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WHAT IS NONLINEAR PROGRAMMING?

Nonlinear optimization ” nonlinear programming

minimize
x

fpxq subject to cEpxq “ 0 and cIpxq ě 0

where

objective function f : IRn
ÝÑ IR

constraints cE : IRn
ÝÑ IRme (me ď n) and

cI : IRn
ÝÑ IRmi

‚ there may also be integrality restrictions

‚ concentrate on minimization since

max
xPF

fpxq “ ´min
xPF
p´fpxqq



AN EXAMPLE

Optimization of
a high-pressure
gas network

Transco
National
Transmission
System

British Gas (Transco)
Oxford University
RAL



NODE EQUATIONS

j

?

j � j��������9���������j

z

q1

q2

q3

d1

q1 ` q2 ´ q3 ´ d1 “ 0

where qi flows

di demands

In general: Aq ´ d “ 0

¨ linear

¨ sparse

¨ structured



PIPE EQUATIONS

j��������9���������j q1

p1

p2

p2
2 ´ p

2
1 ` k1q

2.8359
1 “ 0

where pi pressures

qi flows

ki constants

In general: ATp2
`Kq2.8359

“ 0

¨ non-linear

¨ sparse

¨ structured



COMPRESSOR CONSTRAINTS

¨ � j�j p1p2 q1q2

q1 ´ q2 ` z1 ¨ c1pp1, q1, p2, q2q “ 0

where pi pressures

qi flows

zi 0–1 variables

“ 1 if machine is on

ci nonlinear functions

In general: AT
2 q ` z ¨ cpp, qq “ 0

¨ non-linear

¨ sparse

¨ structured

¨ 0–1 variables



OTHER CONSTRAINTS

Bounds on pressures and flows

pmin ď p ď pmax

qmin ď q ď qmax

‚ simple bounds on variables



OBJECTIVES

Many possible objectives

‚ maximize / minimize sum of pressures

‚ minimize compressor fuel costs

‚ minimize supply

` combinations of these



STATISTICS

British Gas National Transmission System

‚ 199 nodes

‚ 196 pipes

‚ 21 machines

Steady state problem

„400 variables

24-hour variable demand problem with 10 minute discretization

„58,000 variables

Challenge: Solve this in real time



TYPICAL PROBLEM

This problem is typical of real-world, large-scale applications

‚ simple bounds

‚ linear constraints

‚ nonlinear constraints

‚ structure

‚ global solution “required”

‚ integer variables

‚ discretization



(SOME) OTHER APPLICATION AREAS

‚ minimum energy problems

‚ gas production models

‚ hydro-electric power scheduling

‚ structural design problems

‚ portfolio selection

‚ parameter determination in financial markets

‚ production scheduling problems

‚ computer tomography (image reconstruction)

‚ efficient models of alternative energy sources

‚ traffic equilibrium models

‚ machine learning/neural nets



CLASSIFICATION OF OPTIMIZATION PROBLEMS

DISCRETE

(COMBINATORIAL)

x takes discrete
(integer) values

Enumeration -

often HARD
sometimes trivial

LINEAR
PROGR-
AMMING

. . .

CONTINUOUS

x takes any values

Calculus
Taylor’s theorem



OPTIMIZATION PROBLEMS

Unconstrained minimization:

minimize
xPIR

n
fpxq

where the objective function f : IRn
ÝÑ IR

Equality constrained minimization:

minimize
xPIR

n
fpxq subject to cpxq “ 0

where the constraints c : IRn
ÝÑ IRm (m ď n)

Inequality constrained minimization:

minimize
xPIR

n
fpxq subject to cpxq ě 0

where c : IRn
ÝÑ IRm (m may be larger than n)



OPTIMALITY CONDITIONS

Optimality is hidden; it needs further thought and work to verify

Optimality conditions are useful because:

‚ they provide a means of guaranteeing that a

candidate solution is indeed optimal

(sufficient conditions), and

‚ they indicate when a point is not optimal

(necessary conditions)

Furthermore they

‚ guide in the design of algorithms, since

lack of optimality ðñindication of improvement



THE GRADIENT

Let x P IRn

Suppose that fpxq is continuously differentiable (f P C1).

Then its gradient gpxq is the vector whose i-th component

gipxq “
Bfpxq

Bxi

for 1 ď i ď n

E.g, if

fpxq “ x2
1 ` x1x2

then

gpxq “

˜

2x1 ` x2

x1

¸



THE HESSIAN MATRIX

Suppose that fpxq is twice-continuously differentiable (f P C2).

Then its Hessian (Otto Hesse, 1811–1874) Hpxq is the matrix

whose i, j-th component

Hi,jpxq “
B

2fpxq

BxiBxj

for 1 ď i, j ď n

E.g, if

fpxq “ x2
1 ` x1x2

then

Hpxq “

˜

2 1

1 0

¸

Notice that the Hessian is always symmetric



THE JACOBIAN MATRIX

Suppose that cpxq is vector-valued and continuously differentiable

(c : IRn
Ñ IRm, c P C1). Then its Jacobian (Carl Jacobi, 1804-1851)

Jpxq is the matrix whose i, j-th component

Ji,jpxq “
Bcipxq

Bxj

for 1 ď i ď m and 1 ď j ď n

E.g, if

cpxq “

˜

x2
1

x1 ` x
3
2

¸

then

Jpxq “

˜

2x1 0

1 3x2
2

¸

Notice that the i-th row of the Jacobian is the transpose of the gradient

of cipxq. Also that if cpxq “ gpxq, then Jpxq “ Hpxq



INNER PRODUCTS AND NORMS

Suppose that x, y P IRn. Then the inner product xx, yy between x

and y is the component-wise sum

xx, yy “
n
ÿ

i“1

xiyi

This defines the (Euclidean) norm

}x}2 “
a

xx, xy ”

g

f

f

e

n
ÿ

i“1

x2
i

Notice that }x}2 is always non-negative and only zero when x “ 0

‚ If S is a symmetric matrix, }S} “ max
}x}“1

}Sx}

‚ There are other norms, e.g., }x}1 “
n
ÿ

i“1

|xi| and }x}8 “ max
1ďiďn

|xi|

‚ if we don’t say otherwise } ¨ } “ } ¨ }2



EIGENPAIRS & POSITIVE-DEFINITE MATRICES

Let S be a real, symmetric nˆ n matrix.

S is said to have an eigenpair pλ, vq if

Sv “ λv,

where the eigenvalue λ is real and its eigenvector v has }v} “ 1.

‚ S has n eigenvalues λi, and associated eigenvectors vi, 1 ď i ď n

‚ the eigenvectors are mutually orthogonal i.e., xvi, vjy “ 0 if i ‰ j.

‚ V “ pv1, . . . , vnq, S has a spectral decomposition

S “ V TΛV , where Λ “ diagpλiq

S is positive (semi) definite if (equivalently)

‚ λi ą 0 (ě 0) for 1 ď i ď n

‚ xu, Suy ą 0 (ě 0) for all nonzero vectors u



LIPSCHITZ CONTINUITY (don’t panic!!)

‚ X and Y sets

‚ F : X Ñ Y
‚ } ¨ }X and } ¨ }Y are norms

Then

‚ F is Lipschitz (Rudolf Lipschitz, 1832–1903) continuous at

x P X if D γpxq such that

}F pzq ´ F pxq}Y ď γpxq}z ´ x}X

for all z P X .

‚ F is Lipschitz continuous throughout/in X if D γ such that

}F pzq ´ F pxq}Y ď γ}z ´ x}X

for all x and z P X .

Essentially controls how far F pzq is from F pxq as z approaches x



TAYLOR-SERIES APPROXIMATIONS

A fundamental question is:

if we have a function f and know its value and derivatives at x, can we

say anything about f at a nearby point x` s?

This question was addressed by Brook Taylor (1685–1731), who showed

that in many cases a series approximation

fpx` sq « Tppsq :“ fpxq `
p
ÿ

i“1

f piqpxqrssi

i!
,

where f piqpxq is the i-th derivative of f at x, is increasingly accurate

as pÑ 8 (NB . . . there is a lot hidden here in the notation!)

Computationally useful for p “ 1 and 2:

mL
px` sq“ T1psq “ fpxq ` xgpxq, sy

mQ
px` sq“ T2psq “ fpxq ` xgpxq, sy ` 1

2xs,Hpxqsy



A USEFUL TAYLOR APPROXIMATION

Theorem 1.1. Let S be an open subset of IRn, and suppose

f : S Ñ IR is continuously differentiable throughout S . Suppose

further that gpxq is Lipschitz continuous at x, with Lipschitz con-

stant γLpxq in some appropriate vector norm. Then, if the segment

x` θs P S for all θ P r0, 1s,

|fpx` sq ´mL
px` sq| ď 1

2γ
L
pxq}s}2, where

mL
px` sq “ fpxq ` xgpxq, sy.

If f is twice continuously differentiable throughout S and Hpxq is

Lipschitz continuous at x, with Lipschitz constant γQpxq,

|fpx` sq ´mQ
px` sq| ď 1

6γ
Q
pxq}s}3, where

mQ
px` sq “ fpxq ` xgpxq, sy ` 1

2xs,Hpxqsy.



ANOTHER USEFUL TAYLOR APPROXIMATION

Theorem 1.2. Let S be an open subset of IRn, and suppose F :

S Ñ IRm is continuously differentiable throughout S . Suppose

further that ∇xF pxq is Lipschitz continuous at x, with Lipschitz

constant γLpxq in some appropriate vector norm and its induced

matrix norm. Then, if the segment x` θs P S for all θ P r0, 1s,

}F px` sq ´ML
px` sq} ď 1

2γ
L
pxq}s}2, where

ML
px` sq “ F pxq `∇xF pxqs.



COROLLARY — NEWTON’S METHOD

Given a Lipschitz C1 function F : IRn
Ñ IRn, Taylor ùñ

}F px` sq ´ML
px` sq} ď 1

2γ
L
pxq}s}2, where

ML
px` sq “ F pxq `∇xF pxqs

From given x with small F pxq, pick s so that

ML
px` sq “ F pxq `∇xF pxqs “ 0

ùñ

}F px` sq} ď 1
2γ

L
pxq}s}2 ď γLpxq}p∇xF pxqq

´1
}

2
}F pxq}2

ùñ usually quadratic rate of decrease

Choosing s : ∇xF pxqs “ ´F pxq is Newton’s method

for finding a root of the nonlinear system F pxq “ 0



BLOCK NEWTON

Given Lipschitz C1 function F : IRn`m
Ñ IRn`m such that

F px, yq “

˜

bpx, yq

cpx, yq

¸

with x P IRn, y P IRm, b : IRn`m
Ñ IRn and c : IRn`m

Ñ IRm

Newton equations are
˜

∇xbpx, yq ∇ybpx, yq

∇xcpx, yq ∇ycpx, yq

¸˜

sx
sy

¸

“ ´

˜

bpx, yq

cpx, yq

¸

to get an improvement x` sx and y ` sy
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UNCONSTRAINED MINIMIZATION

minimize
xPIR

n
fpxq

where the objective function f : IRn
ÝÑ IR

‚ assume that f P C1 (sometimes C2) and Lipschitz

‚ often in practice this assumption violated, but not necessary



CONTENT

We shall discuss:

‚ optimality conditions

‚ quadratic minimization

‚ linesearch methods

‚ trust-region methods

‚ (regularization methods)



OPTIMALITY CONDITIONS FOR UNCONSTRAINED

MINIMIZATION

First-order necessary optimality:

Theorem 2.1. Suppose that f P C1, and that x˚ is a local mini-

mizer of fpxq. Then

gpx˚q “ 0.

Second-order necessary optimality:

Theorem 2.2. Suppose that f P C2, and that x˚ is a local mini-

mizer of fpxq. Then gpx˚q “ 0 and Hpx˚q is positive semi-definite,

that is

xs,Hpx˚qsy ě 0 for all s P IRn.



OPTIMALITY CONDITIONS (cont.)

Second-order sufficient optimality:

Theorem 2.3. Suppose that f P C2, that x˚ satisfies the condi-

tion gpx˚q “ 0, and that additionally Hpx˚q is positive definite,

that is

xs,Hpx˚qsy ą 0 for all s ‰ 0 P IRn.

Then x˚ is an isolated local minimizer of f .



MINIMIZING A CONVEX QUADRATIC FUNCTION

Generic convex quadratic problem: (B sym. positive definite)

minimize
xPIR

n
qpxq “ xg, xy ` 1

2xx,Bxy

If x˚ is a minimizer, necessarily

∇qpx˚q “ g `Bx˚ “ 0 ùñ Bx˚ “ ´g

Since B is positive definite, x˚ is the unique (global) minimizer

How do we find x˚?

‚ by factorization

˛ dense/spares Cholesky factorization of B “ LLT , L triangular

˛ Forward and back solution Lz “ ´g then LTx˚ “ z

‚ approximately by iteration



ITERATIVE QUADRATIC MINIMIZATION

Many possible methods, the most effective is the method of

conjugate gradients:

Given:

‚ a sequence of linearly-independent vectors tpju, 0 ď j ď n´ 1

‚ a sequence of expanding matrices Pj “ pp0, . . . , pj´1q

‚ a sequence of expanding subspaces

Pj “ tx : x “ Pjv for some v P IRj
u

Generate a sequence of successively improving estimates

xj “ arg min
xPPj

qpxq

ùñ xn “ x˚



CONJUGATE GRADIENTS — THE CLEVER PARTS

Let gj “ ∇qpxjq “ Bxj ` g

‚ (easy) if we can select pj so that tpiu are B-conjugate, i.e.,

xpj, Bpiy “ 0 for i ď j

ùñ

xj`1 “ xj ` αjpj, where αj “ ´
xpj, gjy

xpj, Bpjy

‚ (trivial)

gj`1 “ gj ` αjBpj

‚ (messy) we can select pj so that tpiu are B-conjugate via

pj`1 “ ´gj`1 ` βjpj, where βj “
}gj`1}

}gj}



CONJUGATE-GRADIENT (CG) METHOD

Set x0 “ 0, g0 “ g, p0 “ ´g and i “ 0.

Until gi “small”, iterate

αi “ ´xgi, piy{xpi, Bpiy ” arg min
α
qpxi ` αpiq

xi`1 “ xi ` αipi
gi`1 “ gi ` αiBpi ” ∇qpxi`1q

βi “ }gi`1}
2
2{}gi}

2
2

pi`1 “ ´gi`1 ` βipi
and increase i by 1

Important features:

‚ qpxjq ď qpxj´1q

‚ xn “ x˚ (in exact arithmetic)

‚ may stop earlier if B is structured, e.g. clustered eigenvalues

‚ can accelerate by preconditioning



ITERATIVE METHODS FOR GENERAL fpxq

‚ in practice very rare to be able to provide explicit minimizer of f

‚ iterative method: given starting “guess” x0, generate sequence

txku, k “ 1, 2, . . .

‚ AIM: ensure that (a subsequence) has some favourable limiting

properties:

˛ satisfies first-order necessary conditions

˛ satisfies second-order necessary conditions

Notation: fk “ fpxkq, gk “ gpxkq, Hk “ Hpxkq.
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LINESEARCH METHODS

‚ calculate a search direction dk from xk

‚ ensure that this direction is a descent direction, i.e.,

xgk, dky ă 0 if gk ‰ 0

(the slope xdk, gky is negative) so that, for small steps along dk,

the objective function will be reduced (Taylor’s theorem)

‚ calculate a suitable steplength αk ą 0 so that

fpxk ` αkdkq ă fk

‚ computation of αk is the linesearch—may itself be an iteration

‚ generic linesearch method:

xk`1 “ xk ` αkdk



STEPS MIGHT BE TOO LONG

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3f(x)

x

(x1,f(x1)

(x2,f(x2)

(x3,f(x3)

(x4,f(x4)(x5,f(x5)

The objective function fpxq “ x2 and the iterates xk`1 “ xk ` αkdk
generated by the descent directions dk “ p´1qk`1 and steps αk “

2` 3{2k`1 from x0 “ 2



STEPS MIGHT BE TOO SHORT
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(x4,f(x4)(x5,f(x5)

The objective function fpxq “ x2 and the iterates xk`1 “ xk ` αkdk
generated by the descent directions dk “ ´1 and steps αk “ 1{2k`1

from x0 “ 2



PRACTICAL LINESEARCH METHODS

‚ in early days, pick αk to minimize

fpxk ` αdkq

˛ exact linesearch—univariate minimization

˛ rather expensive and certainly not cost effective

‚ modern methods: inexact linesearch

˛ ensure steps are neither too long nor too short

˛ try to pick “useful” initial stepsize for fast convergence

˛ best methods are either

‚ “backtracking- Armijo” or

‚ “Armijo-Goldstein”

based



BACKTRACKING LINESEARCH

Procedure to find the stepsize αk:

Given αinit ą 0 (e.g., αinit “ 1)

let αp0q “ αinit and l “ 0

Until fpxk ` α
plqdkq“ă”fk

set αpl`1q
“ ταplq, where τ P p0, 1q (e.g., τ “ 1

2)

and increase l by 1

Set αk “ αplq

‚ this prevents the step from getting too small . . . but does not prevent

too large steps relative to decrease in f

‚ need to tighten requirement

fpxk ` α
plqdkq“ă”fk



ARMIJO CONDITION

In order to prevent large steps relative to decrease in f , instead require

fpxk ` αkdkq ď fpxkq ` βαkxgk, dky

for some β P p0, 1q (e.g., β “ 0.1 or even β “ 0.0001)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.04
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0.04

0.06

0.08

0.1

0.12

0.14

α

f(xk+αdk)

f(xk)+α〈gk,dk〉

f(xk)+αβ〈gk,dk〉



BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize αk:

Given αinit ą 0 (e.g., αinit “ 1)

let αp0q “ αinit and l “ 0

Until fpxk ` α
plqdkq ď fpxkq ` βα

plq
xgk, dky

set αpl`1q
“ ταplq, where τ P p0, 1q (e.g., τ “ 1

2)

and increase l by 1

Set αk “ αplq



SATISFYING THE ARMIJO CONDITION

Theorem 2.4. Suppose that f P C1, that gpxq is Lipschitz con-

tinuous with Lipschitz constant γpxq, that β P p0, 1q and that d is

a descent direction at x. Then the Armijo condition

fpx` αdq ď fpxq ` αβxgpxq, dy

is satisfied for all α P r0, αmaxpxqs, where

αmax “
2pβ ´ 1qxgpxq, dy

γpxq}d}22



THE ARMIJO LINESEARCH TERMINATES

Corollary 2.5. Suppose that f P C1, that gpxq is Lipschitz con-

tinuous with Lipschitz constant γk at xk, that β P p0, 1q and that

dk is a descent direction at xk. Then the stepsize generated by the

backtracking-Armijo linesearch terminates with

αk ě min

ˆ

αinit,
2τpβ ´ 1qxgk, dky

γk}dk}
2
2

˙



GENERIC LINESEARCH METHOD

Given an initial guess x0, let k “ 0

Until convergence:

Find a descent direction dk at xk
Compute a stepsize αk using a

backtracking-Armijo linesearch along dk
Set xk`1 “ xk ` αkdk, and increase k by 1



GLOBAL CONVERGENCE THEOREM

Theorem 2.6. Suppose that f P C1 and that g is Lipschitz con-

tinuous on IRn. Then, for the iterates generated by the Generic

Linesearch Method,

either

gl “ 0 for some l ě 0

or

lim
kÑ8

fk “ ´8

or

lim
kÑ8

min

ˆ

|xdk, gky|,
|xdk, gky|

}dk}2

˙

“ 0.



METHOD OF STEEPEST DESCENT

The search direction

dk “ ´gk

gives the so-called steepest-descent direction.

‚ dk is a descent direction

‚ dk solves the problem

minimize
dPIR

n
mL
k pxk ` dq :“ fk ` xgk, dy

subject to }d}2 “ }gk}2

Any method that uses the steepest-descent direction is a

method of steepest descent.



GLOBAL CONVERGENCE FOR STEEPEST DESCENT

Theorem 2.7. Suppose that f P C1 and that g is Lipschitz con-

tinuous on IRn. Then, for the iterates generated by the Generic

Linesearch Method using the steepest-descent direction,

either

gl “ 0 for some l ě 0

or

lim
kÑ8

fk “ ´8

or

lim
kÑ8

gk “ 0.



METHOD OF STEEPEST DESCENT (cont.)

‚ archetypical globally convergent method

‚ many other methods resort to steepest descent in bad cases

‚ not scale invariant

‚ convergence is usually very (very!) slow (linear)

‚ numerically often not convergent at all



STEEPEST DESCENT EXAMPLE
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Contours for the objective function fpx, yq “ 10py ´ x2
q

2
` px´ 1q2,

and the iterates generated by the Generic Linesearch steepest-descent

method



MORE GENERAL DESCENT METHODS

Let Bk be a symmetric, positive definite matrix, and define the

search direction dk so that

Bkdk “ ´gk

Then

‚ dk is a descent direction as xgk, dky “ ´xdk, Bkdky ă 0

‚ dk solves the problem

minimize
dPIR

n
mQ
k pxk ` dq :“ fk ` xgk, dy ` 1

2xd,Bkdy

‚ if the Hessian Hk is positive definite, and Bk “ Hk,

this is Newton’s method



MORE GENERAL GLOBAL CONVERGENCE

Theorem 2.8. Suppose that f P C1 and that g is Lipschitz con-

tinuous on IRn. Then, for the iterates generated by the Generic

Linesearch Method using the more general descent direction, either

gl “ 0 for some l ě 0

or

lim
kÑ8

fk “ ´8

or

lim
kÑ8

gk “ 0

provided that the eigenvalues of Bk are uniformly bounded and

bounded away from zero.



MORE GENERAL DESCENT METHODS (cont.)

‚ may be viewed as “scaled” steepest descent

‚ convergence is often faster than steepest descent

‚ can be made scale invariant for suitable Bk



CONVERGENCE OF NEWTON’S METHOD

Theorem 2.9. Suppose that f P C2 and that H is Lipschitz con-

tinuous on IRn. Then suppose that the iterates generated by the

Generic Linesearch Method with αinit “ 1 and β ă 1
2, in which the

search direction is chosen to be the Newton direction dk “ ´H
´1
k gk

whenever possible, has a limit point x˚ for which Hpx˚q is positive

definite. Then

(i) αk “ 1 for all sufficiently large k,

(ii) the entire sequence txku converges to x˚, and

(iii) the rate is Q-quadratic, i.e, there is a constant κ ě 0.

lim
kÑ8

}xk`1 ´ x˚}2

}xk ´ x˚}
2
2

ď κ.



NEWTON METHOD EXAMPLE
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Contours for the objective function fpx, yq “ 10py ´ x2
q

2
` px´ 1q2,

and the iterates generated by the Generic Linesearch Newton method



MODIFIED NEWTON METHODS

If Hk is indefinite, it is usual to solve instead

pHk `Mkqdk ” Bkdk “ ´gk

where

‚ Mk chosen so that Bk “ Hk `Mk is “sufficiently” positive definite

‚ Mk “ 0 when Hk is itself “sufficiently” positive definite

Possibilities:

‚ If Hk has the spectral decomposition Hk “ V T
k ΛkVk then

Bk ” Hk `Mk “ V T
k maxpε, |Λk|qVk

‚ Mk “ maxp0, ε´ λminpHkqqI

‚ Modified Cholesky: Bk ” Hk `Mk “ LkL
T
k



QUASI-NEWTON METHODS

Various attempts to approximate Hk:

1. Finite-difference approximations:

pHkqei «
gpxk ` heiq ´ gk

h
“ pBkqei

for some “small” scalar h ą 0

‚ needs n evaluations of g to get H , fewer if sparse

‚ may need to symmetrize Hk “
1
2pHk `H

T
k q

‚ obviously parallel



QUASI-NEWTON METHODS (continued)

2. Secant approximations: try to ensure the secant condition

Bk`1sk “ yk, where sk “ xk`1 ´ xk and yk “ gk`1 ´ gk

Why? Because Hksk “ yk when f is quadratic

Examples:

‚ Symmetric Rank-1 method (but may be indefinite or even

fail):

Bk`1 “ Bk `
pyk ´Bkskqpyk ´Bkskq

T

xyk ´Bksk, sky

‚ BFGS method: (symmetric and positive definite if xyk, sky ą 0):

Bk`1 “ Bk `
yky

T
k

xyk, sky
´
Bksks

T
kBk

xsk, Bksky

Generally a low-rank (rank-one or -two) update of the existing Bk



LIMITED-MEMORY METHODS

Quasi-Newton methods pick

Bk`1 “ Bk ` low-rank matrix combinationpyk, sk, Bkq where

sk “ xk`1 ´ xk and yk “ gk`1 ´ gk
ùñ

Bk`1 “ B0 `matrix combinationpy1, . . . , yk, s1, . . . , sk, B0q

Limited-memory methods pick

Bk`1 “ Bj `matrix combinationpyj`1, . . . , yk, sj`1, . . . , sk, Bj`1q

for some j close to k

‚ re-initialize using simple Bj (e.g Bj “ I ùñ Bk`1 is a low-rank

modification of Bj using data tyj`1, . . . , yk, sj`1, . . . , sku

‚ efficient formulae to compute dk`1 “ ´B
´1
k`1gk`1

‚ L-BFGS using BFGS formula



USE CG TO MINIMIZE CONVEX QUADRATIC MODEL

For convex models (Bk positive definite)

dk “ (approximate) arg min
dPIR

n
mQ
k pxk ` dqfk ` xgk, dy `

1
2xd,Bkdy

Can apply conjugate-gradients method to minimize

qpdq “ mQ
k pxk ` dq

Stop CG when

}∇qpdkq} ď minp}gk}
ω, ηq}gk} p0ăη, ωă1q

ùñ fast convergence



NONLINEAR CONJUGATE-GRADIENT METHODS

method for minimizing quadratic fpxq

Given x0 and gpx0q, set p0 “ ´gpx0q and i “ 0.

Until gpxkq “small” iterate

αi “ arg min
α

fpxi ` αpiq

xi`1 “ xi ` αipi
βi “ }gpxi`1q}

2
2{}gpxiq}

2
2

pi`1 “ ´gpxi`1q ` βipi
and increase i by 1

may also be used for nonlinear fpxq (Fletcher & Reeves)

‚ replace calculation of αi by suitable linesearch

‚ other methods pick different βi to ensure descent

(Polyak–Ribière, Hestenes–Stiefel, Hager–Zhang . . . )



Part 2b: Trust-region methods

for unconstrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

minimize
xPIR

n
fpxq

Course on continuous optimization, STFC-RAL, February 2021



UNCONSTRAINED MINIMIZATION

minimize
xPIR

n
fpxq

where the objective function f : IRn
ÝÑ IR

‚ assume that f P C1 (sometimes C2) and Lipschitz

‚ often in practice this assumption violated, but not necessary



LINESEARCH VS TRUST-REGION METHODS

‚ Linesearch methods

˛ pick descent direction dk

˛ pick stepsize αk to “reduce” fpxk ` αdkq

˛ xk`1 “ xk ` αkdk

‚ Trust-region methods

˛ pick step sk to reduce “model” of fpxk ` sq

˛ accept xk`1 “ xk`sk if decrease in model inherited by fpxk`skq

˛ otherwise set xk`1 “ xk, “refine” model



TRUST-REGION MODEL PROBLEM

Model fpxk ` sq by:

‚ linear model

mL
k psq “ fk ` xs, gky

‚ quadratic model — symmetric Bk

mQ
k psq “ fk ` xgk, sy ` 1

2xs, Bksy

Major difficulties:

‚ models may not resemble fpxk ` sq if s is large

‚ models may be unbounded from below

˛ linear model - always unless gk “ 0

˛ quadratic model - always if Bk is indefinite,

possibly if Bk is only positive semi-definite



THE TRUST REGION

Prevent model mkpsq from unboundedness by imposing a

trust-region constraint

}s} ď ∆k

for some “suitable” scalar radius ∆k ą 0

ùñ trust-region subproblem

approx minimize
sPIR

n
mkpsq subject to }s} ď ∆k

‚ in theory does not depend on norm } ¨ }

‚ in practice it might!



OUR MODEL

For simplicity, concentrate on the second-order (Newton-like) model

mkpsq “ mQ
k psq “ fk ` xs, gky ` 1

2xs, Bksy

and the `2-trust region norm } ¨ } “ } ¨ }2

Note:

‚ Bk “ Hk is allowed

‚ analysis for other trust-region norms simply adds extra constants

in following results



TRUST-REGION EXAMPLES

-1.5 -1 -0.5 0 0.5 1 1.5
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Contours for the objective function fpx, yq “ x4
` xy ` py ` 1q2



TRUST-REGION EXAMPLES (cont)
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Contours of quadratic model mkpsq at p1,´0.5q with radius ∆ “ 1.1



TRUST-REGION EXAMPLES (cont)
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Contours of linear model mkpsq at p1,´0.5q with radius ∆ “ 1.1



TRUST-REGION EXAMPLES (cont)
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Contours of quadratic model mkpsq at p0, 0q with radius ∆ “ 1.1



TRUST-REGION EXAMPLES (cont)
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Contours of quadratic modelmkpsq at p´0.25, 0.5q with radius ∆ “ 1.1



BASIC TRUST-REGION METHOD

Given k “ 0, ∆0 ą 0 and x0, until “convergence” do:

Build the second-order model mkpsq of fpxk ` sq.

“Solve” the trust-region subproblem to find sk
for which mkpskq “ă” fk and }sk} ď ∆k, and define

ρk “
fk ´ fpxk ` skq

fk ´mkpskq
.

If ρk ě ηv [very successful] 0 ă ηv ă 1

set xk`1 “ xk ` sk and ∆k`1 “ γi∆k γi ě 1

Otherwise if ρk ě ηs then [successful] 0 ă ηs ď ηv ă 1

set xk`1 “ xk ` sk and ∆k`1 “ ∆k

Otherwise [unsuccessful]

set xk`1 “ xk and ∆k`1 “ γd∆k 0 ă γd ă 1

Increase k by 1



“SOLVE” THE TRUST REGION SUBPROBLEM?

At the very least

‚ aim to achieve as much reduction in the model as would an iteration

of steepest descent

‚ Cauchy point: sC

k “ ´α
C

kgk where

αC

k“ arg min
αą0

mkp´αgkq subject to α}gk} ď ∆k

“ arg min
0ăαď∆k{}gk}

mkp´αgkq

˛ minimize 1-D quadratic on line segment ùñ very easy!

‚ require that

mkpskq ď mkps
C

kq and }sk} ď ∆k

‚ in practice, hope to do far better than this



ACHIEVABLE MODEL DECREASE

Theorem 2.10. If mkpsq is the second-order model and sC

k is its

Cauchy point within the trust-region }s} ď ∆k,

fk ´mkps
C

kq ě
1
2}gk}min

„

}gk}

1` }Bk}
,∆k



.

Corollary 2.11. If mkpsq is the second-order model, and sk is an

improvement on the Cauchy point within the trust-region }s} ď ∆k,

fk ´mkpskq ě 1
2}gk}min

„

}gk}

1` }Bk}
,∆k



.



DIFFERENCE BETWEEN MODEL AND FUNCTION

Lemma 2.12. Suppose that f P C2, and that the true and model

Hessians satisfy the bounds }Hpxq} ď κh for all x and }Bk} ď κb
for all k and some κh ě 1 and κb ě 0. Then

|fpxk ` skq ´mkpskq| ď κd∆
2
k,

where κd “ 1
2pκh ` κbq, for all k.



ULTIMATE PROGRESS AT NON-OPTIMAL POINTS

Lemma 2.13. Suppose that f P C2, that the true and model

Hessians satisfy the bounds }Hk} ď κh and }Bk} ď κb for all k and

some κh ě 1 and κb ě 0. Suppose furthermore that gk ‰ 0 and

that

∆k ď

ˆ

1´ ηv
κh ` κb

˙

}gk}.

Then iteration k is very successful and

∆k`1 ě ∆k.



RADIUS WON’T SHRINK TO ZERO AT NON-OPTIMAL

POINTS

Lemma 2.14. Suppose that f P C2, that the true and model

Hessians satisfy the bounds }Hk} ď κh and }Bk} ď κb for all k

and some κh ě 1 and κb ě 0. Suppose furthermore that there is a

constant ε ą 0 such that

}gk} ě ε for all k.

Then

∆k ě κε where κε :“ εγd

ˆ

1´ ηv
κh ` κb

˙

for all k.



POSSIBLE FINITE TERMINATION

Lemma 2.15. Suppose that f P C2, and that both the true and

model Hessians remain bounded for all k. Suppose furthermore that

there are only finitely many successful iterations. Then xk “ x˚ for

all sufficiently large k and gpx˚q “ 0.



GLOBAL CONVERGENCE OF ONE SEQUENCE

Theorem 2.16. Suppose that f P C2, and that both the true and

model Hessians remain bounded for all k. Then either

gl “ 0 for some l ě 0

or

lim
kÑ8

fk “ ´8

or

lim inf
kÑ8

}gk} “ 0.



GLOBAL CONVERGENCE

Theorem 2.17. Suppose that f P C2, and that both the true and

model Hessians remain bounded for all k. Then either

gl “ 0 for some l ě 0

or

lim
kÑ8

fk “ ´8

or

lim
kÑ8

gk “ 0.



II: SOLVING THE TRUST-REGION SUBPROBLEM

(approximately) minimize
sPIR

n
qpsq ” xg, sy ` 1

2xs, Bsy subject to }s} ď ∆

AIM: find s˚ so that

qps˚q ď qpsCq and }s˚} ď ∆

Might solve

‚ exactly ùñ Newton-like method

‚ approximately ùñ steepest descent/conjugate gradients



THE `2-NORM TRUST-REGION SUBPROBLEM

minimize
sPIR

n
qpsq ” xs, gy ` 1

2xs, Bsy subject to }s}2 ď ∆

Solution characterisation result:

Theorem 2.18. Any global minimizer s˚ of qpsq subject to

}s}2 ď ∆ satisfies the equation

pB ` λ˚Iqs˚ “ ´g,

where B ` λ˚I is positive semi-definite,

λ˚ ě 0 and λ˚p}s˚}2 ´∆q “ 0.

If B ` λ˚I is positive definite, s˚ is unique.



ALGORITHMS FOR THE `2-NORM SUBPROBLEM

Two cases:

‚ B positive-semi definite and Bs “ ´g satisfies }s}2 ď ∆

ùñ s˚ “ s

‚ B indefinite or Bs “ ´g satisfies }s}2 ą ∆

ùñ

˛ pB ` λ˚Iqs˚ “ ´g and xs˚, s˚y “ ∆2

˛ nonlinear (quadratic) system in s and λ

˛ concentrate on this



EQUALITY CONSTRAINED `2-NORM SUBPROBLEM

Suppose B has spectral decomposition

B “ V TΛV

‚ V orthogonal matrix of eigenvectors

‚ Λ diagonal matrix of eigenvalues: λ1 ď λ2 ď . . . ď λn

Require B`λI “ V T
pΛ`λIqV positive semi-definite ùñ λ ě ´λ1

Define

spλq “ ´pB ` λIq´1g

Require the secular function

ψpλq :“ }spλq}22 “ ∆2

Note (γi “ xei, V gy)

ψpλq “ }V T
pΛ` λIq´1V g}22 “

n
ÿ

i“1

γ2
i

pλi ` λq
2



CONVEX EXAMPLE

ψ(λ)

λ−8 −6 −4 −2 0 2 4

0

1

2

3

✻

✲

B =




1 0 0

0 3 0

0 0 5




g =




1

1

1




∆2 = 1.151

solution curve as ∆ varies❅
❅

❅
❅❅■

✁
✁

✁
✁

✁
✁
✁☛

❄

1



NONCONVEX EXAMPLE

ψ(λ)

λ−8 −6 −4 −2 0 2 4
0

1

2

✻

✲

minus leftmost eigenvalue✛

B =




−1 0 0

0 3 0

0 0 5




g =




1

1

1




2



THE “HARD” CASE

ψ(λ)

λ−8 −6 −4 −2 0 2 4
0

1

2

✻

✲

minus leftmost eigenvalue✛

B =




−1 0 0

0 3 0

0 0 5




g =




0

1

1




∆2 = 0.0903

3



SUMMARY

For indefinite B:

Hard case occurs when g orthogonal to eigenvector v1

for most negative eigenvalue λ1 and ∆ “too large”

‚ OK if radius ∆ is small enough

‚ No “obvious” solution to equations . . . but

solution is actually of the form

slim ` σv1

where

˛ slim “ lim
λ
`
ÝÑ´λ1

spλq

˛ }slim ` σv1}2 “ ∆

‚ very rare in practice (“probability 0” event)



HOW TO SOLVE }spλq}2 “ ∆

DON’T!!

Solve instead the secular equation

φpλq :“
1

}spλq}2
´

1

∆
“ 0

‚ no poles

‚ smallest at eigenvalues (except in hard case!)

‚ analytic function ùñ ideal for Newton

‚ global convergent (ultimately quadratic rate except in hard case)

‚ need to safeguard to protect Newton from the hard & interior

solution cases



THE SECULAR EQUATION

0

φ(λ)

0 −λ1 λ∗ λ

✻

✲

min− 1
4s

2
1 +

1
4s

2
2 +

1
2s1 + s2

subject to‖s‖2 ≤ 4

4



NEWTON’S METHOD & THE SECULAR EQUATION

Let λ ą ´λ1 and ∆ ą 0 be given

Until “convergence” do:

Factorize B ` λI “ LLT

Solve LLTs “ ´g

Solve Lw “ s

Replace λ by

λ`

ˆ

}s}2 ´∆

∆

˙

˜

}s}22

}w}22

¸



SOLVING THE LARGE-SCALE PROBLEM

‚ when n is large, factorization may be impossible

‚ may instead try to use an iterative method to approximate

˛ steepest descent leads to the Cauchy point

˛ obvious generalization: conjugate gradients . . . but

‚ what about the trust region?

‚ what about negative curvature xs, Bsy ď 0?



CONJUGATE GRADIENTS TO “MINIMIZE” qpsq

Set s0 “ 0, g0 “ g, p0 “ ´g and i “ 0

Until gi “small” or breakdown, iterate

αi “ }gi}
2
2{xpi, Bpiy

si`1 “ si ` αipi
gi`1 “ gi ` αiBpi
βi “ }gi`1}

2
2{}gi}

2
2

pi`1 “ ´gi`1 ` βipi
and increase i by 1

Important features

‚ gj “ Bsj ` g for all j “ 0, . . . , i

‚ xdj, gi`1y “ 0 for all j “ 0, . . . , i

‚ xgj, gi`1y “ 0 for all j “ 0, . . . , i



CRUCIAL PROPERTY OF CONJUGATE GRADIENTS

Theorem 2.19. Suppose that the conjugate gradient method is

applied to minimize qpsq starting from s0 “ 0, and that

xpi, Bpiy ą 0 for 0 ď i ď k.

Then the iterates sj satisfy the inequalities

}sj}2 ă }sj`1}2

for 0 ď j ď k ´ 1.



TRUNCATED CONJUGATE GRADIENTS

Apply the conjugate gradient method, but terminate at iteration i if

1. xdi, Bdiy ď 0 ùñ problem unbounded along di

2. }si ` αidi}2 ą ∆ ùñ solution on trust-region boundary

In both cases, stop with s˚ “ si ` αBdi, where αB chosen as positive

root of

}si ` α
Bdi}2 “ ∆

Crucially

qps˚q ď qpsCq and }s˚}2 ď ∆

ùñ TR algorithm converges to a first-order critical point



HOW GOOD IS TRUNCATED C.G.?

In the convex case . . . very good

Theorem 2.20. Suppose that the truncated conjugate gradient

method is applied to minimize qpsq and that B is positive definite.

Then the truncated and actual solutions to the problem, s˚ and sM

˚ ,

satisfy the bound

qps˚q ď 1
2qps

M

˚q

In the non-convex case . . . maybe poor

‚ e.g., if g “ 0 and B is indefinite ùñ qps˚q “ 0

‚ instead continue using equivalent Lanczos method to solve

trust-region subproblem in subspace (GLTR method, see notes)



Part 2c: Miscellaneous methods

for unconstrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

minimize
xPIR

n

1
2}cpxq}

2
2
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AN ALTERNATIVE — CUBIC REGULARIZATION

Trust-region subproblem:

(approx) minimize
sPIR

n
fk ` xs, gky ` 1

2xs, Bksy subject to }s} ď ∆k

for adjustable radius ∆k ą 0

A modern alternative . . . the cubic-regularization subproblem:

(approx) minimize
sPIR

n
fk ` xs, gky ` 1

2xs, Bksy ` 1
3σk}s}

3

for adjustable weight σk ą 0

‚ can consider weight as “one over radius”

‚ solve regularization subproblem using related secular equation

‚ perform essentially the same in practice

‚ theoretical better worst-case behaviour



NONLINEAR LEAST-SQUARES

Given vector of residuals c : IRn
Ñ IRm find

(approx) minimize
xPIR

n
}cpxq}2

Equivalent to the smooth nonlinear least-squares problem

(approx) minimize
xPIR

n
fpxq “ 1

2}cpxq}
2
2

‚ the major use of unconstrained optimization

‚ model fitting to experimental data, e.g. cipxq “ ripxq ´ di,

where ri “ rpx, piq and given parameters pi

‚ fpxq is bounded from below (by zero)



NOTATION

Use the following in what follows:

aipxq :“ ∇xcipxq gradient of i-th residual

Apxq :“ r∇xc
T
pxqsT ”

¨

˚

˝

aT1 pxq

¨ ¨ ¨

aTmpxq

˛

‹

‚

Jacobian matrix of c

Hipxq :“ ∇2
xxcipxq Hessian of i-th residual



DERIVATIVES OF THE LEAST-SQUARES FUNCTION

(approx) minimize
xPIR

n
fpxq “ 1

2}cpxq}
2
2

‚ gpxq “ AT
pxqcpxq

‚ Hpxq “ AT
pxqApxq `

m
ÿ

i“1

cipxqHipxq

Notice that

‚ if cpxq is zero ùñ Hpxq “ AT
pxqApxq

‚ if cpxq is small ùñ Hpxq « AT
pxqApxq

‚ suggests using second-derivative models with Bk “ AT
kAk



METHODS FOR NONLINEAR LEAST-SQUARES

(approx) minimize
xPIR

n
fpxq “ 1

2}cpxq}
2
2

So long as c is twice-continuously differentiable, can use linesearch/trust-

region/regularization method to minimize fpxq

Alternative: use first-order Taylor model

rkpsq “ ck ` Aks

of the residual cpxk ` sq ùñ Gauss-Newton model

mLS
k psq “ 1

2}rkpsq}
2
2 “

1
2}ck ` Aks}

2
2

“ 1
2}ck}

2
2 ` xs, A

T
k cky ` 1

2xs, A
T
kAksy

of fpxk ` sq



METHODS FOR NONLINEAR LEAST-SQUARES (cont)

Gauss-Newton model:

mLS
k psq “ 1

2}rkpsq}
2
2 “

1
2}ck ` Aks}

2
2

“ 1
2}ck}

2
2 ` xs, A

T
k cky ` 1

2xs, A
T
kAksy

‚ linesearch in direction dk:

AT
kAkdk “ ´A

T
k ck

˛ may fail if Ak is (or becomes) rank deficient

‚ trust-region imposes }s} ď ∆k implies implicitly

pAT
kAk ` λkIqsk “ ´A

T
k ck

‚ + quadratic regularization 1
2σk}s}

2
2 implies explicitly

pAT
kAk ` σkIqsk “ ´A

T
k ck

Last two are « Levenberg-Morrison-Marquardt method



Part 3: Constrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

minimize
xPIR

n
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#

ě
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+

0
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CONSTRAINED MINIMIZATION

minimize
xPIR

n
fpxq subject to cpxq

#

ě

“

+

0

where the objective function f : IRn
ÝÑ IR

and the constraints c : IRn
ÝÑ IRm

‚ assume that f, c P C1 (sometimes C2) and Lipschitz

‚ often in practice this assumption violated, but not necessary



CONTENT

We shall discuss:

‚ optimality conditions

‚ (gradient projection methods for bound constraints)

‚ penalty and augmented-Lagrangian methods

‚ barrier-function and interior-point methods

‚ (Sequential Quadratic Programming methods)



NOTATION

Use the following from now on:

aipxq :“ ∇xcipxq gradient of ith constraint

Apxq :“ r∇xc
T
pxqsT ”

¨

˚

˝

aT1 pxq

¨ ¨ ¨

aTmpxq

˛

‹

‚

Jacobian matrix of c

Hipxq :“ ∇2
xxcipxq Hessian of ith constraint

`px, yq :“ fpxq ´ xy, cpxqy Lagrangian function, where

y are Lagrange multipliers

Hpx, yq :“ ∇2
xx`px, yq Hessian of the Lagrangian

” Hpxq ´
m
ÿ

i“1

yiHipxq



EQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 3.1. Suppose that f, c P C1, and that x˚ is a local

minimizer of fpxq subject to cpxq “ 0. Then, so long as a first-

order constraint qualification holds, there exist a vector of Lagrange

multipliers y˚ such that

cpx˚q “ 0 (primal feasibility) and

gpx˚q ´ A
T
px˚qy˚ “ 0 (dual feasibility).



EQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

Theorem 3.2. Suppose that f, c P C2, and that x˚ is a local

minimizer of fpxq subject to cpxq “ 0. Then, provided that first-

and second-order constraint qualifications hold, there exist a vector

of Lagrange multipliers y˚ such that

xs,Hpx˚, y˚qsy ě 0 for all s P N

where

N “ ts P IRn
| Apx˚qs “ 0u .



INEQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 3.3. Suppose that f, c P C1, and that x˚ is a local

minimizer of fpxq subject to cpxq ě 0. Then, provided that a first-

order constraint qualification holds, there exist a vector of Lagrange

multipliers y˚ such that

cpx˚q ě 0 (primal feasibility),

gpx˚q ´ A
T
px˚qy˚ “ 0

and y˚ ě 0
(dual feasibility) and

cipx˚qry˚si “ 0 (complementary slackness).

Often known as the Karush-Kuhn-Tucker (KKT) conditions

‚ second-order conditions are more complicated!



SIMPLE-BOUND MINIMIZATION

First-order necessary optimality:

Theorem 3.4. Suppose that f P C1, and that x˚ is a local

minimizer of fpxq subject to xL ď x ď xU. Then

xL ď x˚ ď xU and P rx˚ ´ αgpx˚qs “ x˚,

for all α ě 0, where the projection of x into the feasible region is

Pirxs “ midpxL

i, xi, x
U

iq “

$

&

%

xL

i if xi ă xL

i

xU

i if xi ą xU

i

xi if xL

i ď xi ď xU

i

True more generally: if F is a closed, non-empty convex set, x˚
is a local minimizer of fpxq : x P F , then PFrx˚ ´ αgpx˚qs “ x˚ and

x˚ P F , where PFpxq “ arg min
yPF

||x´ y|| is the projection of x into F



GRADIENT-PROJECTION METHODS

minimize
xPIR

n
fpxq subject to x P (closed, convex) F ,

Generalise steepest-descent to cope with convex constraints, starting

from x0 P F
Linesearch variant:

dk “ PFrxk ´ gpxkqs ´ xk

+ Armjio linesearch for fpxk ` αdkq for α P p0, 1s

Trust-region variant: for model mkpsq

sC

k “ skpαkq, where arc skpαq “ PFrxk ´ αgpxkqs ´ xk

and

αk “ arg min
αą0

mkpskpαqq subject to }skpαq} ď ∆k



BOUND-CONSTRAINED TRUST-REGION EXAMPLE
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Arc skpαq (green) from p1,´0.5q with radius ∆ “ 1.1 and x ě p0.7,´1.2q
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CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:

‚ minimize the objective function fpxq

‚ satisfy the constraints

Overcome this by minimizing a composite merit function Φpx, pq

for which

‚ p are parameters

‚ (some) minimizers of Φpx, pq wrt x approach those of fpxq subject

to the constraints as p approaches some set P
‚ only uses unconstrained minimization methods



AN EXAMPLE FOR EQUALITY CONSTRAINTS

minimize
xPIR

n
fpxq subject to cpxq “ 0

Merit function (quadratic penalty function):

Φpx, µq “ fpxq `
1

2µ
}cpxq}22

‚ required solution as µ approaches t0u from above

‚ may have other useless stationary points



CONTOURS OF THE PENALTY FUNCTION
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CONTOURS OF THE PENALTY FUNCTION (cont.)
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BASIC QUADRATIC PENALTY FUNCTION

ALGORITHM

Given µ0 ą 0, set k “ 0

Until “convergence” iterate:

Starting from xS

k, use an unconstrained

minimization algorithm to find an

“approximate” minimizer xk of Φpx, µkq

Compute µk`1 ą 0 smaller than µk such

that limkÑ8 µk`1 “ 0 and increase k by 1

‚ often choose µk`1 “ 0.1µk or even µk`1 “ µ2
k

‚ might choose xS

k`1 “ xk



MAIN CONVERGENCE RESULT

Theorem 3.5. Suppose that f , c P C2, that

}∇xΦpxk, µkq}2 ď εk,

where εk and µk converge to zero as k Ñ 8, that

y Q

k :“ ´
cpxkq

µk

and that xk converges to x˚ for which Apx˚q is full rank. Then

x˚ satisfies the first-order necessary optimality conditions for the

problem

minimize
xPIR

n
fpxq subject to cpxq “ 0

and ty Q

k u converge to the associated Lagrange multipliers y˚.



ALGORITHMS TO MINIMIZE Φpx, µq

Can use

‚ linesearch methods

˛ might use specialized linesearch to cope with large quadratic

term }cpxq}22{2µ

‚ trust-region methods

˛ (ideally) need to “shape” trust region to cope with contours of

the }cpxq}22{2µ term



DERIVATIVES OF THE QUADRATIC PENALTY

FUNCTION

‚ Φpx, µq “ fpxq `
1

2µ
}cpxq}22

‚ ∇xΦpx, µq “ gpxq `
1

µ
AT
pxqcpxq “ gpx, y Qpxqq

‚ ∇2
xxΦpx, µq “ Hpx, y Qpxqq `

1

µ
AT
pxqApxq

where

‚ gpx, yq “ gpxq ´ AT
pxqy: gradient of the Lagrangian

‚ Lagrange multiplier estimates:

y Qpxq “ ´
cpxq

µ

‚ Hpx, yq “ Hpxq ´
m
ÿ

i“1

yiHipxq: Lagrangian Hessian



GENERIC QUADRATIC PENALTY NEWTON SYSTEM

Newton correction s from x for quadratic penalty function is
ˆ

Hpx, y Qpxqq `
1

µ
AT
pxqApxq

˙

s “ ´gpx, y Qpxqq

LIMITING DERIVATIVES OF Φ

For small µ: roughly

∇xΦpx, µq “ gpxq ´ AT
pxqy Qpxq

loooooooooomoooooooooon

moderate

∇2
xxΦpx, µq “ Hpx, y Qpxqq

looooomooooon

moderate

`
1

µ
AT
pxqApxq

loooooomoooooon

large

«
1

µ
AT
pxqApxq

loooooomoooooon

rank defficient



POTENTIAL DIFFICULTY

Ill-conditioning of the Hessian of the penalty function:

roughly speaking (non-degenerate case)

‚ m eigenvalues « λi

”

AT
pxqApxq

ı

{µk

‚ n´m eigenvalues « λi

”

ST pxqHpx˚, y˚qSpxq
ı

where Spxq orthogonal basis for null-space of Apxq

ùñ condition number of ∇2
xxΦpxk, µkq “ Op1{µkq

ùñ may not be able to find minimizer easily



THE ILL-CONDITIONING IS BENIGN

Newton system:
ˆ

Hpx, y Qpxqq `
1

µ
AT
pxqApxq

˙

s “ ´

ˆ

gpxq `
1

µ
AT
pxqcpxq

˙

Define auxiliary variables

w “
1

µ
pApxqs` cpxqq

ùñ
˜

Hpx, y Qpxqq AT
pxq

Apxq ´µI

¸˜

s

w

¸

“ ´

˜

gpxq

cpxq

¸

‚ essentially independent of µ for small µùñ no inherent ill-conditioning

‚ thus can solve Newton equations accurately

‚ more sophisticated analysis ùñ original system OK



PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize
xPIR

n
fpxq subject to cpxq “ 0

are:
gpxq ´ AT

pxqy “ 0 dual feasibility

cpxq “ 0 primal feasibility

Consider the “perturbed” problem

gpxq ´ AT
pxqy “ 0 dual feasibility

cpxq ` µy “ 0 perturbed primal feasibility

where µ ą 0



PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of

gpxq ´ AT
pxqy “ 0 and cpxq ` µy “ 0

as 0 ă µÑ 0

‚ nonlinear system ùñ use Newton’s method

Newton correction ps, vq to px, yq satisfies
˜

Hpx, yq ´AT
pxq

Apxq µI

¸˜

s

v

¸

“ ´

˜

gpxq ´ AT
pxqy

cpxq ` µy

¸

Eliminate v ùñ
ˆ

Hpx, yq `
1

µ
AT
pxqApxq

˙

s “ ´

ˆ

gpxq `
1

µ
AT
pxqcpxq

˙

c.f. Newton method for quadratic penalty function minimization!



PRIMAL VS. PRIMAL-DUAL

Primal:
ˆ

Hpx, y Qpxqq `
1

µ
AT
pxqApxq

˙

sP “ ´gpx, y Qpxqq

Primal-dual:
ˆ

Hpx, yq `
1

µ
AT
pxqApxq

˙

sPD “ ´gpx, y Qpxqq

where

y Qpxq “ ´
cpxq

µ

What is the difference?

‚ freedom to choose y in Hpx, yq for primal-dual . . . vital



ANOTHER EXAMPLE FOR EQUALITY CONSTRAINTS

minimize
xPIR

n
fpxq subject to cpxq “ 0

Merit function (augmented Lagrangian function):

Φpx, u, µq “ fpxq ´ xy, cpxqy `
1

2µ
}cpxq}22

where y and µ are auxiliary parameters

Two interpretations —

‚ shifted quadratic penalty function

‚ convexification of the Lagrangian function

Aim: adjust µ and y to encourage convergence



DERIVATIVES OF THE AUGMENTED LAGRANGIAN

FUNCTION

‚ Φpx, y, µq “ fpxq ´ xy, cpxqy `
1

2µ
}cpxq}22

‚ ∇xΦpx, y, µq “ gpxq ´ AT
pxqy `

1

µ
AT
pxqcpxq “ gpx, y Apxqq

‚ ∇2
xxΦpx, y, µq “ Hpx, y Apxqq `

1

µ
AT
pxqApxq

where

‚ gpx, yq “ gpxq ´ AT
pxqy: gradient of the Lagrangian

‚ First-order Lagrange multiplier estimates:

y Apxq “ y ´
cpxq

µ

‚ Hpx, yq “ Hpxq ´
m
ÿ

i“1

yipxqHipxq: Lagrangian Hessian

Crucially

cpxq “ µry Apxq ´ ys



AUGMENTED LAGRANGIAN CONVERGENCE

Theorem 3.6. Suppose that f , c P C2, that

}∇xΦpxk, yk, µkq}2 ď εk,

for given tyku, where εk converges to zero as k Ñ 8, that

y A
k :“ yk ´ cpxkq{µk,

and that xk converges to x˚ for which Apx˚q is full rank. Then ty A
k u

converge to some y˚ for which gpx˚q “ AT
px˚qy˚.

If additionally either

(i) µk converges to zero for bounded yk or

(ii) yk converges to y˚ for bounded µk,

then x˚ and y˚ satisfy the first-order necessary optimality conditions

for the problem
minimize

xPIR
n

fpxq subject to cpxq “ 0



CONTOURS OF THE AUGMENTED LAGRANGIAN

FUNCTION
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CONTOURS OF THE AUGMENTED LAGRANGIAN

FUNCTION (cont.)
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CONVERGENCE OF AUGMENTED LAGRANGIAN

METHODS

‚ convergence guaranteed if yk fixed and µ ÝÑ 0

ùñ yk ÝÑ y˚ and cpxkq ÝÑ 0

‚ check if }cpxkq} ď ηk where tηku ÝÑ 0

˛ if so, set yk`1 “ yk ´ cpxkq{µk and µk`1 “ µk

˛ if not, set yk`1 “ yk and µk`1 ď τµk for some τ P p0, 1q

‚ reasonable: ηk “ µ0.1`0.9j
k where j iterations since µk last changed

‚ under such rules, can ensure µk eventually unchanged under

modest assumptions and (fast) linear convergence

‚ need also to ensure µk is sufficiently large that ∇2
xxΦpxk, yk, µkq is

positive (semi-)definite



BASIC AUGMENTED LAGRANGIAN ALGORITHM

Given µ0 ą 0 and y0, set k “ 0

Until “convergence” iterate:

Starting from xS

k, use an unconstrained minimization

algorithm to find an “approximate” minimizer xk of

Φpx, yk, µkq for which }∇xΦpxk, yk, µkq} ď εk
If }cpxkq} ď ηk, set yk`1 “ yk ´ cpxkq{µk and µk`1 “ µk
Otherwise set yk`1 “ uk and µk`1 ď τµk
Set suitable εk`1 and ηk`1 and increase k by 1

‚ often choose τ “ minp0.1,
?
µkq

‚ might choose xS

k`1 “ xk

‚ reasonable: εk “ µj`1
k where j iterations since µk last changed



Part 3b: Interior-point methods

for inequality constrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

minimize
xPIR

n
fpxq subject to cpxq ě 0
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CONSTRAINED MINIMIZATION

minimize
xPIR

n
fpxq subject to cpxq ě 0

where the objective function f : IRn
ÝÑ IR

and the constraints c : IRn
ÝÑ IRm

‚ assume that f, c P C1 (sometimes C2) and Lipschitz

‚ often in practice this assumption violated, but not necessary



CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:

‚ minimize the objective function fpxq

‚ satisfy the constraints

Recall — overcome this by minimizing a composite merit function

Φpx, pq for which

‚ p are parameters

‚ (some) minimizers of Φpx, pq wrt x approach those of fpxq subject

to the constraints as p approaches some set P
‚ only uses unconstrained minimization methods



A MERIT Fn FOR INEQUALITY CONSTRAINTS

minimize
xPIR

n
fpxq subject to cpxq ě 0

Merit function (logarithmic barrier function):

Φpx, µq “ fpxq ´ µ
m
ÿ

i“1

log cipxq

‚ required solution as µ approaches t0u from above

‚ may have other useless stationary points

‚ requires a strictly interior point to start

‚ consequent points are interior



CONTOURS OF THE BARRIER FUNCTION
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CONTOURS OF THE BARRIER FUNCTION (cont.)
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BASIC BARRIER FUNCTION ALGORITHM

Given µ0 ą 0, set k “ 0

Until “convergence” iterate:

Find xS

k for which cpxS

kq ą 0

Starting from xS

k, use an unconstrained

minimization algorithm to find an

“approximate” minimizer xk of Φpx, µkq

Compute µk`1 ą 0 smaller than µk such

that limkÑ8 µk`1 “ 0 and increase k by 1

‚ often choose µk`1 “ 0.1µk or even µk`1 “ µ2
k

‚ might choose xS

k`1 “ xk



MAIN CONVERGENCE RESULT

The active set Apxq “ ti : cipxq “ 0u

Theorem 3.7. Suppose that f , c P C2, that

}∇xΦpxk, µkq}2 ď εk

where εk converges to zero as k Ñ 8, that

pykqi :“ µk{cipxkq for i “ 1, . . . ,m,

and that xk converges to x˚ for which taipx˚quiPApx˚q are linearly

independent. Then x˚ satisfies the first-order necessary optimality

conditions for the problem

minimize
xPIR

n
fpxq subject to cpxq ě 0

and tyku converge to the associated Lagrange multipliers y˚.



ACTIVE AND INACTIVE CONSTRAINTS

Since (complementary slackness)

cipx˚qpy˚qi “ 0 for all i “ 1, . . .m

Often have txku Ñ x˚ and tyku Ñ y˚ with

‚ cipxkq Ñ 0 and pykqi Ñ py˚qi ą 0 for i P Apx˚q
active constraints

‚ cipxkq Ñ cipx˚q ą 0 and pykqi Ñ 0 for i P Ipx˚q “ t1, . . . ,muzApx˚q
inactive constraints

‚ sometimes degeneracy: cipx˚q “ 0 and py˚qi “ 0



ALGORITHMS TO MINIMIZE Φpx, µq

Can use

‚ linesearch methods

˛ should use specialized linesearch to cope with singularity of log

‚ trust-region methods

˛ need to reject points for which cpxk ` skq ą 0

˛ (ideally) need to “shape” trust region to cope with contours of

the singularity



DERIVATIVES OF THE BARRIER FUNCTION

‚ ∇xΦpx, µq “ gpx, ypxqq

‚ ∇2
xxΦpx, µq “ Hpx, ypxqq ` µAT

pxqC´2
pxqApxq

“ Hpx, ypxqq ` AT
pxqC´1

pxqY pxqApxq

“ Hpx, ypxqq ` 1
µA

T
pxqY 2

pxqApxq

where

‚ Lagrange multiplier estimates: ypxq “ µC´1
pxqe

where e is the vector of ones

‚ Cpxq “ diagpc1pxq, . . . , cmpxqq

‚ Y pxq “ diagpy1pxq, . . . , ympxqq “ µC´1
pxq

‚ gpx, ypxqq “ gpxq ´ AT
pxqypxq: gradient of the Lagrangian

‚ Hpx, ypxqq “ Hpxq ´
m
ÿ

i“1

yipxqHipxq: Lagrangian Hessian



LIMITING DERIVATIVES OF Φ

Let I “ inactive set at x˚ = t1, . . . ,muzA
For small µ: roughly

∇xΦpx, µq “ gpxq ´ µAT
pxqC´1

pxqe

“ gpxq ´ AT
ApxqYApxqe

looooooooooomooooooooooon

moderate

´µAT
I pxqC

´1
I pxqe

loooooooomoooooooon

small

« gpxq ´ AT
ApxqyApxq

∇2
xxΦpx, µq “ Hpx, ypxqq

looooomooooon

moderate

`µAT
I pxqC

´2
I pxqAIpxq

looooooooooomooooooooooon

small

`
1

µ
AT

ApxqY
2
ApxqAApxq

looooooooooomooooooooooon

large

«
1

µ
AT

ApxqY
2
ApxqAApxq

“ AT
ApxqC

´1
A pxqYApxqAApxq

“ µAT
ApxqC

´2
A pxqAApxq



GENERIC BARRIER NEWTON SYSTEM

Newton correction s from x for barrier function is
´

Hpx, ypxqq ` AT
pxqC´1

pxqY pxqApxq
¯

s “ ´gpx, ypxqq

LIMITING NEWTON METHOD

For small µ: roughly

1

µ
AT

ApxqY
2
ApxqAApxqs « ´

´

gpxq ´ AT
ApxqyApxq

¯



POTENTIAL DIFFICULTIES I

Ill-conditioning of the Hessian of the barrier function:

roughly speaking (non-degenerate case)

‚ ma eigenvalues « λi

”

AT
AY

2
AAA

ı

{µk

‚ n´ma eigenvalues « λi

”

NT
AHpx˚, y˚qNA

ı

where

ma “ number of active constraints

A “ active set at x˚
Y “ diagonal matrix of Lagrange multipliers

NA “ orthogonal basis for null-space of AA

ùñ condition number of ∇2
xxΦpxk, µkq “ Op1{µkq

ùñ may not be able to find minimizer easily



POTENTIAL DIFFICULTIES II

Value xS

k`1 “ xk is a poor starting point: Suppose

0 « ∇xΦpxk, µkq “ gpxkq ´ µkA
T
pxkqC

´1
pxkqe

« gpxkq ´ µkA
T
ApxkqC

´1
A pxkqe

Roughly speaking (non-degenerate case) Newton correction satisfies

µk`1A
T
ApxkqC

´2
A pxkqAApxkqs « pµk`1 ´ µkqA

T
ApxkqC

´1
A pxkqe

ùñ (full rank)

AApxkqs «

ˆ

1´
µk
µk`1

˙

cApxkq

ùñ (Taylor expansion)

cApxk ` sq « cApxkq ` AApxkqs «

ˆ

2´
µk
µk`1

˙

cApxkq ă 0

if µk`1 ă
1
2µk ùñ Newton step infeasible ùñ slow convergence



PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize
xPIR

n
fpxq subject to cpxq ě 0

are:
gpxq ´ AT

pxqy “ 0 dual feasibility

Cpxqy “ 0 complementary slackness

cpxq ě 0 and y ě 0

Consider the “perturbed” problem

gpxq ´ AT
pxqy “ 0 dual feasibility

Cpxqy “ µe perturbed comp. slkns.

cpxq ą 0 and y ą 0

where µ ą 0



CENTRAL PATH TRAJECTORY
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TRAJECTORIES FOR THE NON-CONVEX CASE
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PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of

gpxq ´ AT
pxqy “ 0 and Cpxqy ´ µe “ 0

as 0 ă µÑ 0, while maintaining cpxq ą 0 and y ą 0

‚ this is a nonlinear system ùñ use Newton’s method

Newton correction ps, wq to px, yq satisfies
˜

Hpx, yq ´AT
pxq

Y Apxq Cpxq

¸˜

s

w

¸

“ ´

˜

gpxq ´ AT
pxqy

Cpxqy ´ µe

¸

Eliminate w ùñ
´

Hpx, yq ` AT
pxqC´1

pxqY Apxq
¯

s “ ´
´

gpxq ´ µAT
pxqC´1

pxqe
¯

c.f. Newton method for barrier minimization!



PRIMAL VS. PRIMAL-DUAL

Primal:
´

Hpx, ypxqq ` AT
pxqC´1

pxqY pxqApxq
¯

sP “ ´gpx, ypxqq

Primal-dual:
´

Hpx, yq ` AT
pxqC´1

pxqY Apxq
¯

sPD “ ´gpx, ypxqq

where

ypxq “ µC´1
pxqe

What is the difference?

‚ freedom to choose y in Hpx, yq ` AT
pxqC´1

pxqY Apxq for

primal-dual . . . vital

‚ Hessian approximation for small µ

Hpx, yq ` AT
pxqC´1

pxqY Apxq « AT
ApxqC

´1
A pxqYAAApxq



POTENTIAL DIFFICULTY II . . . REVISITED

Value xS

k`1 “ xk can be a good starting point:

‚ primal method has to choose y “ ypxS

kq “ µk`1C
´1
pxkqe

˛ factor µk`1{µk too small for a good Lagrange multiplier estimate

‚ primal-dual method can choose y “ µkC
´1
pxkqeÑ y˚

Advantage: roughly (non-degenerate case) correction sPD satisfies

µkA
T
ApxkqC

´2
A pxkqAApxkqs

PD « pµk`1 ´ µkqA
T
ApxkqC

´1
A pxkqe

ùñ (full rank)

AApxkqs
PD «

ˆ

µk`1

µk
´ 1

˙

cApxkq

ùñ (Taylor expansion)

cApxk ` s
PDq « cApxkq ` AApxkqs

PD «
µk`1

µk
cApxkq ą 0

ùñ Newton step allowed ùñ fast convergence



PRIMAL-DUAL BARRIER METHODS

Choose a search direction s for Φpx, µkq by

(approximately) solving the problem

minimize
sPIR

n
gpx, ypxqqTs` 1

2s
T
´

Hpx, yq ` AT
pxqC´1

pxqY Apxq
¯

s

possibly subject to a trust-region constraint

‚ ypxq “ µC´1
pxqe ùñ gpx, ypxqq “ ∇xΦpx, µq

‚ y “ . . .

˛ ypxq ùñ primal Newton method

˛ occasionally pµk´1{µkqypxq ùñ good starting point

˛ yOLD ` wOLD ùñ primal-dual Newton method

˛ maxpyOLD ` wOLD, εpµkqeq for “small” εpµkq ą 0

(e.g., εpµkq “ µ1.5
k ) ùñ practical primal-dual method



POTENTIAL DIFFICULTY I . . . REVISITED

Ill-conditioning ùñwe can’t solve equations accurately:

roughly (non-degenerate case, I “ inactive set at x˚)
˜

H ´AT

Y A C

¸˜

s

w

¸

“ ´

˜

g ´ ATy

Cy ´ µe

¸

ùñ

¨

˚

˝

H ´AT
A ´AT

I
YAAA CA 0

YIAI 0 CI

˛

‹

‚

¨

˚

˝

s

wA
wI

˛

‹

‚

“ ´

¨

˚

˝

g ´ AT
AyA ´ A

T
IyI

CAyA ´ µe

CIyI ´ µe

˛

‹

‚

ùñ

˜

H ` AT
IC

´1
I YIAI ´AT

A
AA CAY

´1
A

¸˜

s

wA

¸

“ ´

˜

g ´ AT
AyA ´ µA

T
IC

´1
I e

cA ´ µY
´1
A e

¸

‚ potentially bad terms C´1
I and Y ´1

A bounded

‚ in the limit becomes well-behaved
˜

H ´AT
A

AA 0

¸˜

s

wA

¸

“ ´

˜

g ´ AT
AyA

0

¸



PRACTICAL PRIMAL-DUAL METHOD

Given µ0 ą 0 and feasible pxS

0, y
S

0q, set k “ 0

Until “convergence” iterate:

Inner minimization: starting from pxS

k, y
S

kq, use an

unconstrained minimization algorithm to find pxk, ykq for which

}Cpxkqyk ´ µke} ď µk and }gpxkq ´ A
T
pxkqyk} ď µ1.00005

k

Set µk`1 “ minp0.1µk, µ
1.9999
k q

Find pxS

k`1, y
S

k`1q using a primal-dual Newton step from pxk, ykq

If pxS

k`1, y
S

k`1q is infeasible, reset pxS

k`1, y
S

k`1q to pxk, ykq

Increase k by 1



FAST ASYMPTOTIC CONVERGENCE

Theorem 3.8. Suppose that f , c P C2, that a subsequence

tpxk, ykqu, k P K, of the practical primal-dual method converges to

px˚, y˚q satisfying second-order sufficiency conditions, that AApx˚q

is full-rank, and that py˚qA ą 0. Then the starting point satisfies the

inner-minimization termination test (i.e., pxk, ykq “ px
S

k, y
S

kq) and

the whole sequence tpxk, ykqu converges to px˚, y˚q at a superlinear

rate (Q-factor 1.9998).



OTHER ISSUES

‚ polynomial algorithms for many convex problems

˛ linear programming

˛ quadratic programming

˛ semi-definite programming . . .

‚ excellent practical performance

‚ globally, need to keep away from constraint boundary until near

convergence, otherwise very slow

‚ initial interior point:

minimize
px,cq

xe, cy subject to cpxq ` c ě 0



Part 3c: SQP methods for

equality constrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

minimize
xPIR

n
fpxq subject to cpxq “ 0

Course on continuous optimization, STFC-RAL, February 2021



EQUALITY CONSTRAINED MINIMIZATION

minimize
xPIR

n
fpxq subject to cpxq “ 0

where the objective function f : IRn
ÝÑ IR

and the constraints c : IRn
ÝÑ IRm

pm ď nq

‚ assume that f, c P C1 (sometimes C2) and Lipschitz

‚ often in practice this assumption violated, but not necessary

‚ easily generalized to inequality constraints . . . but may be

better to use interior-point methods for these



OPTIMALITY AND NEWTON’S METHOD

1st order optimality:

gpx, yq ” gpxq ´ AT
pxqy “ 0 and cpxq “ 0

this is a nonlinear system (linear in y)

ùñ

use Newton’s method to find a correction ps, wq to px, yq

ùñ
˜

Hpx, yq ´AT
pxq

Apxq 0

¸˜

s

w

¸

“ ´

˜

gpx, yq

cpxq

¸



ALTERNATIVE FORMULATIONS

unsymmetric:
˜

Hpx, yq ´AT
pxq

Apxq 0

¸˜

s

w

¸

“ ´

˜

gpx, yq

cpxq

¸

or symmetric:
˜

Hpx, yq AT
pxq

Apxq 0

¸˜

s

´w

¸

“ ´

˜

gpx, yq

cpxq

¸

or (with y` “ y ` w) unsymmetric:
˜

Hpx, yq ´AT
pxq

Apxq 0

¸˜

s

y`

¸

“ ´

˜

gpxq

cpxq

¸

or symmetric:
˜

Hpx, yq AT
pxq

Apxq 0

¸˜

s

´y`

¸

“ ´

˜

gpxq

cpxq

¸



DETAILS

‚ Often approximate with symmetric B « Hpx, yq ùñ e.g.
˜

B AT
pxq

Apxq 0

¸˜

s

´y`

¸

“ ´

˜

gpxq

cpxq

¸

‚ solve system using

˛ unsymmetric (LU) factorization of

˜

B ´AT
pxq

Apxq 0

¸

˛ symmetric (indefinite) factorization of

˜

B AT
pxq

Apxq 0

¸

˛ symmetric factorizations of B and the

Schur Complement ApxqB´1AT
pxq

˛ iterative method (GMRES(k), MINRES, CG within N pAq,. . . )



AN ALTERNATIVE INTERPRETATION

QP : minimize
sPIR

n
xs, gpxqy ` 1

2xs, Bsy subject to Apxqs “ ´cpxq

‚ QP = quadratic program

‚ first-order model of constraints cpx` sq

‚ second-order model of objective fpx` sq . . . but

B includes curvature of constraints

solution to QP satisfies
˜

B AT
pxq

Apxq 0

¸˜

s

´y`

¸

“ ´

˜

gpxq

cpxq

¸



SEQUENTIAL QUADRATIC PROGRAMMING - SQP

or successive quadratic programming

or recursive quadratic programming (RQP)

Given px0, y0q, set k “ 0

Until “convergence” iterate:

Compute a suitable symmetric Bk using pxk, ykq

Find

sk “ arg min
sPIR

n
xgk, sy ` 1

2xs, Bksy subject to Aks “ ´ck

along with associated Lagrange multiplier estimates yk`1

Set xk`1 “ xk ` sk and increase k by 1



ADVANTAGES

‚ simple

‚ fast

˛ quadratically convergent with Bk “ Hpxk, ykq

˛ superlinearly convergent with good Bk « Hpxk, ykq

‚ don’t actually need Bk ÝÑ Hpxk, ykq

PROBLEMS WITH PURE SQP

‚ how to choose Bk?

‚ what if QPk is unbounded from below? and when?

‚ how do we globalize this iteration?


