} \subset \mathbb{R}^m$ such that $c_n^{(1)} \to c^{(1)}$, $c_n^{(2)} \to c^{(2)}$. Then,

$$\bar{\mathbb{E}}(v,c^{(1)},c^{(2)}) \leqslant \liminf_{n \to \infty} \bar{\mathbb{E}}_{\epsilon_n}(v_n,c_n^{(1)},c_n^{(2)}).$$

Limsup inequality for piecewise constant approximations

Theorem (Limsup inequality)

Let $\Omega \subset \mathbb{R}^d$ be an open, bounded set with Lipschitz boundary. For every $v \in L^1(\Omega; \mathbb{R})$ and $c^{(1)}, c^{(2)} \in \mathbb{R}^m$, there exist sequences $\{v_n\} \subset L^1(\Omega; \mathbb{R})$ and $\{c_n^{(1)}\}, \{c_n^{(2)}\} \subset \mathbb{R}^m$ such that $v_n \to v$ in $L^1(\Omega; \mathbb{R}), c_n^{(1)} \to c^{(1)}, c_n^{(2)} \to c^{(2)}$, and

$$\limsup_{n\to\infty} \overline{\mathbb{E}}_{\epsilon_n}(v_n,c_n^{(1)},c_n^{(2)}) \leqslant \overline{\mathbb{E}}(v,c^{(1)},c^{(2)}),$$

where $\epsilon_n \to 0$ as $n \to \infty$.

Characterization of $W^{1,p}$ functions

Standard definitions of Sobolev spaces:

$$\begin{split} W^{1,p}(\Omega) &= \{ f \in \mathcal{D}'(\Omega) \ : \ f \in L^p(\Omega), \nabla f \in L^p(\Omega) \}, \\ L^{1,p}(\Omega) &= \{ f \in \mathcal{D}'(\Omega) \ : \ \nabla f \in L^p(\Omega) \} \end{split}$$

Theorem (Characterization of $W^{1,p}$)

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with smooth boundary and $1 . Then <math>f \in W^{1,p}(\Omega)$, where $1 , if and only if <math>f \in L^p(\Omega)$ and there is $0 \le g \in L^p(\Omega)$ so that

$$|f(x) - f(y)| \le |x - y|(g(x) + g(y))$$
 a.e.

Moreover, $\|f\|_{L^{1,p}} \approx \inf_g \|g\|_{L^p}$, i.e. there exists a constant $C \geqslant 1$ such that $\frac{1}{C} \|f\|_{L^{1,p}} \leqslant \inf_g \|g\|_{L^p} \leqslant C \|f\|_{L^{1,p}}$, where the infimum is taken over the class of all functions g satisfying the above inequality.

Definition of metric measure spaces

Definition

Let (Ω, d, ν) be a metric space (Ω, d) with finite diameter

$$\operatorname{diam}\Omega=\sup_{x,y\in\Omega}d(x,y)<+\infty$$

and a finite positive Borel measure ν . Let $1 . The Sobolev spaces <math>L^{1,p}(\Omega,d,\nu)$ and $W^{1,p}(\Omega,d,\nu)$ are defined as

$$L^{1,p}(\Omega,d,\nu)=\{f\colon \Omega\to\mathbb{R}\colon f\text{ is measurable and there exists }0\leqslant g\in L^p(\nu)$$
 such that $|f(x)-f(y)|\leqslant d(x,y)(g(x)+g(y))$ a.e.}

and

$$W^{1,p}(\Omega, d, \nu) = \{ f \in L^{1,p}(\Omega, d, \nu) : f \in L^p(\nu) \},$$

respectively.

Definition of the space CL^p

• For open set $\Omega \subset \mathbb{R}^d$ define function space

$$CL^{p}(\Omega) := \{ (v, c^{(1)}, c^{(2)}) \colon v \in L^{1}((\Omega, \lambda^{d}|_{\Omega}); \mathbb{R}), c^{(1)} \in L^{p}((\Omega, \nu_{|v|}); \mathbb{R}^{m}), c^{(2)} \in L^{p}((\Omega, \nu_{|1-v|}); \mathbb{R}^{m}) \}$$

where $\nu_{|\nu|}$ and $\nu_{|1-\nu|}$ are probability measures which have Lebesgue densities $\frac{|\nu|}{\|\nu\|_{L^1(\Omega;\mathbb{R})}}$ and $\frac{|1-\nu|}{\|1-\nu\|_{L^1(\Omega;\mathbb{R})}}$ restricted to Ω , respectively.

• Metric for $(v,c^{(1)},c^{(2)})$ and $(\tilde{v},\tilde{c}^{(1)},\tilde{c}^{(2)})$ in $\mathit{CL}^p(\Omega)$

$$\inf_{\pi \in \Pi(\nu_{|\nu|}, \nu_{|\tilde{\nu}|})} \left(\iint_{\Omega \times \Omega} |x - y|^p + |c^{(1)}(x) - \tilde{c}^{(1)}(x)|^p d\pi(x, y) \right)^{\frac{1}{p}} + \inf_{\pi \in \Pi(\nu_{|1 - \nu|}, \nu_{|1 - \tilde{\nu}|})} \left(\iint_{\Omega \times \Omega} |x - y|^p + |c^{(2)}(x) - \tilde{c}^{(2)}(x)|^p d\pi(x, y) \right)^{\frac{1}{p}}$$

4□ > 4個 > 4 = > 4 = > = 90

Properties of the space CL^p

We can show:

- $(CL^p(\Omega), d_{CL^p})$ is a metric space.
- Characterization of the convergence in $CL^p(\Omega)$: Convergence in $CL^p(\Omega)$ can be regarded as a generalization of
 - weak convergence of measures
 - *L*^p convergence of functions

Transportation theory

Definition

Given a Borel map $T: \Omega \to \Omega$ and $\nu \in \mathcal{P}(\Omega)$ the **push-forward** of ν by T is denoted by $T_{\#}\nu \in \mathcal{P}(\Omega)$ and is given by

$$T_{\#}\nu(E) := \nu(T^{-1}(E)), E \in \mathcal{B}(\Omega).$$

For any bounded Borel function $\phi \colon \Omega \to \mathbb{R}$ the following change of variables holds:

$$\int_{\Omega} \phi(x) \, \mathrm{d}(T_{\#}\nu)(x) = \int_{\Omega} \phi(T(x)) \, \mathrm{d}\nu(x).$$

Definition

A Borel map $T: \Omega \to \Omega$ is called a **transportation map** between the measures $\nu \in \mathcal{P}(\Omega)$ and $\tilde{\nu} \in \mathcal{P}(\Omega)$ if $\tilde{\nu} = T_{\#}\nu$.

Compactness property for piecewise smooth approximations

Theorem (Compactness)

Let $\Omega \subset \mathbb{R}^d$ with $d \ge 2$ be an open set with finite measure. Let $\epsilon_n \to 0$ and let $\{v_n\} \subset W^{1,2}((\Omega, \lambda^d|_{\Omega}); \mathbb{R}), \{c_n^{(1)}\}, \{c_n^{(2)}\}$ such that $c_n^{(1)} \in W^{1,p}((\Omega, \nu_{|\nu_n|}); \mathbb{R}^m), c_n^{(2)} \in W^{1,p}((\Omega, \nu_{|1-\nu_n|}); \mathbb{R}^m)$ and $\sup_{n\in\mathbb{N}}\mathbb{E}_{\mu_{\epsilon_n},\epsilon_n}(v_n,c_n^{(1)},c_n^{(2)})<+\infty$ where $\lim_{n\to\infty}\mu_{\epsilon_n}\in(0,+\infty]$. Then there exist a subsequence $\{v_n\}$ of $\{v_n\}$ and $v \in BV(\Omega; \{0,1\})$ with $v = \chi_F$ for some Lebesgue measurable set $E \subset \Omega$ such that $v_{n_{\nu}} \to v$ in $L^{1}(\Omega; \mathbb{R})$. For $0 < \lambda^d(E) < \lambda^d(\Omega)$ and transportation maps $\{T_{n_k}^{(1)}\}, \{T_{n_k}^{(2)}\}$ satisfying $\lim_{n_{t}\to\infty} \|T_{n_{t}}^{(1)} - I\|_{I^{\infty}} = \lim_{n_{t}\to\infty} \|T_{n_{t}}^{(2)} - I\|_{I^{\infty}} = 0$ there exists a subsequence $(v_{n_k}, c_{n_k}^{(1)}, c_{n_k}^{(2)})$ converging to $(v, c^{(1)}, c^{(2)}) \in CL^p(\Omega)$ in $CL^{\alpha}(\Omega)$ for any $1 \leq \alpha < p$.

Liminf inequality for piecewise smooth approximations

Theorem (Liminf inequality)

Let $\Omega \subset \mathbb{R}^d$ be an open, bounded set. Let $(v,c^{(1)},c^{(2)}) \in CL^p(\Omega)$ and consider positive sequences $\{\epsilon_n\},\{\mu_{\epsilon_n}\}$ with $\lim_{n \to \infty} \epsilon_n = 0$ and $\lim_{n \to \infty} \mu_{\epsilon_n} \in (0,+\infty]$. Assume that $\{(v_n,c_n^{(1)},c_n^{(2)})\} \subset CL^p(\Omega)$ such that $(v_n,c_n^{(1)},c_n^{(2)}) \to (v,c^{(1)},c^{(2)})$ in $CL^p(\Omega)$. Then,

$$\mathbb{E}_{\mu}(v, c^{(1)}, c^{(2)}) \leqslant \liminf_{n \to \infty} \mathbb{E}_{\mu_{\epsilon_n}, \epsilon_n}(v_n, c_n^{(1)}, c_n^{(2)}).$$

Limsup inequality for piecewise smooth approximations

Theorem (Limsup inequality)

Let $\Omega \subset \mathbb{R}^d$ be an open, bounded set with Lipschitz boundary. Let $(v,c^{(1)},c^{(2)}) \in CL^p(\Omega)$ and consider positive sequences $\{\epsilon_n\},\{\mu_{\epsilon_n}\}$ with $\lim_{n\to\infty}\epsilon_n=0$ and $\lim_{n\to\infty}\mu_{\epsilon_n}\in(0,+\infty]$. Then, there exists a sequence $\{(v_n,c_n^{(1)},c_n^{(2)})\}\subset CL^p(\Omega)$ such that $(v_n,c_n^{(1)},c_n^{(2)})\to(v,c^{(1)},c^{(2)})$ in $CL^p(\Omega)$, and

$$\limsup_{n \to \infty} \mathbb{E}_{\mu_{\epsilon_n}, \epsilon_n}(v_n, c_n^{(1)}, c_n^{(2)}) \leqslant \mathbb{E}_{\mu}(v, c^{(1)}, c^{(2)}).$$

Γ-convergence for piecewise smooth approximations

Theorem

Let $\Omega \subset \mathbb{R}^d$ be an open, bounded set, let $1 . Then, the functional <math>\mathbb{E}_{\mu_{\epsilon},\epsilon} \colon CL^p(\Omega) \to [0,+\infty]$ Γ -converges with respect to the $CL^p(\Omega)$ topology to the functionals $\mathbb{E}_{\mu}(v,c^{(1)},c^{(2)})$ whose form depends on $\mu_{\epsilon} \to \mu$ with $\mu > 0$, and $\mu_{\epsilon} \to +\infty$, respectively, as $\epsilon \to 0$.

Convergence of minimisers for piecewise smooth approximations

Corollary (Convergence of minimisers)

Let $\Omega \subset \mathbb{R}^d$ be an open, bounded set. Let $(v_n, c_n^{(1)}, c_n^{(2)}) \in CL^p(\Omega)$ be a minimiser of the energy $\mathbb{E}_{\mu_{\epsilon_n}, \epsilon_n}$ for positive sequences $\{\epsilon_n\}, \{\mu_{\epsilon_n}\}$ with $\lim_{n \to \infty} \epsilon_n = 0$ and $\lim_{n \to \infty} \mu_{\epsilon_n} = \mu \in (0, +\infty]$. Then, there exists $(v, c^{(1)}, c^{(2)}) \in CL^p(\Omega)$ such that, up to a subsequence, $(v_n, c_n^{(1)}, c_n^{(2)})$ converges to $(v, c^{(1)}, c^{(2)})$ in $CL^{\alpha}(\Omega)$ for any $1 \le \alpha < p$, and $(v, c^{(1)}, c^{(2)})$ minimises the energy \mathbb{E}_{μ} over $CL^p(\Omega)$.

Conclusion

- Challenging mathematical models, requiring the development of new mathematical tools
- Diverse applications of image segmentation

- Rigorous analysis of the Mumford-Shah model
- Combining techniques from a variety of fields of mathematics
- Theoretical foundations for substantial progress in applications

Thank you very much for your attention!

Happy to answer any questions!

References

I. Fonseca, LMK, C.-B. Schönlieb and M. Thorpe,

F-Convergence of an Ambrosio-Torterelli approximation scheme for image segmentation,
arXiv:2202.04965

More information: https://people.bath.ac.uk/lmk54/ Email: Lmk54@bath.ac.uk