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WHAT IS NONLINEAR PROGRAMMING?
Nonlinear optimization = nonlinear programming

minimize f(z) subject to cg(x) =0 and cz(x) =0

X

where
objective function f : IR" — IR
constraints ¢g : IR" — IR (m, < n) and
cr : IR" — IR™
- there may also be integrality restrictions

« concentrate on minimization since

max f(z) = —min(—f(z))

TzeF reF
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NODE EQUATIONS

O In general: Ag—d =0
g1+ g —q—d; =0 - linear
. sparse
where ¢; flows 1 q1
- structured
d, demands

q3 D; <t O
O/ 92

® d,



PIPE EQUATIONS

/Q P1
Dy dq

9 9 2.8359
Py — p1 + ki@ = ()

where p, pressures
q; lows
k; constants

In general: A p* + K¢
- non-linear
. sparse
- structured
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COMPRESSOR CONSTRAINTS

L]

D2 O -
o)) 1

q1 — @+ 2 - c1(P1, @1, P2, @) =0

where p, pressures
q; lows
z; 0—1 variables
= 1 if machine is on

c; nonlinear functions

O D

In general: A2q+ z-c(p,q) = 0
- non-linear
. sparse
- structured
- 0—1 variables




OTHER CONSTRAINTS

Bounds on pressures and flows

Pmin

NN
NN

p Prmax
Gmin q Amax

- simple bounds on variables



OBJECTIVES

Many possible objectives

- maximize / minimize sum of pressures
- minimize compressor fuel costs
+ minimize supply

+ combinations of these



STATISTICS

British Gas National Transmission System
» 199 nodes
« 196 pipes
- 21 machines

Steady state problem
~400 variables

24-hour variable demand problem with 10 minute discretization
~58,000 variables

Challenge: Solve this in real time



TYPICAL PROBLEM

This problem is typical of real-world, large-scale applications

simple bounds

« linear constraints

« nonlinear constraints

» structure

- global solution “required”
- integer variables

» discretization



(SOME) OTHER APPLICATION AREAS

« minimum energy problems

- gas production models

« hydro-electric power scheduling

« structural design problems

- portfolio selection

- parameter determination in financial markets
 production scheduling problems

- computer tomography (image reconstruction)
- efficient models of alternative energy sources
- traffic equilibrium models

- machine learning/neural nets



CLASSIFICATION OF OPTIMIZATION PROBLEMS

DISCRETE

(COMBINATORIAL) CONTINUOUS
| LINEAR |
x takes discrete - PROGR- | x takes any values
(integer) values

AMMING |

i
!

Enumeration -
sometimes trivial
often HARD

Calculus
Taylor’s theorem



OPTIMIZATION PROBLEMS

Unconstrained minimization:

minimize f(x)
relR"

where the objective function f: IR" — IR

Equality constrained minimization:

minimize f(x) subject to c(x) =0
relR"

where the constraints ¢ : IR" — IR" (m < n)

Inequality constrained minimization:

minimize f(x) subject to c(x) =0
relR"

where ¢ : IR" — IR"" (m may be larger than n)



OPTIMALITY CONDITIONS

Optimality is hidden; it needs further thought and work to verify

Optimality conditions are useful because:

 they provide a means of guaranteeing that a
candidate solution is indeed optimal

(sufficient conditions), and

- they indicate when a point is not optimal

(necessary conditions)

Furthermore they

- guide in the design of algorithms, since

lack of optimality <= indication of improvement



THE GRADIENT

Let x € IR"
Suppose that f(z) is continuously differentiable (f € C").

Then its gradient g(z) is the vector whose ¢-th component

gi(z) = é’gg)
forl <it<n
E.g, if
f(z) =t + zy2
then

g(z) = ( 2x1x41r To )



THE HESSIAN MATRIX

Suppose that f(z) is twice-continuously differentiable (f € C?).
Then its Hessian (Otto Hesse, 1811-1874) H(x) is the matrix

whose 7, j-th component

for 1 <4,j <n

E.g, if

flx) = 97% + X129

H@:)(fé)

Notice that the Hessian is always symmetric

then



THE JACOBIAN MATRIX

Suppose that ¢(x) is vector-valued and continuously differentiable
(¢c:IR" = IR™,ce C"). Then its Jacobian (Carl Jacobi, 1804-1851)

J(x) is the matrix whose 7, j-th component

oc;(x)
Jij(@) = —
J &ZC’]
forl<i<mandl1<j<n
E.g, if
71
c(r) =
then

J(z) = (2:161 323>

Notice that the i-th row of the Jacobian is the transpose of the gradient
of ¢;(x). Also that if ¢(z) = g(x), then J(z) = H(x)



INNER PRODUCTS AND NORMS

Suppose that x,y € IR". Then the inner product {x,y) between z
Y

and y is the component-wise sum
n
<ZC7 y> — Z LiY;
i=1

This defines the (Euclidean) norm

|y = v/<z, 2) z;

M=

T\

Notice that ||z, is always non-negative and only zero when z = 0

- If S is a symmetric matrix, | S| = ﬁax 1Sz
x|=1
n

« There are other norms, e.g., |z|; = E |z;| and |z, = max |z
<i<
i=1

« if we don’t say otherwise | - | = | - |5



EIGENPAIRS & POSITIVE-DEFINITE MATRICES

Let S be a real, symmetric n x n matrix.
S is said to have an eigenpair (A, v) if
Sv = A,
where the eigenvalue A is real and its eigenvector v has |v| = 1.
- S has n eigenvalues \;, and associated eigenvectors v;,, 1 <7< n

- the eigenvectors are mutually orthogonal i.e., {v;,v;) = 0 if i # j.

« V =(v,...,v,), S has a spectral decomposition
S = VIAV, where A = diag()\;)
S is positive (semi) definite if (equivalently)
e N >0(=0)forl<i<n

« {u, Suy > 0 (= 0) for all nonzero vectors u



LIPSCHITZ CONTINUITY (don’t panic!!)

« X and ) sets

c F X =)
|- |lx and | - ||y are norms
Then

« F' is Lipschitz (Rudolf Lipschitz, 1832-1903) continuous at
x € X if 3 y(x) such that

|F(2) = F(z)ly < v(@)]z — ]
for all z € X.
 Fis Lipschitz continuous throughout/in X if 3 v such that
|F(2) = F(x)ly < 7]z — =«

for all z and 2z € X.

Essentially controls how far F'(z) is from F'(x) as z approaches x



TAYLOR-SERIES APPROXIMATIONS

A fundamental question is:
if we have a function f and know its value and derivatives at x, can we

say anything about f at a nearby point x + s?
This question was addressed by Brook Taylor (1685-1731), who showed

that in many cases a series approximation

=
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5
—
=
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~

fla+s) = Tyls) i= f(a) + ]

where f (i)(az) is the i-th derivative of f at x, is increasingly accurate

as p — o0 (NB ...there is a lot hidden here in the notation!)
Computationally useful for p = 1 and 2:

m"(z + s)=Ty(s) = f(z) + {g(x), s)
m%(x + s)= Ty(s) = f(z) +{g(z), ) + s, H(x)s)



A USEFUL TAYLOR APPROXIMATION

Theorem 1.1. Let & be an open subset of IR", and suppose
f 8 — IR is continuously differentiable throughout &. Suppose
further that g(x) is Lipschitz continuous at x, with Lipschitz con-

stant ’)/L(LC) in some appropriate vector norm. Then, if the segment
x4+ 60se S forall §e|0,1],

Flz +s) —mb(z + s)| < W (@)|s]?, where
m"(z +s) = f(z) + (g(x), ).

If f is twice continuously differentiable throughout & and H (x) is

Lipschitz continuous at x, with Lipschitz constant ’yQ(az),

f(z+5) —mPz + s)| < 14%(x)|s|?, where
m%(z + s) = f(z) + {g(x), s) + (s, H(x)s).




ANOTHER USEFUL TAYLOR APPROXIMATION

Theorem 1.2. Let S be an open subset of IR", and suppose F' :
S — IR™ is continuously differentiable throughout S. Suppose
further that V,F(x) is Lipschitz continuous at x, with Lipschitz
constant ’)/L(ZU) in some appropriate vector norm and its induced
matrix norm. Then, if the segment x + s € S for all 6 € |0, 1],

[F(z +s) = M*(z + 5)| < 477 (x)| ], where
MYz +s) = F(z) + V, F(z)s.




COROLLARY — NEWTON’S METHOD

Given a Lipschitz C' function F : IR" — IR", Taylor =
|F(a +s) = M"(x + 5)| < 4y" ()]s, where
Mz +s) = F(z) + V,F(z)s

From given x with small F'(z), pick s so that

MYz +s) = F(z)+ V,F(z)s =0

[F(x+8)| < W (@)s]? < A" @) (Vo F ()" P F ()]
— usually quadratic rate of decrease

Choosing s : V,F(x)s = —F(z) is Newton’s method

for finding a root of the nonlinear system F(x) = 0



BLOCK NEWTON

Given Lipschitz C* function F : IR™™™ — IR™™™ such that

b(x,y
Fla,y) - 5
c(r,y)
withz e IR", ye IR™, b: IR"™™ - IR" and ¢ : IR"™" — IR™

Newton equations are

(maawvw@w><%>_<waw>
V.e(z,y) Vel y) )\ s, c(z,y)

to get an improvement x + s, and y + Sy



Part 2: Unconstrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

minimize f(z)
relR"

Course on continuous optimization, STFC-RAL, February 2021




UNCONSTRAINED MINIMIZATION

minimize f(x)
relR”

where the objective function f: IR" — IR

- assume that f € C' (sometimes C*) and Lipschitz

- often in practice this assumption violated, but not necessary



CONTENT

We shall discuss:

- optimality conditions

quadratic minimization

linesearch methods

trust-region methods

(regularization methods)



OPTIMALITY CONDITIONS FOR UNCONSTRAINED
MINIMIZATION

First-order necessary optimality:

Theorem 2.1. Suppose that f € C'. and that z, is a local mini-
mizer of f(x). Then

g(z,) =0.

Second-order necessary optimality:

Theorem 2.2. Suppose that f € C?, and that x, is a local mini-
mizer of f(x). Then g(x,) = 0 and H(x,) is positive semi-definite,
that is

(s,H(x,)s) =0 forall selR".




OPTIMALITY CONDITIONS (cont.)

Second-order sufficient optimality:

Theorem 2.3. Suppose that f € C* that z, satisfies the condi-
tion g(x,) = 0, and that additionally H(x,) is positive definite,
that is

(s, H(x,)s) >0 forall s#0elR".

Then z, is an isolated local minimizer of f.




MINIMIZING A CONVEX QUADRATIC FUNCTION

Generic convex quadratic problem: (B sym. positive definite)

minimize q(x) = {g,x) + ¥z, Bx)
relR"”

If z, is a minimizer, necessarily
Vq(x,) =g+ Bx,=0 = Bz, =—g

Since B is positive definite, x, is the unique (global) minimizer

How do we find .7

- by factorization

dense/spares Cholesky factorization of B = LL". L triangular

Forward and back solution Lz = —¢g then L'z, =2

- approximately by iteration



ITERATIVE QUADRATIC MINIMIZATION

Many possible methods, the most effective is the method of
conjugate gradients:
Given:
- a sequence of linearly-independent vectors {p;}, 0 < j <n —1
- a sequence of expanding matrices P; = (py,...,pj_1)
« a sequence of expanding subspaces

P; = {x:2x = P for some v e IR’}

Generate a sequence of successively improving estimates

T, = arg gelgl q(z)



CONJUGATE GRADIENTS — THE CLEVER PARTS

Let g; = Vq(z;) = Bx; + g

« (easy) if we can select p; so that {p;} are B-conjugate, i..,

{p;, Bp;) =0 for i <

P, 95
Tii1 =2+ a;p;, where a; = —
J+1 J 37 J <P7;Bpj>

e (trivial)
gj+1 = 9g; + a;Bp;
« (messy) we can select p; so that {p;} are B-conjugate via

lgj1l
gl

Pj+1 = —Ygj+1 + B;pj, where [; =



CONJUGATE-GRADIENT (CG) METHOD

Set o =0, g9 =g, po = —g and i = 0.
Until g; “small”, iterate
a; = —3;, pi)/{Pi, Bp;) = arg moin q(z; + ap;)
Tiy1 = T + Qp;
giv1 = 9; + ;Bp; = Vaq(r,,4)
b = H%HH%/HQ@H%

Pir1 = —Yis1 + Bipi
and increase ¢ by 1

Important features:
« q(z;) < q(z;_4)
« r, = x, (in exact arithmetic)
- may stop earlier if B is structured, e.g. clustered eigenvalues

- can accelerate by preconditioning



ITERATIVE METHODS FOR GENERAL f(x)

- in practice very rare to be able to provide explicit minimizer of f

- iterative method: given starting “guess” x,, generate sequence
{Ik}, k = 1,2,...

« AIM: ensure that (a subsequence) has some favourable limiting

properties:

satisfies first-order necessary conditions

satisfies second-order necessary conditions

Notation: f, = f(xy), g = g(xg), H, = H(xy).
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LINESEARCH METHODS

- calculate a search direction d; from x;

 ensure that this direction is a descent direction, i.e.,

(G, dy) <0 if g #0

(the slope {(d}, g;,) is negative) so that, for small steps along d,

the objective function will be reduced (Taylor’s theorem)

- calculate a suitable steplength «; > 0 so that

flzp + ogdy) < fi
- computation of a; is the linesearch—may itself be an iteration
« generic linesearch method:

Tpi1 = T + aydy,



STEPS MIGHT BE TOO LONG

f(z) 3

25

Qx\laf(ajl)
2_ -~ <
15k (x27f(x2)_
(z3,f(z3) @77

1 (@5, f(ws) it ol LSV ACEY

0.5

O_

I 15 " 05 0 05 1' 15 >

The objective function f(z) = z* and the iterates z,,, = z; + ad;,
generated by the descent directions d;, = (—1)""! and steps a; =
2+ 3/2° from xy = 2



STEPS MIGHT BE TOO SHORT

f(xz) 3
25+
2+
15} )
(z3,f(x3)
T (z5,f(x5) (xa,f(xq)
0.5
O_
- EE X “05 0 05 i 15 2 x

The objective function f(z) = z* and the iterates ., = & + ady,
generated by the descent directions d;, = —1 and steps a; = 1 /Zk i

from xy = 2



PRACTICAL LINESEARCH METHODS

- in early days, pick a; to minimize

f(x) + ady)

exact linesearch—univariate minimization

rather expensive and certainly not cost effective
- modern methods: inexact linesearch

ensure steps are neither too long nor too short
try to pick “useful” initial stepsize for fast convergence
best methods are either

“backtracking- Armijo” or

“Armijo-Goldstein”
based



BACKTRACKING LINESEARCH

Procedure to find the stepsize a;:

Given ajpit > 0 (e.g., a3 = 1)
let o'?) = Qipit and [ =0

Until f(ﬂ?k -+ Oé(l)dk> “<”f/€

[+1)

set o™ = 7o where 7€ (0,1) (e.g., 7

|
DO —
~—

and increase [ by 1

Set o, = o'V

- this prevents the step from getting too small . . . but does not prevent

too large steps relative to decrease in f

- need to tighten requirement

[y + a! dk:)“ " Tk



ARMIJO CONDITION

In order to prevent large steps relative to decrease in f, instead require

f@e + apdy) < f(zr) + Baulor, di)
for some g € (0,1) (e.g., 8 = 0.1 or even 8 = 0.0001)

0.14

0.12

0.1fF =

0.08

0.06

0.04 -

0.02

f(xr+ady)

0.02F
f(zr)+algr,dr)
0.04]-




BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize a;:

Given ajpit > 0 (e.g., a3 = 1)

let o'?) = Qipit and [ =0

Until f(z, + oVd) < f(z;) + BaDg,, dp)
set oY = 7oV where 7 € (0,1) (e.g., 7 =1)

and increase [ by 1

Set o, = o'V




SATISFYING THE ARMIJO CONDITION

Theorem 2.4. Suppose that f € C', that g(x) is Lipschitz con-
tinuous with Lipschitz constant y(x), that 5 € (0,1) and that d is

a descent direction at . Then the Armijo condition

fl@ +ad) < f(z) + afg(x), d)
is satisfied for all o € [0, apay(y)], Where

2 1)),y
T )R




THE ARMIJO LINESEARCH TERMINATES

Corollary 2.5. Suppose that f € C', that g(z) is Lipschitz con-
tinuous with Lipschitz constant ~, at x;, that 5 € (0,1) and that
d;. 1s a descent direction at z;. Then the stepsize generated by the

backtracking-Armijo linesearch terminates with

27—(6 T 1)<gk7 dk>)

%HdkH%

Q= min (O‘initv




GENERIC LINESEARCH METHOD

Given an initial guess x, let &k =0
Until convergence:
Find a descent direction d; at x;
Compute a stepsize a; using a
backtracking-Armijo linesearch along d;

Set x1..1 = x, + au.d, and increase k by 1




GLOBAL CONVERGENCE THEOREM

Theorem 2.6. Suppose that f € C* and that ¢ is Lipschitz con-

tinuous on IR". Then, for the iterates generated by the Generic
Linesearch Method,

either
g; =0 for some [ >0
or
jn =
or

lim min <|<dkagk>‘7 ‘<dk’gk>’> = 0.

ks Idkl-




METHOD OF STEEPEST DESCENT

The search direction
dp = —gy

gives the so-called steepest-descent direction.
« dj is a descent direction

* dj solves the problem

minimize my (2, + d) = fi + {gs, d)
delR"

subject to |d|y = ||gxll2

Any method that uses the steepest-descent direction is a

method of steepest descent.



GLOBAL CONVERGENCE FOR STEEPEST DESCENT

Theorem 2.7. Suppose that f € C' and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic

Linesearch Method using the steepest-descent direction,

either
g; =0 for some [ >0
or
fm =~
or
lim g, = 0.

k—o0




METHOD OF STEEPEST DESCENT (cont.)

- archetypical globally convergent method

- many other methods resort to steepest descent in bad cases
- not scale invariant

- convergence is usually very (very!) slow (linear)

- numerically often not convergent at all



STEEPEST DESCENT EXAMPLE

1.5

05 \\\

Contours for the objective function f(z,y) = 10(y — 2°)* + (z — 1)*,
and the iterates generated by the Generic Linesearch steepest-descent
method



MORE GENERAL DESCENT METHODS

Let B;. be a symmetric, positive definite matrix, and define the

search direction dj, so that
Bydy = —gy
Then

« dj, is a descent direction as (g, d;,) = —{d;,, Byd;,) <0

» d;. solves the problem

minimize mg(azk +d) = fi. +<{gp, d) + Kd, B;.d)
delR"

- if the Hessian H, is positive definite, and B, = H,,

this is Newton’s method



MORE GENERAL GLOBAL CONVERGENCE

Theorem 2.8. Suppose that f € C' and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic

Linesearch Method using the more general descent direction, either

g; =0 for some [ >0

or
k— 00
or
lim g, =0
k— 00

provided that the eigenvalues of B, are uniformly bounded and

bounded away from zero.




MORE GENERAL DESCENT METHODS (cont.)

- may be viewed as “scaled” steepest descent
- convergence is often faster than steepest descent

- can be made scale invariant for suitable B,



CONVERGENCE OF NEWTON’S METHOD

Theorem 2.9. Suppose that f € C% and that H is Lipschitz con-
tinuous on IR". Then suppose that the iterates generated by the
Generic Linesearch Method with o454 = 1 and § < §, in which the
search direction is chosen to be the Newton direction d;, = —H, Lo

whenever possible, has a limit point x, for which H(z,) is positive
definite. Then

(i) ag. = 1 for all sufficiently large k,
(ii) the entire sequence {x;} converges to x,, and

(iii) the rate is Q-quadratic, i.e, there is a constant x = 0.

lim H97k+1 — T,
k—a0 ka — €,

2
S

2




NEWTON METHOD EXAMPLE

1.5

05

Contours for the objective function f(x,y) = 10(y — :1:2)2 + (x — 1)2,

and the iterates generated by the Generic Linesearch Newton method



MODIFIED NEWTON METHODS

If H; is indefinite, it is usual to solve instead
(Hy, + My)d), = Bidy, = —gy,
where

« M, chosen so that B, = H, + M, is “sufficiently” positive definite

« M, = 0 when Hj, is itself “sufficiently” positive definite

Possibilities:
- If H, has the spectral decomposition H,, = Vi A, V,, then
By, = Hy, + M, = V! max(e, |\, V;
o M), = max(0,e — A\, (Hp)) I
- Modified Cholesky: B, = H. + M, = L, L},



QUASI-NEWTON METHODS

Various attempts to approximate H:

1. Finite-difference approximations:

g(x, + he;) — g
(H)e; ~ STV,

for some “small” scalar h > 0
- needs n evaluations of g to get H, fewer if sparse
-« may need to symmetrize H, = {(H;, + H L )

- obviously parallel



QUASI-NEWTON METHODS (continued)

2. Secant approximations: try to ensure the secant condition
By 18y = Y, where sp =z — 2 and yp = gry1 — G
Why? Because H.s, = y, when f is quadratic

Examples:

- Symmetric Rank-1 method (but may be indefinite or even
fail):
(yx = Bisi) (Y. — Bisw)”
Y — Bysis si)
« BFGS method: (symmetric and positive definite if (y;., s.) > 0):

By = By +

ykyzf _BkSkSZBk
Wr> sk Sk Brsy)

Generally a low-rank (rank-one or -two) update of the existing B,

By = By +



LIMITED-MEMORY METHODS

Quasi-Newton methods pick

By, = B;, + low-rank matrix combination(y;, sy, Bj,) where

S = L1 — Ly and vy, = 9k+1 — Gk

By, = By + matrix combination(yy, ..., ¥, Si, - - - » Sk, By)
Limited-memory methods pick

By = B; 4 matrix combination(y; 1, ..., Yk, Sj415- - - 5 Sk Bji1)

for some 7 close to k

- re-initialize using simple B; (e.g B, = I = By is a low-rank

modification of B; using data {y;,1, ..., Yk Sj41,-- - 5k}

- efficient formulae to compute d;.,; = — B, jlgkﬂ

- L-BFGS using BFGS formula



USE CG TO MINIMIZE CONVEX QUADRATIC MODEL

For convex models (B, positive definite)

d;, = (approximate) arg min mg(wk +d) fi. + {qp, d) + Kd, B;.d)
delR"

Can apply conjugate-gradients method to minimize
a(d) = my (z; + d)
Stop CG when

|Va(dy)| < min(|gg|”,n)|grll (0<n,w<1)

— fast convergence



NONLINEAR CONJUGATE-GRADIENT METHODS

method for minimizing quadratic f(z)

Given xy and g(z;), set py = —g(xy) and i = 0.
Until g(x;,) “small” iterate

a; = arg min f(x; + ap;)
(0]
Tiy1 = Tj + Q;p;

B = "g(szrl)“%/Hg(xz)H%

Piv1 = —9(Tip1) + Bip;
and increase 7 by 1

may also be used for nonlinear f(x) (Fletcher & Reeves)
- replace calculation of a; by suitable linesearch

« other methods pick different (; to ensure descent
(Polyak—Ribiere, Hestenes—Stiefel, Hager-Zhang .. . )
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UNCONSTRAINED MINIMIZATION

minimize f(x)
relR”

where the objective function f: IR" — IR

- assume that f € C' (sometimes C*) and Lipschitz

- often in practice this assumption violated, but not necessary



LINESEARCH VS TRUST-REGION METHODS

e Linesearch methods
pick descent direction d;,
pick stepsize ay, to “reduce” f(x; + ady)
Tpy1 = Tp + pdy,
e Trust-region methods
pick step s, to reduce “model” of f(x; + s)

accept x,; = x1+s5;, if decrease in model inherited by f (x4 s},)

otherwise set x;, 1 = x;, ‘refine” model



TRUST-REGION MODEL PROBLEM

Model f(x;. + s) by:

» linear model
mi(s) = fr + <5,

- quadratic model — symmetric B,
m(s) = fy + {gp. 8y + (5, Bys)

Major difficulties:
- models may not resemble f(x; + s) if s is large
- models may be unbounded from below

linear model - always unless g, = 0

quadratic model - always if B} is indefinite,

possibly if By is only positive semi-definite



THE TRUST REGION

Prevent model my(s) from unboundedness by imposing a

trust-region constraint

Isl < A,
for some “suitable” scalar radius A, > 0
— trust-region subproblem

approx minimize my(s) subject to ||s|| < A,
selR"

» in theory does not depend on norm | - |

- in practice it might!



OUR MODEL

For simplicity, concentrate on the second-order (Newton-like) model
my(s) = mff(s) = fi + {8, 9r) + K5, Bys)
and the {y-trust region norm | - | = | - |
Note:
B, = H,, is allowed

analysis for other trust-region norms simply adds extra constants

in following results
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TRUST-REGION EXAMPLES (cont)

PRRTLITIIL]

1.1

Contours of quadratic model my(s) at (1, —0.5) with radius A



TRUST-REGION EXAMPLES (cont)

1.5

1.1

Contours of linear model my(s) at (1, —0.5) with radius A



TRUST-REGION EXAMPLES (cont)

PCTLILLLE

1.5

0.5

-0.5

1.1

Contours of quadratic model my(s) at (0,0) with radius A



TRUST-REGION EXAMPLES (cont)

nsRiEEEEa,

E)
5

0.5

Contours of quadratic model my,(s) at (—0.25, 0.5) with radius A

1.1



BASIC TRUST-REGION METHOD

Given £ =0, Ay > 0 and x,, until “convergence” do:
Build the second-order model my(s) of f(x; + s).

“Solve” the trust-region subproblem to find s,

for which my(s;) “<” f, and |[s;|| < Ay, and define
P fr — (@ + 5)
fr. — mu(si)
If p, = 7, [very successful] 0<n, <1
set )1 = x;, + 5, and Ay = VA, v, =1

Otherwise if p;, = n, then [successful] [0 <n, <n, <1

set 1 = x, + 5, and Ay = Ay

Otherwise [unsuccessful]

set T, = o, and Ay = VA, 0<vy <1

Increase k by 1




“SOLVE” THE TRUST REGION SUBPROBLEM?

At the very least

alm to achieve as much reduction in the model as would an iteration

of steepest descent

Cauchy point: s} = —aj g, where

as= arg min my(—ag;) subject to a|gi| < A,
a>0

= arg min  my(—ag;)
0<a<Ay/|gl

minimize 1-D quadratic on line segment = very easy!

require that

C

my(sp) < mg(sy) and |sg| < Ay

in practice, hope to do far better than this



ACHIEVABLE MODEL DECREASE

Theorem 2.10. If my(s) is the second-order model and s, is its

Cauchy point within the trust-region

fie — my(sy) = $l|gx| min

s < Ay,

| g ]
Al
L+ B!

Corollary 2.11. If my(s) is the second-order model, and s;, is an

improvement on the Cauchy point within the trust-region ||s| < Ay,

: g
Fo—mils) = Yol mm[ 9 ,Ak] |

L+ [ By




DIFFERENCE BETWEEN MODEL AND FUNCTION

Lemma 2.12. Suppose that f € C?, and that the true and model
Hessians satisfy the bounds ||H (x)| < &y, for all x and | By|| <

for all £ and some k;, > 1 and k; = 0. Then

(g + 51) — my(sg)| < kgl

where k; = (k) + k), for all k.




ULTIMATE PROGRESS AT NON-OPTIMAL POINTS

Lemma 2.13. Suppose that f € C? that the true and model
Hessians satisfy the bounds |H|| < j, and | B;| < &, for all k and
some Kk, = 1 and K, = 0. Suppose furthermore that g, # 0 and
that

Then iteration k is very successful and

A1 = Ay




RADIUS WON’T SHRINK TO ZERO AT NON-OPTIMAL
POINTS

Lemma 2.14. Suppose that f € C? that the true and model
Hessians satisfy the bounds |H.|| < kj, and |B.|| < &y, for all &
and some k;, = 1 and k; > 0. Suppose furthermore that there is a

constant € > 0 such that

lgi|l = € for all k.
Then

1 —
A, = Kk, where Kk, = ey ( il )
for all k.




POSSIBLE FINITE TERMINATION

Lemma 2.15. Suppose that f € C?, and that both the true and
model Hessians remain bounded for all £. Suppose furthermore that
there are only finitely many successful iterations. Then x;, = z, for

all sufficiently large k and g(z,) = 0.




GLOBAL CONVERGENCE OF ONE SEQUENCE

Theorem 2.16. Suppose that f € C?, and that both the true and

model Hessians remain bounded for all k. Then either
g; =0 for some [ >0

or

k— 00

or

liminf | g.| = 0.
k— o0




GLOBAL CONVERGENCE

Theorem 2.17. Suppose that f € C?, and that both the true and

model Hessians remain bounded for all k. Then either

g; =0 for some [ >0

or
k— 00
or
lim g, = 0.

k— 00




II: SOLVING THE TRUST-REGION SUBPROBLEM

(approximately) minimize q(s) = {g,s) + (s, Bs) subject to ||s| < A
selR"

ATM: find s, so that
<A

q(s.) < q(s") and

S

Might solve
- exactly = Newton-like method

- approximately = steepest descent/conjugate gradients



THE (,-NORM TRUST-REGION SUBPROBLEM

minimize q(s) = (s, gy + (s, Bs) subject to ||s|; < A
selR"

Solution characterisation result:

Theorem 2.18. Any minimizer s, of q(s) subject to

Is|2 < A satisfies the equation
(B+ \1)s, = —g,
where B + A,[ is positive semi-definite,

A, =0 and A (

S

If B + A1 is positive definite, s, is unique.




ALGORITHMS FOR THE /,-NORM SUBPROBLEM

T'wo cases:

« B positive-semi definite and Bs = —g satisfies |s|y < A

+ B indefinite or Bs = —g satisfies |s|y > A

—
(B4 A\I)s, = —gand (s,,s,) = A?
nonlinear (quadratic) system in s and A

concentrate on this



EQUALITY CONSTRAINED /,-NORM SUBPROBLEM

Suppose B has spectral decomposition
B=V"AV
- V' orthogonal matrix of eigenvectors

- A diagonal matrix of eigenvalues: \{ < Ay < ... < A\,

Require B+ M = V' (A + AI)V positive semi-definite =—> A > — )\,
Define
s(\) = —=(B+ X))y

Require the secular function
YA = [s(V)]z = A7
Note (vi =<ei,Vg))

n 2

T —1 2 _ Vi
V) = IV AVl = s




CONVEX EXAMPLE

o O o

S MmO

solution curve as A varies
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NONCONVEX EXAMPLE
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THE “HARD” CASE

P(A) 4

|
—_

o O

o W O

<—— minus leftmost eigenvalue

|
2

|
4

=

A

g:

o O O



SUMMARY
For indefinite B:

Hard case occurs when g orthogonal to eigenvector v,

for most negative eigenvalue A\; and A “too large”
« OK if radius A is small enough

- No “obvious” solution to equations ... but

solution is actually of the form
Slim T OV
where

Sim = 1im s(\)
A\

Hslim T O-UlHQ = A

- very rare in practice (“probability 0”7 event)



HOW TO SOLVE [s(\)[, = A

DON'T!!
Solve instead the secular equation
1 1
d(A) = ——=0
sVl A

» no poles

- smallest at eigenvalues (except in hard case!)

- analytic function = ideal for Newton

« global convergent (ultimately quadratic rate except in hard case)

» need to safeguard to protect Newton from the hard & interior

solution cases



THE SECULAR EQUATION

d(N) 1

12 1 o2 1
min —;s7y + 385 + 381 + So

subject tol[s|le < 4




NEWTON’S METHOD & THE SECULAR EQUATION

Let A > —A; and A > 0 be given
Until “convergence” do:
Factorize B + A = LL"
Solve LL's = —¢
Solve Lw = s

Replace A by

5]l —A) ()
At (
A w3




SOLVING THE LARGE-SCALE PROBLEM

- when n is large, factorization may be impossible
- may instead try to use an iterative method to approximate

steepest descent leads to the Cauchy point
obvious generalization: conjugate gradients ... but

what about the trust region?

what about negative curvature (s, Bsy < 07



CONJUGATE GRADIENTS TO “MINIMIZE” q(s)

Set 5o =0,90=9,pp=—gand i =0
Until g; “small” or breakdown, iterate
Q; = HQZH%/Q% Bp;)
Sit+1 = S T QyP;
giv1 = 9i + a;Bp;
B = H%HH%/HQZH%

Pir1 = —Yis1 + Bipi
and increase ¢ by 1

Important features
« gi=DBs;+glorall j=0,...,1
« {dj, g;y1) =0forall j =0,...,1

* {gj»Giy1) =0forall j =0,...,¢



CRUCIAL PROPERTY OF CONJUGATE GRADIENTS

Theorem 2.19. Suppose that the conjugate gradient method is

applied to minimize ¢(s) starting from s, = 0, and that
{p;, Bp;y >0 for 0 <i < k.

Then the iterates s; satisty the inequalities

Hstz < H5j+1H2

for0 <y <k—-1




TRUNCATED CONJUGATE GRADIENTS

Apply the conjugate gradient method, but terminate at iteration ¢ if
1. {d;, Bd;) < 0 = problem unbounded along d;

2. |s; + a;d;||s > A == solution on trust-region boundary

In both cases, stop with s, = s, + a’d;, where a” chosen as positive
root of
|si + a’difls = A

Crucially
q(s.) < q(s°) and

Sill2 < A

— TR algorithm converges to a first-order critical point



HOW GOOD IS TRUNCATED C.G.7

In the convex case . ..very good

Theorem 2.20. Suppose that the truncated conjugate gradient
method is applied to minimize ¢(s) and that B is positive definite.
Then the truncated and actual solutions to the problem, s, and s,

satisfy the bound

In the non-convex case ... maybe poor
« e.g..if g =0 and B is indefinite = ¢(s,) =0

- instead continue using equivalent Lanczos method to solve

trust-region subproblem in subspace (GLTR method, see notes)



Part 2c: Miscellaneous methods

for unconstrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

minimize 1f|c(x) H%
zelR”
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AN ALTERNATIVE — CUBIC REGULARIZATION

Trust-region subproblem:

(approx) minimize f;, + (s, g + (s, Bys) subject to [|s| < A,
selR"

for adjustable radius A, > 0
A modern alternative . ..the cubic-regularization subproblem:

(approx) minimize fy + (s, gy + (s, Bys) + 1oy |s]’
selR"

for adjustable weight o, > 0
- can consider weight as “one over radius”
« solve regularization subproblem using related secular equation
- perform essentially the same in practice

» theoretical better worst-case behaviour



NONLINEAR LEAST-SQUARES

Given vector of residuals ¢ : IR" — IR find

(approx) minimize |c(x)]|
relR"

Equivalent to the nonlinear least-squares problem

(approx) minimize f(z) = c(z)]3
zelR"

- the major use of unconstrained optimization

- model fitting to experimental data, e.g. ¢;(z) = r;(x) — d;,

where r; = r(z, p;) and given parameters p;

+ f(x) is bounded from below (by zero)



NOTATION

Use the following in what follows:

a;(x) = V,c(x) gradient of i-th residual
Alz) = [V,c' (2)]" = - Jacobian matrix of ¢

() = Vixci(a:) Hessian of i-th residual



DERIVATIVES OF THE LEAST-SQUARES FUNCTION

(approx) minimize f(z) = i c(x)5
zelR"

+ g(x) = Al (2)c(x)

- H(z) = A" (z)A(x) + Z ¢i(@)Hy(x)
Notice that :

o if ¢(z) is zero = H(z) = A" (z)A(x)
o if ¢(z) is small = H(z) ~ A" (z)A(z)

- suggests using second-derivative models with B;, = A A,



METHODS FOR NONLINEAR LEAST-SQUARES

(approx) minimize f(z) = i c(x)5
zelR"

So long as ¢ is twice-continuously differentiable, can use linesearch /trust-

region /regularization method to minimize f(x)
Alternative: use

ri(s) = ¢, + Ags
of the residual ¢(z), + s) = Gauss-Newton model

mi>(s) = 1ri(s))3 = ek + Aps|l3
= Y \cil + (s, Afciy + K5, A Aps)

of f(z; + s)



METHODS FOR NONLINEAR LEAST-SQUARES (cont)

Gauss-Newton model:
mi” (s) = Hri(s) 3 = Hlex + Aps|
= Hegls + (s, Ay + 3(s, Ap Ags)
« linesearch in direction d:
AL A d, = —Alc,

may fail if A, is (or becomes) rank deficient

- trust-region imposes ||s| < Aj implies implicitly

- + quadratic regularization 1o |s|5 implies explicitly
(AL A, + 0.0)s, = —Ajcp

Last two are ~ Levenberg-Morrison-Marquardt method



Part 3: Constrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

=
minimize f(x) subject to c(x) 0
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CONSTRAINED MINIMIZATION

\%

minimize f(x) subject to c(x) { B }O

n
zeIR

where the objective function f:IR" — IR

and the constraints ¢ : IR" — IR

- assume that f, ¢ e C" (sometimes C%) and Lipschitz

- often in practice this assumption violated, but not necessary



CONTENT

We shall discuss:
optimality conditions
(gradient projection methods for bound constraints)
penalty and augmented-Lagrangian methods
barrier-function and interior-point methods

(Sequential Quadratic Programming methods)



NOTATION

Use the following from now on:

a;(x) = V,c(x) gradient of ith constraint
ar ()
A(z) = [V, (2)]" = - Jacobian matrix of ¢
T
()
Hi(x) == Vi.ci(x) Hessian of ith constraint
lz,y) = f(x)—{y,c(x)) Lagrangian function, where

y are Lagrange multipliers

H(z,y) = Vi l(z,y) Hessian of the Lagrangian



EQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 3.1. Suppose that f, ¢ € C', and that z, is a local
minimizer of f(x) subject to ¢(x) = 0. Then, so long as a first-
order constraint qualification holds, there exist a vector of Lagrange

multipliers v, such that

c(x,) =0 (primal feasibility) and
g(z,) — Al (z,)y, = 0 (dual feasibility).




EQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

Theorem 3.2. Suppose that f, ¢ € C?, and that z, is a local
minimizer of f(x) subject to ¢(z) = 0. Then, provided that first-
and second-order constraint qualifications hold, there exist a vector

of Lagrange multipliers y, such that
(s, H(x,,1.)s) =0 for all se N

where

N ={selR"| A(z,)s = 0}.




INEQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 3.3. Suppose that f, ¢ € C' and that z, is a local
minimizer of f(z) subject to ¢(x) = 0. Then, provided that a first-
order constraint qualification holds, there exist a vector of Lagrange

multipliers v, such that

c(x,) = 0 (primal feasibility),

g(z.) — Al (z.)y. = 0

(dual feasibility) and
and y, =0

¢;(x)|y.]; = 0 (complementary slackness).

Often known as the Karush-Kuhn-Tucker (KKT) conditions

« second-order conditions are more complicated!



SIMPLE-BOUND MINIMIZATION

First-order necessary optimality:

Theorem 3.4. Suppose that f € C', and that x, is a local

minimizer of f(x) subject to ¥ < x < x". Then
<z, <z’ and Plz, —ag(z,)| =z,

for all & = 0, where the projection of x into the feasible region is

L

xy if x; < x}
P

1 1
2] = mid(xy, x;, 7)) = x; if x; > xf

] L U
x; if 7 < x; < ]

True more generally: if F is a closed, non-empty convex set, x,
is a local minimizer of f(z) : x € F, then Prlx, — ag(x,)] = z, and

x, € F, where Pr(z) = arg min ||x — yl| is the projection of x into F
yeF



GRADIENT-PROJECTION METHODS

minimize f(x) subject to x € (closed, convex) F,
relR”

Generalise steepest-descent to cope with convex constraints, starting

from xy e F

Linesearch variant:
dy, = Prlay — g(ay)] —
+ Armjio linesearch for f(x; + ad,) for a € (0, 1]
Trust-region variant: for model my(s)
s; = sp(ay), where arc si(a) = Prlx, — ag(x)] — 23,

and

ap = arg min my(s;(a)) subject to ||si(a)| < A,
a>(0



BOUND-CONSTRAINED TRUST-REGION EXAMPLE

0.5

0.5

15 - -
0 0.5 1 15 2

Arc s;.(a) (green) from (1, —0.5) with radius A = 1.1 and = > (0.7, —1.2)



Part 3a: Penalty and augmented Lagrangian

methods for equality constrained optimization
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minimize f(x) subject to c(x) =0
relR"

Course on continuous optimization, STFC-RAL, February 2021




CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:
- minimize the objective function f(x)

- satisfy the constraints

Overcome this by minimizing a composite merit function ®(z, p)

for which
e p are parameters

» (some) minimizers of ®(x, p) wrt x approach those of f(x) subject

to the constraints as p approaches some set P

- only uses unconstrained minimization methods



AN EXAMPLE FOR EQUALITY CONSTRAINTS

minimize f(z) subject to c(x) =0
relR"

Merit function (quadratic penalty function):

1
Oz, p) = flz) + ZHC(JJ)!\%
» required solution as p approaches {0} from above

- may have other useless stationary points



CONTOURS OF THE PENALTY FUNCTION

ool i“ff‘;;;\ \ T S—
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uadratic penalty function for min a7 + 25 subject to a; + a5 = 1
y 1 2 J 1 2



CONTOURS OF THE PENALTY FUNCTION (cont.)

1

0.9F
0.8
0.7
06p

05F
0.4}
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0 |

! il I ! L ! ! ! !
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

©=0.1 1= 0.01

uadratic penalty function for min a + x5 subject to a; + a5 = 1
y 1 2 J 1 2



BASIC QUADRATIC PENALTY FUNCTION
ALGORITHM

Given pg > 0, set k =0
Until “convergence” iterate:

Starting from «7., use an unconstrained
minimization algorithm to find an
“approximate” minimizer x;, of ®(x, 1)

Compute py,,q > 0 smaller than gy, such
that lim,._, , p;..1 = 0 and increase k by 1

- often choose p;1 = 0.1y, or even py.q = I

« might choose z},_, =



MAIN CONVERGENCE RESULT

Theorem 3.5. Suppose that f, ¢ € C?, that

IV ® (@, )2 < s
where €, and p, converge to zero as k — o0, that

clx
y]?::_ ( k)
M

and that x; converges to x, for which A(x,) is full rank. Then

x, satisfies the first-order necessary optimality conditions for the
problem

minimize f(x) subject to c(x) =0
relR"

and {y,'} converge to the associated Lagrange multipliers y,.




ALGORITHMS TO MINIMIZE ®(x, )

Can use
» linesearch methods

might use specialized linesearch to cope with large quadratic
2
term |[e(x)5/2p

» trust-region methods

(ideally) need to “shape” trust region to cope with contours of
the |lc(z)|5/24 term



DERIVATIVES OF THE QUADRATIC PENALTY
FUNCTION

C D) = fla) + i\c@:)u%
C VB, p) = gla) + iAT<x>c<x> — g(z,y°(@))

C V() = H(z,y(2)) + %AT(@A@)
where

« g(x,y) = g(x) — AT(x)y: gradient of the Lagrangian

- Lagrange multiplier estimates:

« H(x,y) = H(x) — ) y;H;(x): Lagrangian Hessian

gt



GENERIC QUADRATIC PENALTY NEWTON SYSTEM

Newton correction s from x for quadratic penalty function is

(H<x, yo(2) + iAT(@A(x)) s = —g(a,y°(a))

LIMITING DERIVATIVES OF &
For small p: roughly

V,®(z, p) = g(z) — A" (z)y(z)

. J
~N"

moderate

1 1
Vee®(@, ) = H(z,y%(x)) + ;AT(x)A(x) ~

moderate large rank deflicient

A (2)A(x)

/




POTENTIAL DIFFICULTY

Il1l-conditioning of the Hessian of the penalty function:
roughly speaking (non-degenerate case)

« m eigenvalues ~ \; [AT(JZ)A<ZL’>] n

- n —m eigenvalues ~ )\, [ST(ZIZ‘)H(ZE*, y*)S(a:)]

where S(x) orthogonal basis for null-space of A(x)

— condition number of V7, ®(z;, ) = O(1/.)

— may not be able to find minimizer easily



THE ILL-CONDITIONING IS BENIGN

Newton system:

(H @) + AT @)A@) ) s = = (g(0) + A (@)eo))

Define auxiliary variables

1
w = . (A(x)s + c(x))

(H@w%mfﬂﬂ><8>:<M@>
A(x) —ul w c(x)

- essentially independent of i for small 4 = no inherent ill-conditioning
- thus can solve Newton equations accurately

- more sophisticated analysis == original system OK



PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize f(x) subject to c(x) =0
relR"”

are:
gz) — Al (z)y =0  dual feasibility

c(x) =0 primal feasibility

Consider the “perturbed” problem
glz) — Al (z)y =0 dual feasibility
c(x) + py =0 perturbed primal feasibility

where > 0



PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of
g(z) — AT (2)y = 0 and e(z) + py = 0
as 0 < u — 0

- nonlinear system == use Newton’s method

Newton correction (s, v) to (x,y) satisfies
H(z,y) —A"(x) \ s\ _ [ g(x) = A" (2)y
Afx)  pl v c(x) + py
Eliminate v =

(H@;, y) + lAT(x)A@)) A (g(x) i lAT(x)c(x)>

u 7

c.f. Newton method for quadratic penalty function minimization!



PRIMAL VS. PRIMAL-DUAL

Primal:

(Hcr, yo(2) + lAT<:1:>A<as>) ¢ = —g(z,y°())

{4

Primal-dual:

(H@:,y) n 3AT<x>A<x>) = —g(e,y°(a))

7

where

What is the difference?

» freedom to choose y in H(x,y) for primal-dual ... vital



ANOTHER EXAMPLE FOR EQUALITY CONSTRAINTS

minimize f(x) subject to c(x) =0
relR"

Merit function (augmented Lagrangian function):

Do u,p) = £(@) = @) + (o)l

where y and p are auxiliary parameters

‘Two interpretations —
- shifted quadratic penalty function

- convexification of the Lagrangian function

Aim: adjust 4 and y to encourage convergence



DERIVATIVES OF THE AUGMENTED LAGRANGIAN
FUNCTION

C By ) = £(2) — {yy cf@)) + (@)

24
C V(@ 1) = gla) — AT(2)y + %AT<x>c<x> — g(z, y*(2))
C VR0, p) = Hlz,y*(2)) + %AT(@A(@
where

« glx,y) = g(x) — AT(x)y: oradient of the Lagrangian

- First-order Lagrange multiplier estimates:

M) — g E%)
y'(z) =y p

« H(x,y) = H(z) — Z y;(x)H;(x): Lagrangian Hessian
i=1



AUGMENTED LAGRANGIAN CONVERGENCE

Theorem 3.6. Suppose that f, ¢ € C?, that

IV @@, Yps i) |2 < €,

for given {y;}, where €, converges to zero as k — oo, that
Yo =Y — c(r)/ 1

and that x;, converges to x, for which A(x,) is full rank. Then {y;*}
converge to some y, for which g(z,) = A* (z.)y..
[f additionally either
(i) gy, converges to zero for bounded ;, or
(i1) y;, converges to y, for bounded gy,
then x, and v, satisfy the first-order necessary optimality conditions

for the problem
minimize f(x) subject to c(x) = 0
relR"”




CONTOURS OF THE AUGMENTED LAGRANGIAN
FUNCTION
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CONTOURS OF THE AUGMENTED LAGRANGIAN
FUNCTION (cont.)
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CONVERGENCE OF AUGMENTED LAGRANGIAN
METHODS

- convergence guaranteed if y, fixed and gy — 0

— 1, — vy, and c(x;) — 0
» check if |c(x)|| < np, where {n,} — 0
if 80, set Yy = yp — c(xp)/pp and pppq = py,

if not, set y,.1 = vy and ., < 7y, for some 7 € (0, 1)

- reasonable: n, = M21+ 7 where J iterations since py; last changed

- under such rules, can ensure ;. eventually unchanged under

modest assumptions and (fast) linear convergence

- need also to ensure p;, is sufficiently large that V?Em@(xk, Ypes fbg,) 18

positive (semi-)definite



BASIC AUGMENTED LAGRANGIAN ALGORITHM

Given pg > 0 and g, set £ =0
Until “convergence” iterate:
Starting from ., use an unconstrained minimization
algorithm to find an “approximate” minimizer x; of
O (z, yp, py.) for which [V, Dz, yp, )| < €
It le(z) | < g, set ypi1 = yp — c(zg) /1 and pyq = py
Otherwise set 4.1 = u; and py,q < Ty

Set suitable €., and 7,.,; and increase £ by 1

- often choose 7 = min(0.1, /1)
« might choose zj,_, = x;

| .. ) )
- reasonable: €, = ,uff where 7 iterations since pu, last changed



Part 3b: Interior-point methods

for inequality constrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

minimize f(x) subject to c(x) = 0
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CONSTRAINED MINIMIZATION

minimize f(x) subject to c(x) =0
relR”

where the objective function f : IR" — IR

and the constraints ¢ : IR" — IR

- assume that f, ¢ € C" (sometimes C*) and Lipschitz

- often in practice this assumption violated, but not necessary



CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:
- minimize the objective function f(x)

- satisfy the constraints

Recall — overcome this by minimizing a composite merit function

$(x, p) for which

e p are parameters

» (some) minimizers of ®(x, p) wrt x approach those of f(x) subject

to the constraints as p approaches some set P

- only uses unconstrained minimization methods



A MERIT F* FOR INEQUALITY CONSTRAINTS

minimize f(x) subject to c(x) =0
relR”

Merit function (logarithmic barrier function):
Oz, 1) = f(x) — p ) logci(x)
i=1

» required solution as u approaches {0} from above
- may have other useless stationary points
- requires a strictly interior point to start

« consequent points are interior



CONTOURS OF THE BARRIER FUNCTION
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CONTOURS OF THE BARRIER FUNCTION (cont.)
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BASIC BARRIER FUNCTION ALGORITHM

Given pg > 0, set k=0
Until “convergence” iterate:
Find a3, for which ¢(x3.) > 0
Starting from x7., use an unconstrained
minimization algorithm to find an
“approximate” minimizer x;, of ®(x, 1)
Compute py,,q > 0 smaller than gy, such
that lim,._, , p;..1 = 0 and increase k by 1

- often choose p;1 = 0.1y, or even py.q = I

« might choose z},_, =



MAIN CONVERGENCE RESULT

The active set A(x) = {i : ¢;(x) = 0}

Theorem 3.7. Suppose that f, ¢ € C*, that
Vo @@, ) |2 < €
where €, converges to zero as k — o0, that

(yk>2 = :LL/{/CZ<:C/€> for ¢ = 17 ceey M,

and that x;, converges to z, for which {a;(z.)}e(,) are linearly
independent. Then =z, satisfies the first-order necessary optimality
conditions for the problem

minimize f(x) subject to c(x) =0

zelR”
and {y;} converge to the associated Lagrange multipliers y,.




ACTIVE AND INACTIVE CONSTRAINTS

Since (complementary slackness)
ci(x)(y.); =0 forall i=1,...m
Often have {z;} — x, and {y,} — y, with
* ¢i(zy) — 0and (yp); — (y.); > 0 for i € A(z,)

active constraints

» ¢;(xy) = ¢i(x,) > 0and (y;,); — Ofori e Z(zx,) = {1,

inactive constraints

- sometimes degeneracy: ¢;(x,) = 0 and (y,); = 0

oomP\A(x,)



ALGORITHMS TO MINIMIZE ®(x, )

Can use
« linesearch methods
should use specialized linesearch to cope with singularity of log
» trust-region methods

need to reject points for which ¢(x), + s;,) 3 0

(ideally) need to “shape” trust region to cope with contours of

the singularity



DERIVATIVES OF THE BARRIER FUNCTION

where

- Lagrange multiplier estimates: y(z) = uC '(z)e

where e is the vector of ones
C(z) = diag(cy(z), . .., cp(z))

Y (2) = ding( (@), .., g(2)) = 4O~ (3)
g(z,y(z)) = g(z) — A" (z)y(z): gradient of the Lagrangian

H(x,y(x Zyz ): Lagrangian Hessian



LIMITING DERIVATIVES OF &

Let Z = inactive set at x, = {1,...,m}\A
For small p: roughly

V. 0(x, 1) = g(x) — pA (2)C (x)e

= g(z) — Au(2)Ya(x)e — pAz(2)Cr (x)e

7 - 7
' '

moderate small
g(z) — Au(@)y ()

2

V2,0(x, 1) = H(x,y(x)) + pAL(2) 072 (x) Az(z) + iAﬂu)Yi(x)AA(x)

7 - 7
~N" ~"

moderate small large




GENERIC BARRIER NEWTON SYSTEM

Newton correction s from x for barrier function is

(H(w,y(@) + AT(@)C @)Y (2)Ax) ) s = —g(x, y(x))

LIMITING NEWTON METHOD

For small p: roughly

%Aﬁ(af)Yj(ZC)AA(aﬁ)s ~ — (g(x) — Aﬁ(:l})yA(gj))



POTENTIAL DIFFICULTIES 1

Ill-conditioning of the Hessian of the barrier function:

roughly speaking (non-degenerate case)

- m, eigenvalues ~ \; [AﬁYjA A] /14y,

- n —m, eigenvalues ~ )\, [NZ;H(CIZ*, y*)NA]

where
m, = number of active constraints
A = active set at z,
Y = diagonal matrix of Lagrange multipliers

N 4 = orthogonal basis for null-space of A 4

— condition number of V7,®(z;, ) = O(1/u.)

== may not be able to find minimizer easily



POTENTIAL DIFFICULTIES I1

Value zj,.; = x; is a poor starting point: Suppose

0~ V, Oz, i) = g(zy) — A’ (2,)C ™ (zp)e
~ g(zy) — mAu(z)Cq (z))e
Roughly speaking (non-degenerate case) Newton correction satisfies
a1 Au(ep) Ca* () Ag(x)s ~ (ppr — ) A(,) O (e

— (full rank)

Ay(zp)s ~ (1 _ )CA(xk)

i1

— (Taylor expansion)

ea(@p+ 5) ~ calmy) + Aulzi)s ~ (2 _ M”) e4(x3) < 0
+

if g < s = Newton step infeasible = slow convergence



PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize f(z) subject to c(x) =0
relR"”

are:
g(z) — A'(2)y = 0 dual feasibility

C(x)y =0 complementary slackness
c(r) =20 and y =0

Consider the “perturbed” problem

g(z) — AT (z)y = 0 dual feasibility
C(x)y = pe perturbed comp. slkns.
c(xr) >0 and y >0

where > 0



CENTRAL PATH TRAJECTORY

min(l’l — 1)2 + (.CUQ — 05)2
subject to xy + x5 < 1
333'1 + Lo < 1.5

(xla le2) = 0

0.1 0 0.1 0.2 03 0.4 05 06

Trajectory x(u) of perturbed optimality conditions
as f ranges from infinity down to zero



TRAJECTORIES FOR THE NON-CONVEX CASE

0.6

min —2(z; — 0.25)% 4 2(zy — 0.5)
subject to xy + x5 < 1
3331 + ) < 1.5

(xb 1'2) = 0

Trajectories x(u) of perturbed optimality conditions
as f ranges from infinity down to zero



PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of
g(z) — Al (z)y = 0 and C(z)y — pe =0
as 0 < g — 0, while maintaining ¢(z) > 0 and y > 0

- this is a nonlinear system = use Newton’s method

Newton correction (s, w) to (z,y) satisfies
(H( ) AT(@) ( ) o <g<x> - AT<x>y>
YA(x) C(x) w C(x)y — pe

Eliminate w =

(H@;, y) + AT(x)C_l(a:)YA(:U)> s=— (g(:c) _ ,uAT(:B)C_l(a:)e)

c.f. Newton method for barrier minimization!



PRIMAL VS. PRIMAL-DUAL

Primal:
(H(w,y(@) + AT(@)C (@)Y (2)A(2)) 8 = —g(z, y(x))
Primal-dual:
(H(z,y) + AT @)C (@)Y A()) 8 = g, y(@))

where

What is the difference?
+ freedom to choose y in H(z,y) + A" ()C ™' (2)Y A(x) for

primal-dual ... vital

- Hessian approximation for small

H(w,y) + A ()0 (2)Y A(z) ~ Ay(2)Cy' (2)YaAu(2)



POTENTIAL DIFFICULTY II ... REVISITED

Value x}, ; = x; can be a good starting point:
- primal method has to choose y = y(z}.) = e 1C ' ()€
factor g1/ too small for a good Lagrange multiplier estimate
- primal-dual method can choose y = 1,C~ ' (z,)e — .
Advantage: roughly (non-degenerate case) correction s™ satisfies
i Au() O () A () s™ ~ (it — 1) A() C 3 (e

— (full rank)

Ay ~ (“%+1—-1)<amxk>
M

— (Taylor expansion)

calay, + 8™) ~ calay) + Aglay)s™ ~ H

c(xy) >0
Fo; '

—> Newton step allowed = fast convergence



PRIMAL-DUAL BARRIER METHODS

Choose a search direction s for ®(z, p;,) by

(approximately) solving the problem

minimize g(x, y(x))"s + s (H(:I;, y) + AT(x)C_l(a;)YA(:IJ)) s

possibly subject to a trust-region constraint

s y(x) = pC(v)e = g(a,y(x)) = V,0(z, p)

Y= ...
y(xr) = primal Newton method
occasionally (pg_1/pr)y(xr) = good starting point
Yy’ + w*” = primal-dual Newton method

max(y°” + w”, €(uy)e) for “small” e(u;) > 0
(e.g., e(p.) = pi°) = practical primal-dual method



POTENTIAL DIFFICULTY I... REVISITED

Ill-conditioning =we can’t solve equations accurately:

roughly (non-degenerate case, Z = inactive set at x,)

() () (a2) =

H Ay —Az\ [ s g — Auys— Azys
YyAg Co 0 wy | =— Cays — pie =
Y747z 0 Cr wz Cryr — pe

H+ A7C7'Y7A; —Aj s \ [ 9—Auya—nAzCrle
A4 N W 4 cq—puYy'e

- potentially bad terms C7 L and Yffl bounded

» 1n the limit becomes well-behaved

()



PRACTICAL PRIMAL-DUAL METHOD

Given pg > 0 and feasible (xf, y;), set & =0
Until “convergence” iterate:
Inner minimization: starting from (x3, v} ), use an

unconstrained minimization algorithm to find (z, y;) for which

|C () yr — ppell < gy, and |lg(z) — AT (2)ys| < pup "
Set ey = min(0.1 gy, )

Find (x4, ¥;.1) using a primal-dual Newton step from (xy, y;,)

If (25,1, Y341) is infeasible, reset (5.1, v}, 1) to (xp, yp)
Increase k by 1




FAST ASYMPTOTIC CONVERGENCE

Theorem 3.8. Suppose that f, ¢ € C? that a subsequence
{(xg, yr)}, k € KC, of the practical primal-dual method converges to
(x.,y,) satisfying second-order sufficiency conditions, that A 4(z,)
is full-rank, and that (y,) 4 > 0. Then the starting point satisfies the
inner-minimization termination test (i.e., (zj,v;) = (2}, y;)) and
the whole sequence {(x;,y;)} converges to (x,,v,) at a superlinear
rate (Q-factor 1.9998).




OTHER ISSUES

polynomial algorithms for many convex problems

linear programming
quadratic programming

semi-definite programming . . .

excellent practical performance

globally, need to keep away from constraint boundary until near

convergence, otherwise very slow

initial interior point:

minimize {e,c) subject to ¢(z) 4+ ¢ =0
(z,¢)
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EQUALITY CONSTRAINED MINIMIZATION

minimize f(x) subject to ¢(z) =0
relR"

where the objective function f: IR" — IR

and the constraints ¢ : IR" — IR™ (m < n)

- assume that f, ¢ € C* (sometimes C*) and Lipschitz
- often in practice this assumption violated, but not necessary

- easily generalized to inequality constraints ...but may be

better to use interior-point methods for these



OPTIMALITY AND NEWTON’S METHOD

1st order optimality:
g(z,y) = g(zr) — A (x)y = 0 and c(z) =0

this is a nonlinear system (linear in y)

r—

use Newton’s method to find a correction (s, w) to (x,y)

(H(x,w A%:)) ( s ) o <g<x,y>>
A(x) 0 w c(x)

—



ALTERNATIVE FORMULATIONS

unsymmetric:

(H(flf,y) AT(SE)) ( s ) _ <g($,y)
A(x) 0 w c(x)

or symmetric:



DETAILS

Often approximate with symmetric B ~ H(x,y) = e.g.

< ; AT(x))( S >_<g(aj)>
A(x) 0 —y" c(x)
solve system using

unsymmetric (LU) factorization of (

B —A"(x)
A(x) 0

B A"

symmetric (indefinite) factorization of ()
A(z) 0

symmetric factorizations of B and the
Schur Complement A(z)B A" (z)

iterative method (GMRES(k), MINRES, CG within N'(A),...)



AN ALTERNATIVE INTERPRETATION

QP : minimize {s,g(x)) + (s, Bs) subject to A(zx)s = —c(x)
selR"

« QP = quadratic program
» first-order model of constraints c¢(x + s)

- second-order model of objective f(x + s) ...but

B includes curvature of constraints

solution to QP satisfies

(0 "07) ()=~ ()
A(x) 0 —y" c(x)



SEQUENTIAL QUADRATIC PROGRAMMING - SQP

or successive quadratic programming

or recursive quadratic programming (RQP)

Given (xg,yp), set k =0
Until “convergence” iterate:

Compute a suitable symmetric By, using (zy, y;,)
Find
s, = arg min (g, s) + (s, Brs) subject to A,s = —¢;
selR”

along with associated Lagrange multiplier estimates ;.. 4

Set x1..1 = 7). + S5 and increase k by 1




ADVANTAGES

- simple
« fast

quadratically convergent with By, = H (xy,, y;)
superlinearly convergent with good B, ~ H(xy, y)

don’t actually need B;, — H(xy, y;)

PROBLEMS WITH PURE SQP

» how to choose B}”
- what if QP,. is unbounded from below? and when?

» how do we globalize this iteration?



