# Part 1: A gentle introduction to nonlinear optimization

Nick Gould (nick.gould@stfc.ac.uk)

minimize f(x) subject to  $c_{\mathcal{E}}(x) = 0$  and  $c_{\mathcal{I}}(x) \ge 0$  $x \in \mathbb{R}^{n}$ 

Course on continuous optimization, STFC-RAL, February 2021

#### WHAT IS NONLINEAR PROGRAMMING?

#### Nonlinear optimization $\equiv$ nonlinear programming

minimize f(x) subject to  $c_{\mathcal{E}}(x) = 0$  and  $c_{\mathcal{I}}(x) \ge 0$ 

where

objective function  $f : \operatorname{IR}^n \longrightarrow \operatorname{IR}$ constraints  $c_{\mathcal{E}} : \operatorname{IR}^n \longrightarrow \operatorname{IR}^{m_e} (m_e \leq n)$  and  $c_{\mathcal{I}} : \operatorname{IR}^n \longrightarrow \operatorname{IR}^{m_i}$ 

- there may also be integrality restrictions
- concentrate on minimization since

$$\max_{x \in \mathcal{F}} f(x) = -\min_{x \in \mathcal{F}} (-f(x))$$



#### NODE EQUATIONS



# PIPE EQUATIONS



$$p_2^2 - p_1^2 + k_1 q_1^{2.8359} = 0$$

where  $p_i$  pressures  $q_i$  flows  $k_i$  constants In general:  $A^T p^2 + K q^{2.8359} = 0$   $\cdot$  non-linear  $\cdot$  sparse  $\cdot$  structured

#### **COMPRESSOR CONSTRAINTS**



$$q_1 - q_2 + z_1 \cdot c_1(p_1, q_1, p_2, q_2) = 0$$

where  $p_i$  **pressures** 

- $q_i$  flows
- $z_i$  0–1 variables

= 1 if machine is on

 $c_i$  nonlinear functions

In general:  $A_2^T q + z \cdot c(p,q) = 0$ 

- $\cdot$  non-linear
- $\cdot$  sparse
- $\cdot$  structured
- $\cdot$  0–1 variables

#### **OTHER CONSTRAINTS**

#### Bounds on pressures and flows

 $p_{\min} \leq p \leq p_{\max}$  $q_{\min} \leq q \leq q_{\max}$ 

• simple bounds on variables

## **OBJECTIVES**

Many possible objectives

- maximize / minimize sum of pressures
- minimize compressor fuel costs
- minimize supply
- + combinations of these

#### STATISTICS

British Gas National Transmission System

- 199 nodes
- 196 pipes
- 21 machines

Steady state problem  $\sim 400$  variables

24-hour variable demand problem with 10 minute discretization  ${\sim}58{,}000$  variables

**Challenge**: Solve this in real time

# TYPICAL PROBLEM

This problem is typical of real-world, large-scale applications

- simple bounds
- linear constraints
- nonlinear constraints
- structure
- global solution "required"
- integer variables
- discretization

# (SOME) OTHER APPLICATION AREAS

- minimum energy problems
- gas production models
- hydro-electric power scheduling
- structural design problems
- portfolio selection
- parameter determination in financial markets
- production scheduling problems
- computer tomography (image reconstruction)
- efficient models of alternative energy sources
- traffic equilibrium models
- machine learning/neural nets

#### **CLASSIFICATION OF OPTIMIZATION PROBLEMS**



#### **OPTIMIZATION PROBLEMS**

**Unconstrained minimization:** 

 $\begin{array}{c} \text{minimize} \quad f(x) \\ x \in \mathbb{R}^n \end{array}$ 

where the **objective function**  $f : \mathbb{IR}^n \longrightarrow \mathbb{IR}$ 

Equality constrained minimization:

minimize f(x) subject to c(x) = 0 $x \in \mathbb{R}^n$ 

where the **constraints**  $c : \mathbb{R}^n \longrightarrow \mathbb{R}^m \ (m \leq n)$ 

#### Inequality constrained minimization:

 $\underset{x \in \mathbb{R}^{n}}{\text{minimize } f(x) \text{ subject to } c(x) \ge 0 }$ where  $c : \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} (m \text{ may be larger than } n)$ 

# **OPTIMALITY CONDITIONS**

Optimality is **hidden**; it needs further thought and work to verify

Optimality conditions are useful because:

- they provide a means of guaranteeing that a candidate solution is indeed optimal (sufficient conditions), and
- they indicate when a point is not optimal (necessary conditions)

Furthermore they

guide in the design of algorithms, since
 lack of optimality ⇐→indication of improvement

#### THE GRADIENT

Let  $x \in \mathrm{IR}^n$ 

Suppose that f(x) is continuously differentiable  $(f \in C^1)$ . Then its **gradient** g(x) is the vector whose *i*-th component

$$g_i(x) = \frac{\partial f(x)}{\partial x_i}$$

for  $1 \leq i \leq n$ 

E.g, if

$$f(x) = x_1^2 + x_1 x_2$$

then

$$g(x) = \begin{pmatrix} 2x_1 + x_2 \\ x_1 \end{pmatrix}$$

#### THE HESSIAN MATRIX

Suppose that f(x) is twice-continuously differentiable  $(f \in C^2)$ . Then its **Hessian** (Otto Hesse, 1811–1874) H(x) is the matrix whose i, j-th component

$$H_{i,j}(x) = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

for  $1 \leq i, j \leq n$ 

E.g, if

$$f(x) = x_1^2 + x_1 x_2$$

then

$$H(x) = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$

Notice that the Hessian is always **symmetric** 

#### THE JACOBIAN MATRIX

Suppose that c(x) is vector-valued and continuously differentiable  $(c : \operatorname{IR}^n \to \operatorname{IR}^m, c \in C^1)$ . Then its **Jacobian** (Carl Jacobi, 1804-1851) J(x) is the matrix whose i, j-th component

$$J_{i,j}(x) = \frac{\partial c_i(x)}{\partial x_j}$$

for  $1 \leq i \leq m$  and  $1 \leq j \leq n$ 

E.g, if

$$c(x) = \begin{pmatrix} x_1^2 \\ x_1 + x_2^3 \end{pmatrix}$$

then

$$J(x) = \begin{pmatrix} 2x_1 & 0\\ 1 & 3x_2^2 \end{pmatrix}$$

Notice that the *i*-th row of the Jacobian is the transpose of the gradient of  $c_i(x)$ . Also that if c(x) = g(x), then J(x) = H(x)

#### INNER PRODUCTS AND NORMS

Suppose that  $x, y \in \mathbb{R}^n$ . Then the **inner product**  $\langle x, y \rangle$  between x and y is the component-wise sum

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

This defines the (Euclidean) **norm** 

$$\|x\|_2 = \sqrt{\langle x, x \rangle} \equiv \sqrt{\sum_{i=1}^n x_i^2}$$

Notice that  $||x||_2$  is always **non-negative** and only zero when x = 0

- If S is a symmetric matrix,  $||S|| = \max_{||x||=1} ||Sx||$
- There are other norms, e.g.,  $||x||_1 = \sum_{i=1}^{n} |x_i|$  and  $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$
- if we don't say otherwise  $\|\cdot\| = \|\cdot\|_2$

#### **EIGENPAIRS & POSITIVE-DEFINITE MATRICES**

Let S be a real, symmetric  $n \times n$  matrix.

S is said to have an **eigenpair**  $(\lambda, v)$  if

$$Sv = \lambda v,$$

where the **eigenvalue**  $\lambda$  is real and its **eigenvector** v has ||v|| = 1.

- S has n eigenvalues  $\lambda_i$ , and associated eigenvectors  $v_i$ ,  $1 \leq i \leq n$
- the eigenvectors are mutually orthogonal i.e.,  $\langle v_i, v_j \rangle = 0$  if  $i \neq j$ .
- $V = (v_1, ..., v_n)$ , S has a spectral decomposition  $S = V^T \Lambda V$ , where  $\Lambda = \text{diag}(\lambda_i)$

S is **positive (semi) definite** if (equivalently)

- $\lambda_i > 0 \ (\geq 0)$  for  $1 \leq i \leq n$
- $\langle u, Su \rangle > 0 \ (\geq 0)$  for all nonzero vectors u

#### LIPSCHITZ CONTINUITY (don't panic!!)

- $\mathcal{X}$  and  $\mathcal{Y}$  sets
- $F: \mathcal{X} \to \mathcal{Y}$
- $\|\cdot\|_{\mathcal{X}}$  and  $\|\cdot\|_{\mathcal{Y}}$  are norms

Then

• F is **Lipschitz** (Rudolf Lipschitz, 1832–1903) continuous at  $x \in \mathcal{X}$  if  $\exists \gamma(x)$  such that

$$\|F(z) - F(x)\|_{\mathcal{Y}} \leq \gamma(x)\|z - x\|_{\mathcal{X}}$$

for all  $z \in \mathcal{X}$ .

• F is **Lipschitz continuous throughout/in**  $\mathcal{X}$  if  $\exists \gamma$  such that

$$\|F(z) - F(x)\|_{\mathcal{Y}} \leq \gamma \|z - x\|_{\mathcal{X}}$$

for all x and  $z \in \mathcal{X}$ .

Essentially controls how far F(z) is from F(x) as z approaches x

#### **TAYLOR-SERIES APPROXIMATIONS**

A fundamental question is:

if we have a function f and know its value and derivatives at x, can we say anything about f at a nearby point x + s?

This question was addressed by Brook **Taylor** (1685–1731), who showed that in many cases a series approximation

$$f(x+s) \approx T_p(s) := f(x) + \sum_{i=1}^p \frac{f^{(i)}(x)[s]^i}{i!},$$

where  $f^{(i)}(x)$  is the *i*-th derivative of f at x, is increasingly accurate as  $p \to \infty$  (NB ... there is a lot hidden here in the notation!)

Computationally useful for p = 1 and 2:

$$m^{L}(x+s) = T_{1}(s) = f(x) + \langle g(x), s \rangle$$
  

$$m^{Q}(x+s) = T_{2}(s) = f(x) + \langle g(x), s \rangle + \frac{1}{2} \langle s, H(x)s \rangle$$

#### A USEFUL TAYLOR APPROXIMATION

**Theorem 1.1.** Let S be an open subset of  $\operatorname{IR}^n$ , and suppose  $f: S \to \operatorname{IR}$  is continuously differentiable throughout S. Suppose further that g(x) is Lipschitz continuous at x, with Lipschitz constant  $\gamma^L(x)$  in some appropriate vector norm. Then, if the segment  $x + \theta s \in S$  for all  $\theta \in [0, 1]$ ,

$$|f(x+s) - m^{L}(x+s)| \leq \frac{1}{2}\gamma^{L}(x)||s||^{2}, \text{ where}$$
$$m^{L}(x+s) = f(x) + \langle g(x), s \rangle.$$

If f is twice continuously differentiable throughout S and H(x) is Lipschitz continuous at x, with Lipschitz constant  $\gamma^Q(x)$ ,

$$|f(x+s) - m^Q(x+s)| \leq \frac{1}{6}\gamma^Q(x)||s||^3, \text{ where}$$
$$m^Q(x+s) = f(x) + \langle g(x), s \rangle + \frac{1}{2} \langle s, H(x)s \rangle.$$

#### ANOTHER USEFUL TAYLOR APPROXIMATION

**Theorem 1.2.** Let  $\mathcal{S}$  be an open subset of  $\mathbb{R}^n$ , and suppose F:  $\mathcal{S} \to \mathbb{R}^m$  is continuously differentiable throughout  $\mathcal{S}$ . Suppose further that  $\nabla_x F(x)$  is Lipschitz continuous at x, with Lipschitz constant  $\gamma^L(x)$  in some appropriate vector norm and its induced matrix norm. Then, if the segment  $x + \theta s \in \mathcal{S}$  for all  $\theta \in [0, 1]$ ,

$$||F(x+s) - M^{L}(x+s)|| \leq \frac{1}{2}\gamma^{L}(x)||s||^{2}$$
, where  
 $M^{L}(x+s) = F(x) + \nabla_{x}F(x)s.$ 

#### COROLLARY — NEWTON'S METHOD

Given a Lipschitz 
$$C^1$$
 function  $F : \operatorname{IR}^n \to \operatorname{IR}^n$ , Taylor  $\Longrightarrow$   
 $\|F(x+s) - M^L(x+s)\| \leq \frac{1}{2}\gamma^L(x)\|s\|^2$ , where  
 $M^L(x+s) = F(x) + \nabla_x F(x)s$ 

From given x with small F(x), pick s so that

$$M^{L}(x+s) = F(x) + \nabla_{x}F(x)s = 0$$

 $\|F(x+s)\| \leq \frac{1}{2}\gamma^{L}(x)\|s\|^{2} \leq \gamma^{L}(x)\|(\nabla_{x}F(x))^{-1}\|^{2}\|F(x)\|^{2}$ 

 $\implies$  usually quadratic rate of decrease

 $\implies$ 

Choosing  $s: \nabla_x F(x)s = -F(x)$  is **Newton's method** for finding a root of the nonlinear system F(x) = 0

#### **BLOCK NEWTON**

Given Lipschitz  $C^1$  function  $F : \operatorname{IR}^{n+m} \to \operatorname{IR}^{n+m}$  such that

$$F(x,y) = \left(\begin{array}{c} b(x,y) \\ c(x,y) \end{array}\right)$$

with  $x \in \mathbb{IR}^n$ ,  $y \in \mathbb{IR}^m$ ,  $b : \mathbb{IR}^{n+m} \to \mathbb{IR}^n$  and  $c : \mathbb{IR}^{n+m} \to \mathbb{IR}^m$ 

Newton equations are

$$\begin{pmatrix} \nabla_x b(x,y) & \nabla_y b(x,y) \\ \nabla_x c(x,y) & \nabla_y c(x,y) \end{pmatrix} \begin{pmatrix} s_x \\ s_y \end{pmatrix} = - \begin{pmatrix} b(x,y) \\ c(x,y) \end{pmatrix}$$

to get an improvement  $x + s_x$  and  $y + s_y$ 

# Part 2: Unconstrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

 $\underset{x \in \mathbb{R}^n}{\text{minimize } f(x) }$ 

Course on continuous optimization, STFC-RAL, February 2021

#### UNCONSTRAINED MINIMIZATION

 $\begin{array}{l} \underset{x \in \mathbb{R}^{n}}{\text{minimize } f(x)} \\ \text{where the objective function } f: \mathbb{R}^{n} \longrightarrow \mathbb{R} \end{array}$ 

- assume that  $f \in C^1$  (sometimes  $C^2$ ) and Lipschitz
- often in practice this assumption violated, but not necessary

# CONTENT

#### We shall discuss:

- optimality conditions
- quadratic minimization
- linesearch methods
- trust-region methods
- (regularization methods)

# OPTIMALITY CONDITIONS FOR UNCONSTRAINED MINIMIZATION

**First-order necessary optimality:** 

**Theorem 2.1.** Suppose that  $f \in C^1$ , and that  $x_*$  is a local minimizer of f(x). Then  $g(x_*) = 0.$ 

#### Second-order necessary optimality:

**Theorem 2.2.** Suppose that  $f \in C^2$ , and that  $x_*$  is a local minimizer of f(x). Then  $g(x_*) = 0$  and  $H(x_*)$  is positive semi-definite, that is

 $\langle s, H(x_*)s \rangle \ge 0$  for all  $s \in \mathbb{R}^n$ .

# **OPTIMALITY CONDITIONS** (cont.)

# Second-order sufficient optimality:

**Theorem 2.3.** Suppose that  $f \in C^2$ , that  $x_*$  satisfies the condition  $g(x_*) = 0$ , and that additionally  $H(x_*)$  is positive definite, that is

 $\langle s, H(x_*)s \rangle > 0$  for all  $s \neq 0 \in \mathbb{R}^n$ .

Then  $x_*$  is an isolated local minimizer of f.

#### MINIMIZING A CONVEX QUADRATIC FUNCTION

Generic convex quadratic problem: (B sym. positive definite)

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} q(x) = \langle g, x \rangle + \frac{1}{2} \langle x, Bx \rangle$$

If  $x_*$  is a minimizer, necessarily

$$\nabla q(x_*) = g + Bx_* = 0 \implies Bx_* = -g$$

Since B is positive definite,  $x_*$  is the unique (global) minimizer

How do we find  $x_*$ ?

- by **factorization** 
  - dense/spares Cholesky factorization of  $B = LL^T$ , L triangular
  - Forward and back solution Lz = -g then  $L^T x_* = z$
- approximately by **iteration**

#### ITERATIVE QUADRATIC MINIMIZATION

Many possible methods, the most effective is the method of **conjugate gradients**:

Given:

- a sequence of linearly-independent vectors  $\{p_j\}, 0 \leq j \leq n-1$
- a sequence of expanding matrices  $P_j = (p_0, \ldots, p_{j-1})$
- a sequence of expanding subspaces

$$\mathcal{P}_j = \{x : x = P_j v \text{ for some } v \in \mathbb{R}^j\}$$

Generate a sequence of successively improving estimates

$$x_j = \arg\min_{x \in \mathcal{P}_j} q(x)$$

 $\implies x_n = x_*$ 

# CONJUGATE GRADIENTS — THE CLEVER PARTS Let $g_j = \nabla q(x_j) = Bx_j + g$

• (easy) if we can select  $p_j$  so that  $\{p_i\}$  are *B***-conjugate**, i.e.,  $\langle p_j, Bp_i \rangle = 0$  for  $i \leq j$ 

$$x_{j+1} = x_j + \alpha_j p_j$$
, where  $\alpha_j = -\frac{\langle p_j, g_j \rangle}{\langle p_j, B p_j \rangle}$ 

• (trivial)

$$g_{j+1} = g_j + \alpha_j B p_j$$

• (messy) we can select  $p_j$  so that  $\{p_i\}$  are *B*-conjugate via

$$p_{j+1} = -g_{j+1} + \beta_j p_j$$
, where  $\beta_j = \frac{\|g_{j+1}\|}{\|g_j\|}$ 

#### CONJUGATE-GRADIENT (CG) METHOD

Set 
$$x_0 = 0$$
,  $g_0 = g$ ,  $p_0 = -g$  and  $i = 0$ .  
Until  $g_i$  "small", iterate  
 $\alpha_i = -\langle g_i, p_i \rangle / \langle p_i, Bp_i \rangle \equiv \arg \min_{\alpha} q(x_i + \alpha p_i)$   
 $x_{i+1} = x_i + \alpha_i p_i$   
 $g_{i+1} = g_i + \alpha_i Bp_i \equiv \nabla q(x_{i+1})$   
 $\beta_i = ||g_{i+1}||_2^2 / ||g_i||_2^2$   
 $p_{i+1} = -g_{i+1} + \beta_i p_i$   
and increase  $i$  by 1

Important features:

- $q(x_j) \leqslant q(x_{j-1})$
- $x_n = x_*$  (in exact arithmetic)
- may stop earlier if B is structured, e.g. clustered eigenvalues
- can accelerate by **preconditioning**

#### ITERATIVE METHODS FOR GENERAL f(x)

- in practice very rare to be able to provide explicit minimizer of f
- iterative method: given starting "guess"  $x_0$ , generate sequence

$$\{x_k\}, \ k = 1, 2, \dots$$

- **AIM:** ensure that (a subsequence) has some favourable limiting properties:
  - satisfies first-order necessary conditions
  - satisfies second-order necessary conditions

Notation:  $f_k = f(x_k), g_k = g(x_k), H_k = H(x_k).$ 

Part 2a: Linesearch methods for unconstrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

 $\begin{array}{c} \text{minimize } f(x) \\ x \in \mathbb{R}^n \end{array}$ 

Course on continuous optimization, STFC-RAL, February 2021
### LINESEARCH METHODS

- calculate a **search direction**  $d_k$  from  $x_k$
- ensure that this direction is a **descent direction**, i.e.,

$$\langle g_k, d_k \rangle < 0$$
 if  $g_k \neq 0$ 

(the **slope**  $\langle d_k, g_k \rangle$  is negative) so that, for small steps along  $d_k$ , the objective function **will** be reduced (Taylor's theorem)

• calculate a suitable **steplength**  $\alpha_k > 0$  so that

$$f(x_k + \alpha_k d_k) < f_k$$

- computation of  $\alpha_k$  is the **linesearch**—may itself be an iteration
- generic linesearch method:

$$x_{k+1} = x_k + \alpha_k d_k$$

#### STEPS MIGHT BE TOO LONG



The objective function  $f(x) = x^2$  and the iterates  $x_{k+1} = x_k + \alpha_k d_k$ generated by the descent directions  $d_k = (-1)^{k+1}$  and steps  $\alpha_k = 2 + 3/2^{k+1}$  from  $x_0 = 2$ 

#### STEPS MIGHT BE TOO SHORT



The objective function  $f(x) = x^2$  and the iterates  $x_{k+1} = x_k + \alpha_k d_k$ generated by the descent directions  $d_k = -1$  and steps  $\alpha_k = 1/2^{k+1}$ from  $x_0 = 2$ 

# PRACTICAL LINESEARCH METHODS

• in early days, pick  $\alpha_k$  to minimize

 $f(x_k + \alpha d_k)$ 

- **exact** linesearch—univariate minimization
- rather expensive and certainly not cost effective
- modern methods: **inexact** linesearch
  - ensure steps are neither too long nor too short
  - try to pick "useful" initial stepsize for fast convergence
  - best methods are either
    - "backtracking- Armijo" or
    - "Armijo-Goldstein"

based

# BACKTRACKING LINESEARCH

Procedure to find the stepsize  $\alpha_k$ :

Given  $\alpha_{\text{init}} > 0$  (e.g.,  $\alpha_{\text{init}} = 1$ ) let  $\alpha^{(0)} = \alpha_{\text{init}}$  and l = 0Until  $f(x_k + \alpha^{(l)}d_k)$  "<"  $f_k$ set  $\alpha^{(l+1)} = \tau \alpha^{(l)}$ , where  $\tau \in (0, 1)$  (e.g.,  $\tau = \frac{1}{2}$ ) and increase l by 1 Set  $\alpha_k = \alpha^{(l)}$ 

- this prevents the step from getting too small . . . but does not prevent too large steps relative to decrease in f
- need to tighten requirement

$$f(x_k + \alpha^{(l)}d_k) "<" f_k$$

### **ARMIJO CONDITION**

In order to prevent large steps relative to decrease in f, instead require

$$f(x_k + \alpha_k d_k) \leqslant f(x_k) + \beta \alpha_k \langle g_k, d_k \rangle$$

for some  $\beta \in (0, 1)$  (e.g.,  $\beta = 0.1$  or even  $\beta = 0.0001$ )



# BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize  $\alpha_k$ :

Given 
$$\alpha_{\text{init}} > 0$$
 (e.g.,  $\alpha_{\text{init}} = 1$ )  
let  $\alpha^{(0)} = \alpha_{\text{init}}$  and  $l = 0$   
Until  $f(x_k + \alpha^{(l)}d_k) \leq f(x_k) + \beta \alpha^{(l)} \langle g_k, d_k \rangle$   
set  $\alpha^{(l+1)} = \tau \alpha^{(l)}$ , where  $\tau \in (0, 1)$  (e.g.,  $\tau = \frac{1}{2}$ )  
and increase  $l$  by 1  
Set  $\alpha_k = \alpha^{(l)}$ 

### SATISFYING THE ARMIJO CONDITION

**Theorem 2.4.** Suppose that  $f \in C^1$ , that g(x) is Lipschitz continuous with Lipschitz constant  $\gamma(x)$ , that  $\beta \in (0, 1)$  and that d is a descent direction at x. Then the Armijo condition  $f(x + \alpha d) \leq f(x) + \alpha \beta \langle g(x), d \rangle$ 

 $J(\omega + \omega \omega) \leq J(\omega) + \omega \beta \langle g(\omega) \rangle$ 

is satisfied for all  $\alpha \in [0, \alpha_{\max(x)}]$ , where

$$\alpha_{\max} = \frac{2(\beta - 1)\langle g(x), d \rangle}{\gamma(x) \|d\|_2^2}$$

### THE ARMIJO LINESEARCH TERMINATES

**Corollary 2.5.** Suppose that  $f \in C^1$ , that g(x) is Lipschitz continuous with Lipschitz constant  $\gamma_k$  at  $x_k$ , that  $\beta \in (0, 1)$  and that  $d_k$  is a descent direction at  $x_k$ . Then the stepsize generated by the backtracking-Armijo linesearch terminates with

$$\alpha_k \ge \min\left(\alpha_{\text{init}}, \frac{2\tau(\beta-1)\langle g_k, d_k\rangle}{\gamma_k \|d_k\|_2^2}\right)$$

## GENERIC LINESEARCH METHOD

```
Given an initial guess x_0, let k = 0
Until convergence:
Find a descent direction d_k at x_k
Compute a stepsize \alpha_k using a
backtracking-Armijo linesearch along d_k
Set x_{k+1} = x_k + \alpha_k d_k, and increase k by 1
```

# **GLOBAL CONVERGENCE THEOREM**

**Theorem 2.6.** Suppose that  $f \in C^1$  and that g is Lipschitz continuous on  $\mathbb{IR}^n$ . Then, for the iterates generated by the Generic Linesearch Method,

either

 $g_l = 0$  for some  $l \ge 0$ 

or

$$\lim_{k \to \infty} f_k = -\infty$$

or

$$\lim_{k \to \infty} \min\left( |\langle d_k, g_k \rangle|, \frac{|\langle d_k, g_k \rangle|}{\|d_k\|_2} \right) = 0.$$

## METHOD OF STEEPEST DESCENT

The search direction

$$d_k = -g_k$$

gives the so-called **steepest-descent** direction.

- $d_k$  is a descent direction
- $d_k$  solves the problem

minimize 
$$m_k^L(x_k + d) := f_k + \langle g_k, d \rangle$$
  
 $d \in \mathbb{R}^n$   
subject to  $\|d\|_2 = \|g_k\|_2$ 

Any method that uses the steepest-descent direction is a **method of steepest descent**.

### GLOBAL CONVERGENCE FOR STEEPEST DESCENT

**Theorem 2.7.** Suppose that  $f \in C^1$  and that g is Lipschitz continuous on  $\mathbb{IR}^n$ . Then, for the iterates generated by the Generic Linesearch Method using the steepest-descent direction,

either

 $g_l = 0$  for some  $l \ge 0$ 

or

$$\lim_{k \to \infty} f_k = -\infty$$

or

$$\lim_{k \to \infty} g_k = 0.$$

# METHOD OF STEEPEST DESCENT (cont.)

- archetypical globally convergent method
- many other methods resort to steepest descent in bad cases
- not scale invariant
- convergence is usually very (very!) slow (linear)
- numerically often not convergent at all

#### STEEPEST DESCENT EXAMPLE



Contours for the objective function  $f(x, y) = 10(y - x^2)^2 + (x - 1)^2$ , and the iterates generated by the Generic Linesearch steepest-descent method

#### MORE GENERAL DESCENT METHODS

Let  $B_k$  be a **symmetric, positive definite** matrix, and define the search direction  $d_k$  so that

$$B_k d_k = -g_k$$

Then

- $d_k$  is a descent direction as  $\langle g_k, d_k \rangle = -\langle d_k, B_k d_k \rangle < 0$
- $d_k$  solves the problem

 $\underset{d \in \mathbb{R}^n}{\operatorname{minimize}} \ m_k^Q(x_k + d) := f_k + \langle g_k, d \rangle + \frac{1}{2} \langle d, B_k d \rangle$ 

• if the Hessian  $H_k$  is positive definite, and  $B_k = H_k$ , this is **Newton's method** 

### MORE GENERAL GLOBAL CONVERGENCE

**Theorem 2.8.** Suppose that  $f \in C^1$  and that g is Lipschitz continuous on  $\mathbb{IR}^n$ . Then, for the iterates generated by the Generic Linesearch Method using the more general descent direction, either

 $g_l = 0$  for some  $l \ge 0$ 

or

$$\lim_{k \to \infty} f_k = -\infty$$

or

$$\lim_{k \to \infty} g_k = 0$$

provided that the eigenvalues of  $B_k$  are uniformly bounded and bounded away from zero.

# MORE GENERAL DESCENT METHODS (cont.)

- may be viewed as "scaled" steepest descent
- convergence is often faster than steepest descent
- can be made scale invariant for suitable  $B_k$

## **CONVERGENCE OF NEWTON'S METHOD**

**Theorem 2.9.** Suppose that  $f \in C^2$  and that H is Lipschitz continuous on  $\mathbb{IR}^n$ . Then suppose that the iterates generated by the Generic Linesearch Method with  $\alpha_{\text{init}} = 1$  and  $\beta < \frac{1}{2}$ , in which the search direction is chosen to be the Newton direction  $d_k = -H_k^{-1}g_k$ whenever possible, has a limit point  $x_*$  for which  $H(x_*)$  is positive definite. Then

(i)  $\alpha_k = 1$  for all sufficiently large k,

(ii) the entire sequence  $\{x_k\}$  converges to  $x_*$ , and

(iii) the rate is Q-quadratic, i.e, there is a constant  $\kappa \ge 0$ .

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x_*\|_2}{\|x_k - x_*\|_2^2} \le \kappa.$$

## NEWTON METHOD EXAMPLE



Contours for the objective function  $f(x, y) = 10(y - x^2)^2 + (x - 1)^2$ , and the iterates generated by the Generic Linesearch Newton method

#### **MODIFIED NEWTON METHODS**

If  $H_k$  is indefinite, it is usual to solve instead

$$(H_k + M_k)d_k \equiv B_k d_k = -g_k$$

where

- $M_k$  chosen so that  $B_k = H_k + M_k$  is "sufficiently" positive definite
- $M_k = 0$  when  $H_k$  is itself "sufficiently" positive definite

Possibilities:

• If  $H_k$  has the spectral decomposition  $H_k = V_k^T \Lambda_k V_k$  then

$$B_k \equiv H_k + M_k = V_k^T \max(\epsilon, |\Lambda_k|) V_k$$

• 
$$M_k = \max(0, \epsilon - \lambda_{\min}(H_k))I$$

• Modified Cholesky:  $B_k \equiv H_k + M_k = L_k L_k^T$ 

### **QUASI-NEWTON METHODS**

Various attempts to approximate  $H_k$ :

1. **Finite-difference** approximations:

$$(H_k)e_i \approx \frac{g(x_k + he_i) - g_k}{h} = (B_k)e_i$$

for some "small" scalar h > 0

- needs n evaluations of g to get H, fewer if sparse
- may need to symmetrize  $H_k = \frac{1}{2}(H_k + H_k^T)$
- obviously parallel

### **QUASI-NEWTON METHODS** (continued)

2. Secant approximations: try to ensure the secant condition

$$B_{k+1}s_k = y_k$$
, where  $s_k = x_{k+1} - x_k$  and  $y_k = g_{k+1} - g_k$ 

Why? Because  $H_k s_k = y_k$  when f is quadratic

Examples:

• Symmetric Rank-1 method (but may be indefinite or even fail):

$$B_{k+1} = B_k + \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{\langle y_k - B_k s_k, s_k \rangle}$$

• **BFGS method**: (symmetric and positive definite if  $\langle y_k, s_k \rangle > 0$ ):

$$B_{k+1} = B_k + \frac{y_k y_k^T}{\langle y_k, s_k \rangle} - \frac{B_k s_k s_k^T B_k}{\langle s_k, B_k s_k \rangle}$$

Generally a low-rank (rank-one or -two) update of the existing  $B_k$ 

#### LIMITED-MEMORY METHODS

Quasi-Newton methods pick

 $B_{k+1} = B_k + \text{low-rank matrix combination}(y_k, s_k, B_k) \text{ where}$  $s_k = x_{k+1} - x_k \text{ and } y_k = g_{k+1} - g_k$  $\Longrightarrow$ 

 $B_{k+1} = B_0 + \text{matrix combination}(y_1, \dots, y_k, s_1, \dots, s_k, B_0)$ Limited-memory methods pick

 $B_{k+1} = B_j + \text{matrix combination}(y_{j+1}, \dots, y_k, s_{j+1}, \dots, s_k, B_{j+1})$ for some j close to k

- re-initialize using simple  $B_j$  (e.g  $B_j = I \Longrightarrow B_{k+1}$  is a low-rank modification of  $B_j$  using data  $\{y_{j+1}, \ldots, y_k, s_{j+1}, \ldots, s_k\}$
- efficient formulae to compute  $d_{k+1} = -B_{k+1}^{-1}g_{k+1}$
- **L-BFGS** using BFGS formula

#### **USE CG TO MINIMIZE CONVEX QUADRATIC MODEL**

For convex models  $(B_k \text{ positive definite})$ 

 $d_k = (\text{approximate}) \underset{d \in \mathrm{IR}^n}{\operatorname{arg min}} m_k^Q (x_k + d) f_k + \langle g_k, d \rangle + \frac{1}{2} \langle d, B_k d \rangle$ 

Can apply conjugate-gradients method to minimize

$$q(d) = m_k^Q(x_k + d)$$

Stop CG when

$$\|\nabla q(d_k)\| \leq \min(\|g_k\|^{\omega}, \eta)\|g_k\| \ (0 < \eta, \omega < 1)$$

 $\implies$  fast convergence

## NONLINEAR CONJUGATE-GRADIENT METHODS

method for minimizing quadratic f(x)

Given  $x_0$  and  $g(x_0)$ , set  $p_0 = -g(x_0)$  and i = 0. Until  $g(x_k)$  "small" iterate  $\alpha_i = \arg \min f(x_i + \alpha p_i)$   $x_{i+1} = x_i^{\alpha} + \alpha_i p_i$   $\beta_i = \|g(x_{i+1})\|_2^2 / \|g(x_i)\|_2^2$   $p_{i+1} = -g(x_{i+1}) + \beta_i p_i$ and increase i by 1

may also be used for nonlinear f(x) (Fletcher & Reeves)

- replace calculation of  $\alpha_i$  by suitable linesearch
- other methods pick different  $\beta_i$  to ensure descent (Polyak–Ribière, Hestenes–Stiefel, Hager–Zhang . . . )

Part 2b: Trust-region methods for unconstrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

 $\begin{array}{c} \text{minimize } f(x) \\ x \in \mathbb{R}^n \end{array}$ 

Course on continuous optimization, STFC-RAL, February 2021

# UNCONSTRAINED MINIMIZATION

 $\begin{array}{l} \underset{x \in \mathbb{R}^{n}}{\text{minimize } f(x)} \\ \text{where the objective function } f: \mathbb{R}^{n} \longrightarrow \mathbb{R} \end{array}$ 

- assume that  $f \in C^1$  (sometimes  $C^2$ ) and Lipschitz
- often in practice this assumption violated, but not necessary

# LINESEARCH VS TRUST-REGION METHODS

# • Linesearch methods

- pick descent direction  $d_k$
- pick stepsize  $\alpha_k$  to "reduce"  $f(x_k + \alpha d_k)$
- $x_{k+1} = x_k + \alpha_k d_k$
- Trust-region methods
  - pick step  $s_k$  to reduce "model" of  $f(x_k + s)$
  - accept  $x_{k+1} = x_k + s_k$  if decrease in model inherited by  $f(x_k + s_k)$
  - otherwise set  $x_{k+1} = x_k$ , "refine" model

#### TRUST-REGION MODEL PROBLEM

Model  $f(x_k + s)$  by:

• linear model

$$m_k^L(s) = f_k + \langle s, g_k \rangle$$

• quadratic model — symmetric  $B_k$ 

$$m_k^Q(s) = f_k + \langle g_k, s \rangle + \frac{1}{2} \langle s, B_k s \rangle$$

# Major difficulties:

- models may not resemble  $f(x_k + s)$  if s is large
- models may be unbounded from below
  - linear model always unless  $g_k = 0$
  - quadratic model always if  $B_k$  is indefinite, possibly if  $B_k$  is only positive semi-definite

# THE TRUST REGION

Prevent model  $m_k(s)$  from unboundedness by imposing a **trust-region** constraint

 $\|s\| \leqslant \Delta_k$ 

for some "suitable" scalar **radius**  $\Delta_k > 0$ 

# $\implies$ trust-region subproblem

approx minimize  $m_k(s)$  subject to  $||s|| \leq \Delta_k$  $s \in \mathbb{R}^n$ 

- in theory does not depend on norm  $\|\cdot\|$
- in practice it might!

### OUR MODEL

For simplicity, concentrate on the second-order (Newton-like) model

$$m_k(s) = m_k^Q(s) = f_k + \langle s, g_k \rangle + \frac{1}{2} \langle s, B_k s \rangle$$

and the  $\ell_2$ -trust region norm  $\|\cdot\| = \|\cdot\|_2$ 

Note:

- $B_k = H_k$  is allowed
- analysis for other trust-region norms simply adds extra constants in following results

## **TRUST-REGION EXAMPLES**



# **TRUST-REGION EXAMPLES (cont)**



Contours of quadratic model  $m_k(s)$  at (1, -0.5) with radius  $\Delta = 1.1$ 

# **TRUST-REGION EXAMPLES (cont)**



Contours of linear model  $m_k(s)$  at (1, -0.5) with radius  $\Delta = 1.1$ 

# **TRUST-REGION EXAMPLES (cont)**



Contours of quadratic model  $m_k(s)$  at (0,0) with radius  $\Delta = 1.1$
# **TRUST-REGION EXAMPLES (cont)**



Contours of quadratic model  $m_k(s)$  at (-0.25, 0.5) with radius  $\Delta = 1.1$ 

### **BASIC TRUST-REGION METHOD**

Given  $k = 0, \Delta_0 > 0$  and  $x_0$ , until "convergence" do: Build the second-order model  $m_k(s)$  of  $f(x_k + s)$ . "Solve" the trust-region subproblem to find  $s_k$ for which  $m_k(s_k)$  "<"  $f_k$  and  $||s_k|| \leq \Delta_k$ , and define  $\rho_k = \frac{f_k - f(x_k + s_k)}{f_k - m_k(s_k)}.$ If  $\rho_k \ge \eta_v$  [very successful]  $0 < \eta_v < 1$  $\gamma_i \geqslant 1$ set  $x_{k+1} = x_k + s_k$  and  $\Delta_{k+1} = \gamma_i \Delta_k$ Otherwise if  $\rho_k \ge \eta_s$  then [successful]  $0 < \eta_s \le \eta_v < 1$ set  $x_{k+1} = x_k + s_k$  and  $\Delta_{k+1} = \Delta_k$ Otherwise [unsuccessful] set  $x_{k+1} = x_k$  and  $\Delta_{k+1} = \gamma_d \Delta_k$  $0 < \gamma_d < 1$ Increase k by 1

## "SOLVE" THE TRUST REGION SUBPROBLEM?

At the very least

- aim to achieve as much reduction in the model as would an iteration of steepest descent
- Cauchy point:  $s_k^{\circ} = -\alpha_k^{\circ} g_k$  where

$$\alpha_k^{c} = \underset{\alpha > 0}{\arg \min} m_k(-\alpha g_k) \text{ subject to } \alpha \|g_k\| \leq \Delta_k$$
$$= \underset{0 < \alpha \leq \Delta_k / \|g_k\|}{\min} m_k(-\alpha g_k)$$

- minimize 1-D quadratic on line segment  $\implies$  very easy!
- require that

$$m_k(s_k) \leqslant m_k(s_k^{\text{c}}) \text{ and } \|s_k\| \leqslant \Delta_k$$

• in practice, hope to do far better than this

### ACHIEVABLE MODEL DECREASE

**Theorem 2.10.** If  $m_k(s)$  is the second-order model and  $s_k^{\text{c}}$  is its Cauchy point within the trust-region  $||s|| \leq \Delta_k$ ,  $f_k - m_k(s_k^{\text{c}}) \geq \frac{1}{2} ||g_k|| \min \left[\frac{||g_k||}{1 + ||B_k||}, \Delta_k\right].$ 

**Corollary 2.11.** If  $m_k(s)$  is the second-order model, and  $s_k$  is an improvement on the Cauchy point within the trust-region  $||s|| \leq \Delta_k$ ,  $f_k - m_k(s_k) \geq \frac{1}{2} ||g_k|| \min \left[\frac{||g_k||}{1 + ||B_k||}, \Delta_k\right].$ 

### DIFFERENCE BETWEEN MODEL AND FUNCTION

**Lemma 2.12.** Suppose that  $f \in C^2$ , and that the true and model Hessians satisfy the bounds  $||H(x)|| \leq \kappa_h$  for all x and  $||B_k|| \leq \kappa_b$ for all k and some  $\kappa_h \geq 1$  and  $\kappa_b \geq 0$ . Then

$$|f(x_k + s_k) - m_k(s_k)| \leq \kappa_d \Delta_k^2,$$

where  $\kappa_d = \frac{1}{2}(\kappa_h + \kappa_b)$ , for all k.

### ULTIMATE PROGRESS AT NON-OPTIMAL POINTS

**Lemma 2.13.** Suppose that  $f \in C^2$ , that the true and model Hessians satisfy the bounds  $||H_k|| \leq \kappa_h$  and  $||B_k|| \leq \kappa_b$  for all k and some  $\kappa_h \geq 1$  and  $\kappa_b \geq 0$ . Suppose furthermore that  $g_k \neq 0$  and that

$$\Delta_k \leqslant \left(\frac{1-\eta_v}{\kappa_h + \kappa_b}\right) \|g_k\|.$$

Then iteration k is very successful and

$$\Delta_{k+1} \ge \Delta_k.$$

# RADIUS WON'T SHRINK TO ZERO AT NON-OPTIMAL POINTS

**Lemma 2.14.** Suppose that  $f \in C^2$ , that the true and model Hessians satisfy the bounds  $||H_k|| \leq \kappa_h$  and  $||B_k|| \leq \kappa_b$  for all kand some  $\kappa_h \geq 1$  and  $\kappa_b \geq 0$ . Suppose furthermore that there is a constant  $\epsilon > 0$  such that

$$||g_k|| \ge \epsilon$$
 for all  $k$ .

Then

$$\Delta_k \ge \kappa_\epsilon \text{ where } \kappa_\epsilon := \epsilon \gamma_d \left( \frac{1 - \eta_v}{\kappa_h + \kappa_b} \right)$$

for all k.

### **POSSIBLE FINITE TERMINATION**

**Lemma 2.15.** Suppose that  $f \in C^2$ , and that both the true and model Hessians remain bounded for all k. Suppose furthermore that there are only finitely many successful iterations. Then  $x_k = x_*$  for all sufficiently large k and  $g(x_*) = 0$ .

## **GLOBAL CONVERGENCE OF ONE SEQUENCE**

**Theorem 2.16.** Suppose that  $f \in C^2$ , and that both the true and model Hessians remain bounded for all k. Then either

 $g_l = 0$  for some  $l \ge 0$ 

or

$$\lim_{k \to \infty} f_k = -\infty$$

or

$$\liminf_{k \to \infty} \|g_k\| = 0.$$

### **GLOBAL CONVERGENCE**

**Theorem 2.17.** Suppose that  $f \in C^2$ , and that both the true and model Hessians remain bounded for all k. Then either

 $g_l = 0$  for some  $l \ge 0$ 

or

$$\lim_{k \to \infty} f_k = -\infty$$

or

$$\lim_{k \to \infty} g_k = 0.$$

### **II: SOLVING THE TRUST-REGION SUBPROBLEM**

(approximately) minimize  $q(s) \equiv \langle g, s \rangle + \frac{1}{2} \langle s, Bs \rangle$  subject to  $||s|| \leq \Delta$  $s \in \mathbb{R}^n$ 

**AIM:** find  $s_*$  so that

 $q(s_*) \leqslant q(s^{\mathrm{c}}) \text{ and } ||s_*|| \leqslant \Delta$ 

Might solve

- exactly  $\implies$  Newton-like method
- approximately  $\implies$  steepest descent/conjugate gradients

### THE $\ell_2$ -NORM TRUST-REGION SUBPROBLEM

 $\underset{s \in \mathbb{R}^n}{\text{minimize}} q(s) \equiv \langle s, g \rangle + \frac{1}{2} \langle s, Bs \rangle \text{ subject to } \|s\|_2 \leq \Delta$ 

### Solution characterisation result:

**Theorem 2.18.** Any global minimizer  $s_*$  of q(s) subject to  $||s||_2 \leq \Delta$  satisfies the equation

 $(B + \lambda_* I)s_* = -g,$ 

where  $B + \lambda_* I$  is positive semi-definite,

 $\lambda_* \ge 0$  and  $\lambda_*(\|s_*\|_2 - \Delta) = 0.$ 

If  $B + \lambda_* I$  is positive definite,  $s_*$  is unique.

### ALGORITHMS FOR THE $\ell_2\text{-}\text{NORM}$ SUBPROBLEM

Two cases:

 $\implies$ 

- B positive-semi definite and Bs = -g satisfies  $\|s\|_2 \leq \Delta$  $\implies s_* = s$
- B indefinite or Bs = -g satisfies  $||s||_2 > \Delta$ 
  - $(B + \lambda_* I)s_* = -g$  and  $\langle s_*, s_* \rangle = \Delta^2$
  - nonlinear (quadratic) system in s and  $\lambda$
  - concentrate on this

### EQUALITY CONSTRAINED $\ell_2$ -NORM SUBPROBLEM

Suppose B has spectral decomposition

$$B = V^T \Lambda V$$

- V orthogonal matrix of eigenvectors
- A diagonal matrix of eigenvalues:  $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$

Require  $B + \lambda I = V^T (\Lambda + \lambda I) V$  positive semi-definite  $\implies \lambda \ge -\lambda_1$ Define

$$s(\lambda) = -(B + \lambda I)^{-1}g$$

Require the secular function

$$\psi(\lambda) := \|s(\lambda)\|_2^2 = \Delta^2$$

Note

$$(\gamma_i = \langle e_i, Vg \rangle)$$
  
$$\psi(\lambda) = \|V^T (\Lambda + \lambda I)^{-1} Vg\|_2^2 = \sum_{i=1}^n \frac{\gamma_i^2}{(\lambda_i + \lambda)^2}$$

### CONVEX EXAMPLE



### NONCONVEX EXAMPLE



### THE "HARD" CASE



## SUMMARY

For indefinite B:

**Hard case** occurs when g orthogonal to eigenvector  $v_1$  for most negative eigenvalue  $\lambda_1$  and  $\Delta$  "too large"

- OK if radius  $\Delta$  is small enough
- No "obvious" solution to equations . . . but solution is actually of the form

$$s_{\lim} + \sigma v_1$$

where

• 
$$s_{\lim} = \lim_{\lambda \to -\lambda_1} s(\lambda)$$
  
•  $\|s_{\lim} + \sigma v_1\|_2 = \Delta$ 

• very rare in practice ("probability 0" event)

# HOW TO SOLVE $\|\mathbf{s}(\lambda)\|_2 = \Delta$ DON'T!!

Solve instead the secular equation

$$\phi(\lambda) := \frac{1}{\|s(\lambda)\|_2} - \frac{1}{\Delta} = 0$$

- no poles
- smallest at eigenvalues (except in hard case!)
- analytic function  $\implies$  ideal for Newton
- global convergent (ultimately quadratic rate except in hard case)
- need to safeguard to protect Newton from the hard & interior solution cases

# THE SECULAR EQUATION



# **NEWTON'S METHOD & THE SECULAR EQUATION**

Let 
$$\lambda > -\lambda_1$$
 and  $\Delta > 0$  be given  
Until "convergence" do:  
Factorize  $B + \lambda I = LL^T$   
Solve  $LL^T s = -g$   
Solve  $Lw = s$   
Replace  $\lambda$  by  
 $\lambda + \left(\frac{\|s\|_2 - \Delta}{\Delta}\right) \left(\frac{\|s\|_2^2}{\|w\|_2^2}\right)$ 

### SOLVING THE LARGE-SCALE PROBLEM

- when n is large, factorization may be impossible
- may instead try to use an iterative method to approximate
  - steepest descent leads to the Cauchy point
  - obvious generalization: conjugate gradients ... but
    - what about the trust region?
    - what about negative curvature  $\langle s, Bs \rangle \leq 0$ ?

# CONJUGATE GRADIENTS TO "MINIMIZE" $\mathbf{q}(\mathbf{s})$

Set 
$$s_0 = 0$$
,  $g_0 = g$ ,  $p_0 = -g$  and  $i = 0$   
Until  $g_i$  "small" or breakdown, iterate  
 $\alpha_i = ||g_i||_2^2 / \langle p_i, Bp_i \rangle$   
 $s_{i+1} = s_i + \alpha_i p_i$   
 $g_{i+1} = g_i + \alpha_i Bp_i$   
 $\beta_i = ||g_{i+1}||_2^2 / ||g_i||_2^2$   
 $p_{i+1} = -g_{i+1} + \beta_i p_i$   
and increase  $i$  by 1

Important features

• 
$$g_j = Bs_j + g$$
 for all  $j = 0, \dots, i$ 

• 
$$\langle d_j, g_{i+1} \rangle = 0$$
 for all  $j = 0, \dots, i$ 

• 
$$\langle g_j, g_{i+1} \rangle = 0$$
 for all  $j = 0, \dots, i$ 

### **CRUCIAL PROPERTY OF CONJUGATE GRADIENTS**

**Theorem 2.19.** Suppose that the conjugate gradient method is applied to minimize q(s) starting from  $s_0 = 0$ , and that

 $\langle p_i, Bp_i \rangle > 0 \text{ for } 0 \leq i \leq k.$ 

Then the iterates  $s_j$  satisfy the inequalities

 $\|s_j\|_2 < \|s_{j+1}\|_2$ 

for  $0 \leq j \leq k-1$ .

### TRUNCATED CONJUGATE GRADIENTS

Apply the conjugate gradient method, but terminate at iteration i if

1.  $\langle d_i, Bd_i \rangle \leq 0 \implies$  problem unbounded along  $d_i$ 

2.  $||s_i + \alpha_i d_i||_2 > \Delta \implies$  solution on trust-region boundary

In both cases, stop with  $s_* = s_i + \alpha^{\scriptscriptstyle B} d_i$ , where  $\alpha^{\scriptscriptstyle B}$  chosen as positive root of

$$\|s_i + \alpha^{\mathrm{B}} d_i\|_2 = \Delta$$

Crucially

$$q(s_*) \leqslant q(s^{\circ})$$
 and  $||s_*||_2 \leqslant \Delta$ 

 $\implies$  TR algorithm converges to a first-order critical point

## HOW GOOD IS TRUNCATED C.G.?

In the convex case ... very good

**Theorem 2.20.** Suppose that the truncated conjugate gradient method is applied to minimize q(s) and that B is positive definite. Then the truncated and actual solutions to the problem,  $s_*$  and  $s_*^{\text{M}}$ , satisfy the bound

$$q(s_*) \leqslant \frac{1}{2}q(s_*^{\mathrm{M}})$$

In the non-convex case . . . maybe poor

- e.g., if g = 0 and B is indefinite  $\implies q(s_*) = 0$
- instead continue using equivalent Lanczos method to solve trust-region subproblem in subspace (GLTR method, see notes)

Part 2c: Miscellaneous methods for unconstrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

 $\underset{x \in \mathbb{R}^n}{\text{minimize } \frac{1}{2} \|c(x)\|_2^2 }$ 

Course on continuous optimization, STFC-RAL, February 2021

### AN ALTERNATIVE — CUBIC REGULARIZATION

Trust-region subproblem:

(approx) minimize  $f_k + \langle s, g_k \rangle + \frac{1}{2} \langle s, B_k s \rangle$  subject to  $||s|| \leq \Delta_k$  $s \in \mathbb{R}^n$ 

for adjustable radius  $\Delta_k > 0$ 

A modern alternative ... the **cubic-regularization** subproblem:

(approx) minimize  $f_k + \langle s, g_k \rangle + \frac{1}{2} \langle s, B_k s \rangle + \frac{1}{3} \sigma_k \|s\|^3$  $s \in \mathbb{R}^n$ 

for adjustable weight  $\sigma_k > 0$ 

- can consider weight as "one over radius"
- solve regularization subproblem using related secular equation
- perform essentially the same in practice
- theoretical better worst-case behaviour

### NONLINEAR LEAST-SQUARES

Given vector of **residuals**  $c : \mathbb{R}^n \to \mathbb{R}^m$  find

(approx) minimize 
$$||c(x)||_2$$
  
 $x \in \mathbb{R}^n$ 

Equivalent to the **smooth nonlinear least-squares** problem

(approx) minimize 
$$f(x) = \frac{1}{2} \|c(x)\|_2^2$$
  
 $x \in \mathbb{R}^n$ 

- the major use of unconstrained optimization
- model fitting to experimental data, e.g.  $c_i(x) = r_i(x) d_i$ , where  $r_i = r(x, p_i)$  and given parameters  $p_i$
- f(x) is bounded from below (by zero)

# NOTATION

Use the following in what follows:

$$a_{i}(x) := \nabla_{x}c_{i}(x) \qquad \text{gradient of } i\text{-th residual}$$

$$A(x) := [\nabla_{x}c^{T}(x)]^{T} \equiv \begin{pmatrix} a_{1}^{T}(x) \\ \cdots \\ a_{m}^{T}(x) \end{pmatrix} \qquad \text{Jacobian matrix of } c$$

$$H_{i}(x) := \nabla_{xx}^{2}c_{i}(x) \qquad \text{Hessian of } i\text{-th residual}$$

### DERIVATIVES OF THE LEAST-SQUARES FUNCTION

(approx) minimize  $f(x) = \frac{1}{2} \|c(x)\|_2^2$  $x \in \mathbb{R}^n$ 

• 
$$g(x) = A^T(x)c(x)$$
  
•  $H(x) = A^T(x)A(x) + \sum_{i=1}^m c_i(x)H_i(x)$ 

Notice that

• if 
$$c(x)$$
 is zero  $\implies H(x) = A^T(x)A(x)$ 

• if 
$$c(x)$$
 is small  $\implies H(x) \approx A^T(x)A(x)$ 

• suggests using second-derivative models with  $B_k = A_k^T A_k$ 

### METHODS FOR NONLINEAR LEAST-SQUARES

(approx) minimize  $f(x) = \frac{1}{2} \|c(x)\|_2^2$  $x \in \mathbb{R}^n$ 

So long as c is twice-continuously differentiable, can use linesearch/trust-region/regularization method to minimize f(x)

Alternative: use **first-order Taylor model** 

$$r_k(s) = c_k + A_k s$$

of the residual  $c(x_k + s) \implies$ **Gauss-Newton** model

$$m_k^{LS}(s) = \frac{1}{2} \|r_k(s)\|_2^2 = \frac{1}{2} \|c_k + A_k s\|_2^2$$
  
=  $\frac{1}{2} \|c_k\|_2^2 + \langle s, A_k^T c_k \rangle + \frac{1}{2} \langle s, A_k^T A_k s \rangle$ 

of  $f(x_k + s)$ 

### METHODS FOR NONLINEAR LEAST-SQUARES (cont)

Gauss-Newton model:

$$m_k^{LS}(s) = \frac{1}{2} \|r_k(s)\|_2^2 = \frac{1}{2} \|c_k + A_k s\|_2^2$$
  
=  $\frac{1}{2} \|c_k\|_2^2 + \langle s, A_k^T c_k \rangle + \frac{1}{2} \langle s, A_k^T A_k s \rangle$ 

• linesearch in direction  $d_k$ :

$$A_k^T A_k d_k = -A_k^T c_k$$

- may fail if  $A_k$  is (or becomes) rank deficient
- trust-region imposes  $||s|| \leq \Delta_k$  implies implicitly  $(A_k^T A_k + \lambda_k I)s_k = -A_k^T c_k$
- + quadratic regularization  $\frac{1}{2}\sigma_k \|s\|_2^2$  implies explicitly  $(A_k^T A_k + \sigma_k I)s_k = -A_k^T c_k$

Last two are  $\approx$  **Levenberg-Morrison-Marquardt** method

# Part 3: Constrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

$$\underset{x \in \mathbb{R}^{n}}{\text{minimize } f(x) \text{ subject to } c(x) \left\{ \begin{array}{l} \geq \\ = \end{array} \right\} 0$$

Course on continuous optimization, STFC-RAL, February 2021

### CONSTRAINED MINIMIZATION

$$\underset{x \in \mathbb{R}^{n}}{\text{minimize } f(x) \text{ subject to } c(x) \left\{ \begin{array}{l} \geq \\ = \end{array} \right\} 0$$

where the **objective function**  $f : \mathbb{IR}^n \longrightarrow \mathbb{IR}$ and the **constraints**  $c : \mathbb{IR}^n \longrightarrow \mathbb{IR}^m$ 

- assume that  $f, c \in C^1$  (sometimes  $C^2$ ) and Lipschitz
- often in practice this assumption violated, but not necessary

## CONTENT

We shall discuss:

- optimality conditions
- (gradient projection methods for bound constraints)
- penalty and augmented-Lagrangian methods
- barrier-function and interior-point methods
- (Sequential Quadratic Programming methods)
#### NOTATION

Use the following from now on:

$$a_{i}(x) := \nabla_{x}c_{i}(x)$$

$$A(x) := [\nabla_{x}c^{T}(x)]^{T} \equiv \begin{pmatrix} a_{1}^{T}(x) \\ \cdots \\ a_{m}^{T}(x) \end{pmatrix}$$

$$H_{i}(x) := \nabla_{xx}^{2}c_{i}(x)$$

$$\ell(x,y) := f(x) - \langle y, c(x) \rangle$$

$$(y, y) = f(x) - \langle y, c(x) \rangle$$

$$H(x,y) := \nabla_{xx}^2 \ell(x,y)$$
  
$$\equiv H(x) - \sum_{i=1}^m y_i H_i(x)$$

gradient of *i*th constraint
Jacobian matrix of *c*Hessian of *i*th constraint
Lagrangian function, where *y* are Lagrange multipliers
Hessian of the Lagrangian

#### EQUALITY CONSTRAINED MINIMIZATION

#### First-order necessary optimality:

**Theorem 3.1.** Suppose that  $f, c \in C^1$ , and that  $x_*$  is a local minimizer of f(x) subject to c(x) = 0. Then, so long as a first-order constraint qualification holds, there exist a vector of Lagrange multipliers  $y_*$  such that

 $c(x_*) = 0$  (**primal feasibility**) and  $g(x_*) - A^T(x_*)y_* = 0$  (**dual feasibility**).

# EQUALITY CONSTRAINED MINIMIZATION (cont.) Second-order necessary optimality:

**Theorem 3.2.** Suppose that  $f, c \in C^2$ , and that  $x_*$  is a local minimizer of f(x) subject to c(x) = 0. Then, provided that first-and second-order constraint qualifications hold, there exist a vector of Lagrange multipliers  $y_*$  such that

$$\langle s, H(x_*, y_*)s \rangle \ge 0$$
 for all  $s \in \mathcal{N}$ 

where

$$\mathcal{N} = \{ s \in \mathrm{IR}^n \mid A(x_*)s = 0 \}.$$

#### **INEQUALITY CONSTRAINED MINIMIZATION**

#### First-order necessary optimality:

**Theorem 3.3.** Suppose that  $f, c \in C^1$ , and that  $x_*$  is a local minimizer of f(x) subject to  $c(x) \ge 0$ . Then, provided that a first-order constraint qualification holds, there exist a vector of Lagrange multipliers  $y_*$  such that

 $c(x_*) \ge 0 \quad (\text{primal feasibility}),$   $g(x_*) - A^T(x_*)y_* = 0$   $\text{and} \quad y_* \ge 0 \quad (\text{dual feasibility}) \text{ and}$   $c_i(x_*)[y_*]_i = 0 \quad (\text{complementary slackness}).$ 

Often known as the **Karush-Kuhn-Tucker** (**KKT**) conditions

• second-order conditions are more complicated!

#### SIMPLE-BOUND MINIMIZATION

**First-order necessary optimality:** 

**Theorem 3.4.** Suppose that  $f \in C^1$ , and that  $x_*$  is a local minimizer of f(x) subject to  $x^{\text{\tiny L}} \leq x \leq x^{\text{\tiny U}}$ . Then

 $x^{\scriptscriptstyle \mathrm{L}} \leqslant x_* \leqslant x^{\scriptscriptstyle \mathrm{U}}$  and  $P[x_* - \alpha g(x_*)] = x_*,$ 

for all  $\alpha \ge 0$ , where the **projection** of x into the feasible region is

$$P_i[x] = \operatorname{mid}(x_i^{\scriptscriptstyle L}, x_i, x_i^{\scriptscriptstyle U}) = \begin{cases} x_i^{\scriptscriptstyle L} & \text{if } x_i < x_i^{\scriptscriptstyle L} \\ x_i^{\scriptscriptstyle U} & \text{if } x_i > x_i^{\scriptscriptstyle U} \\ x_i & \text{if } x_i^{\scriptscriptstyle L} \leqslant x_i \leqslant x_i^{\scriptscriptstyle U} \end{cases}$$

**True more generally:** if  $\mathcal{F}$  is a closed, non-empty convex set,  $x_*$ is a local minimizer of  $f(x) : x \in \mathcal{F}$ , then  $P_{\mathcal{F}}[x_* - \alpha g(x_*)] = x_*$  and  $x_* \in \mathcal{F}$ , where  $P_{\mathcal{F}}(x) = \arg \min ||x - y||$  is the projection of x into  $\mathcal{F}_{y \in \mathcal{F}}$ 

#### **GRADIENT-PROJECTION METHODS**

 $\begin{array}{l} \mbox{minimize } f(x) \mbox{ subject to } x \in (\mbox{closed, convex}) \ \mathcal{F}, \\ x \in {\rm I\!R}^n \end{array} \\ \mbox{Generalise steepest-descent to cope with convex constraints, starting} \\ \mbox{from } x_0 \in \mathcal{F} \end{array}$ 

Linesearch variant:

$$d_k = P_{\mathcal{F}}[x_k - g(x_k)] - x_k$$

+ Armjio linesearch for  $f(x_k + \alpha d_k)$  for  $\alpha \in (0, 1]$ 

**Trust-region variant:** for model  $m_k(s)$ 

$$s_k^{c} = s_k(\alpha_k)$$
, where **arc**  $s_k(\alpha) = P_{\mathcal{F}}[x_k - \alpha g(x_k)] - x_k$ 

and

$$\alpha_k = \underset{\alpha>0}{\operatorname{arg\ min\ }} m_k(s_k(\alpha)) \text{ subject to } \|s_k(\alpha)\| \leq \Delta_k$$

#### **BOUND-CONSTRAINED TRUST-REGION EXAMPLE**



Arc  $s_k(\alpha)$  (green) from (1, -0.5) with radius  $\Delta = 1.1$  and  $x \ge (0.7, -1.2)$ 

# Part 3a: Penalty and augmented Lagrangian methods for equality constrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

minimize f(x) subject to c(x) = 0 $x \in \mathbb{R}^n$ 

Course on continuous optimization, STFC-RAL, February 2021

#### **CONSTRAINTS AND MERIT FUNCTIONS**

Two conflicting goals:

- minimize the objective function f(x)
- satisfy the constraints

Overcome this by minimizing a composite **merit function**  $\Phi(x, p)$  for which

- *p* are parameters
- (some) minimizers of Φ(x, p) wrt x approach those of f(x) subject to the constraints as p approaches some set P
- only uses **unconstrained** minimization methods

#### AN EXAMPLE FOR EQUALITY CONSTRAINTS

minimize f(x) subject to c(x) = 0 $x \in \mathbb{R}^n$ 

Merit function (quadratic penalty function):

$$\Phi(x,\mu) = f(x) + \frac{1}{2\mu} \|c(x)\|_2^2$$

- required solution as  $\mu$  approaches {0} from above
- may have other useless stationary points

#### CONTOURS OF THE PENALTY FUNCTION



Quadratic penalty function for min  $x_1^2 + x_2^2$  subject to  $x_1 + x_2^2 = 1$ 

### CONTOURS OF THE PENALTY FUNCTION (cont.)



Quadratic penalty function for min  $x_1^2 + x_2^2$  subject to  $x_1 + x_2^2 = 1$ 

## BASIC QUADRATIC PENALTY FUNCTION ALGORITHM

Given  $\mu_0 > 0$ , set k = 0Until "convergence" iterate: Starting from  $x_k^s$ , use an unconstrained minimization algorithm to find an "approximate" minimizer  $x_k$  of  $\Phi(x, \mu_k)$ Compute  $\mu_{k+1} > 0$  smaller than  $\mu_k$  such that  $\lim_{k\to\infty} \mu_{k+1} = 0$  and increase k by 1

- often choose  $\mu_{k+1} = 0.1 \mu_k$  or even  $\mu_{k+1} = \mu_k^2$
- might choose  $x_{k+1}^{s} = x_k$

#### MAIN CONVERGENCE RESULT

**Theorem 3.5.** Suppose that  $f, c \in \mathcal{C}^2$ , that

 $\|\nabla_x \Phi(x_k, \mu_k)\|_2 \leqslant \epsilon_k,$ 

where  $\epsilon_k$  and  $\mu_k$  converge to zero as  $k \to \infty$ , that

$$y_k^{\mathbf{Q}} := -\frac{c(x_k)}{\mu_k}$$

and that  $x_k$  converges to  $x_*$  for which  $A(x_*)$  is full rank. Then  $x_*$  satisfies the first-order necessary optimality conditions for the problem

minimize 
$$f(x)$$
 subject to  $c(x) = 0$   
 $x \in \mathbb{R}^n$ 

and  $\{y_k^{\mathbf{Q}}\}\$  converge to the associated Lagrange multipliers  $y_*$ .

### ALGORITHMS TO MINIMIZE $\Phi(x, \mu)$

Can use

- linesearch methods
  - might use specialized linesearch to cope with large quadratic term  $\|c(x)\|_2^2/2\mu$
- trust-region methods
  - (ideally) need to "shape" trust region to cope with contours of the  $\|c(x)\|_2^2/2\mu$  term

## DERIVATIVES OF THE QUADRATIC PENALTY FUNCTION

• 
$$\Phi(x,\mu) = f(x) + \frac{1}{2\mu} \|c(x)\|_2^2$$
  
•  $\nabla_x \Phi(x,\mu) = g(x) + \frac{1}{\mu} A^T(x) c(x) = g(x,y^Q(x))$   
•  $\nabla_{xx}^2 \Phi(x,\mu) = H(x,y^Q(x)) + \frac{1}{\mu} A^T(x) A(x)$ 

where

- $g(x,y) = g(x) A^T(x)y$ : gradient of the Lagrangian
- Lagrange multiplier estimates:

$$y^{\mathbf{Q}}(x) = -\frac{c(x)}{\mu}$$

• 
$$H(x,y) = H(x) - \sum_{i=1}^{m} y_i H_i(x)$$
: Lagrangian Hessian

### GENERIC QUADRATIC PENALTY NEWTON SYSTEM

Newton correction s from x for quadratic penalty function is

$$\left(H(x, y^{\mathsf{Q}}(x)) + \frac{1}{\mu}A^{T}(x)A(x)\right)s = -g(x, y^{\mathsf{Q}}(x))$$

#### LIMITING DERIVATIVES OF $\Phi$

For small  $\mu$ : roughly

$$\nabla_{x}\Phi(x,\mu) = g(x) - A^{T}(x)y^{Q}(x)$$
  
moderate  
$$\nabla_{xx}^{2}\Phi(x,\mu) = H(x,y^{Q}(x)) + \frac{1}{\mu}A^{T}(x)A(x) \approx \frac{1}{\mu}A^{T}(x)A(x)$$
  
moderate  
$$\underbrace{H(x,y^{Q}(x))}_{\text{noderate}} + \underbrace{\frac{1}{\mu}A^{T}(x)A(x)}_{\text{large}} \approx \underbrace{\frac{1}{\mu}A^{T}(x)A(x)}_{\text{rank defficient}}$$

#### POTENTIAL DIFFICULTY

Ill-conditioning of the Hessian of the penalty function:

roughly speaking (non-degenerate case)

- *m* eigenvalues  $\approx \lambda_i \left[ A^T(x) A(x) \right] / \mu_k$
- n m eigenvalues  $\approx \lambda_i \left[ S^T(x) H(x_*, y_*) S(x) \right]$

where S(x) orthogonal basis for null-space of A(x)

 $\implies$  condition number of  $\nabla^2_{xx} \Phi(x_k, \mu_k) = O(1/\mu_k)$  $\implies$  may not be able to find minimizer easily

#### THE ILL-CONDITIONING IS BENIGN

Newton system:

$$\left(H(x, y^{\mathbf{Q}}(x)) + \frac{1}{\mu}A^{T}(x)A(x)\right)s = -\left(g(x) + \frac{1}{\mu}A^{T}(x)c(x)\right)$$

Define auxiliary variables

$$w = \frac{1}{\mu} \left( A(x)s + c(x) \right)$$

$$\begin{pmatrix} H(x, y^{Q}(x)) & A^{T}(x) \\ A(x) & -\mu I \end{pmatrix} \begin{pmatrix} s \\ w \end{pmatrix} = -\begin{pmatrix} g(x) \\ c(x) \end{pmatrix}$$

- essentially independent of  $\mu$  for small  $\mu \Longrightarrow \mathbf{no}$  inherent ill-conditioning
- thus can solve Newton equations accurately
- more sophisticated analysis  $\implies$  original system OK

#### PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize 
$$f(x)$$
 subject to  $c(x) = 0$   
 $x \in \mathbb{R}^n$ 

are:

$$g(x) - A^{T}(x)y = 0$$
 dual feasibility  
 $c(x) = 0$  primal feasibility

Consider the "perturbed" problem

$$g(x) - A^{T}(x)y = 0$$
 dual feasibility  
 $c(x) + \mu y = 0$  **perturbed** primal feasibility

where  $\mu > 0$ 

#### PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of

$$g(x) - A^{T}(x)y = 0$$
 and  $c(x) + \mu y = 0$ 

as  $0 < \mu \rightarrow 0$ 

• nonlinear system  $\implies$  use Newton's method

Newton correction (s, v) to (x, y) satisfies

$$\begin{pmatrix} H(x,y) & -A^{T}(x) \\ A(x) & \mu I \end{pmatrix} \begin{pmatrix} s \\ v \end{pmatrix} = -\begin{pmatrix} g(x) - A^{T}(x)y \\ c(x) + \mu y \end{pmatrix}$$

Eliminate  $v \Longrightarrow$  $\left(H(x,y) + \frac{1}{\mu}A^{T}(x)A(x)\right)s = -\left(g(x) + \frac{1}{\mu}A^{T}(x)c(x)\right)$ 

c.f. Newton method for quadratic penalty function minimization!

#### PRIMAL VS. PRIMAL-DUAL

Primal:

$$\left(H(x, y^{\mathsf{Q}}(x)) + \frac{1}{\mu}A^{T}(x)A(x)\right)s^{\mathsf{P}} = -g(x, y^{\mathsf{Q}}(x))$$

Primal-dual:

$$\left(H(x,y) + \frac{1}{\mu}A^T(x)A(x)\right)s^{\text{\tiny PD}} = -g(x,y^{\text{\tiny Q}}(x))$$

where

$$y^{\mathbf{Q}}(x) = -\frac{c(x)}{\mu}$$

What is the difference?

• freedom to choose y in H(x, y) for primal-dual ... vital

#### ANOTHER EXAMPLE FOR EQUALITY CONSTRAINTS

minimize f(x) subject to c(x) = 0 $x \in \mathbb{R}^n$ 

Merit function (augmented Lagrangian function):

$$\Phi(x, u, \mu) = f(x) - \langle y, c(x) \rangle + \frac{1}{2\mu} \|c(x)\|_2^2$$

where y and  $\mu$  are auxiliary **parameters** 

Two interpretations —

- shifted quadratic penalty function
- convexification of the Lagrangian function

Aim: adjust  $\mu$  and y to encourage convergence

# DERIVATIVES OF THE AUGMENTED LAGRANGIAN FUNCTION

• 
$$\Phi(x, y, \mu) = f(x) - \langle y, c(x) \rangle + \frac{1}{2\mu} \|c(x)\|_2^2$$
  
•  $\nabla_x \Phi(x, y, \mu) = g(x) - A^T(x)y + \frac{1}{\mu} A^T(x)c(x) = g(x, y^A(x))$   
•  $\nabla_{xx}^2 \Phi(x, y, \mu) = H(x, y^A(x)) + \frac{1}{\mu} A^T(x)A(x)$ 

where

- $g(x,y) = g(x) A^T(x)y$ : gradient of the Lagrangian
- **First-order** Lagrange multiplier estimates:

$$y^{A}(x) = y - \frac{c(x)}{\mu}$$
  
•  $H(x,y) = H(x) - \sum_{i=1}^{m} y_{i}(x)H_{i}(x)$ : Lagrangian Hessian

Crucially

$$c(x) = \mu[y^{\mathsf{A}}(x) - y]$$

#### AUGMENTED LAGRANGIAN CONVERGENCE

**Theorem 3.6.** Suppose that  $f, c \in C^2$ , that

 $\|\nabla_x \Phi(x_k, y_k, \mu_k)\|_2 \leqslant \epsilon_k,$ 

for given  $\{y_k\}$ , where  $\epsilon_k$  converges to zero as  $k \to \infty$ , that

$$y_k^{\mathrm{A}} := y_k - c(x_k)/\mu_k,$$

and that  $x_k$  converges to  $x_*$  for which  $A(x_*)$  is full rank. Then  $\{y_k^A\}$  converge to some  $y_*$  for which  $g(x_*) = A^T(x_*)y_*$ .

If additionally either

(i)  $\mu_k$  converges to zero for bounded  $y_k$  or

(ii)  $y_k$  converges to  $y_*$  for bounded  $\mu_k$ ,

then  $x_*$  and  $y_*$  satisfy the first-order necessary optimality conditions for the problem

minimize f(x) subject to c(x) = 0 $x \in \mathbb{R}^n$ 

# CONTOURS OF THE AUGMENTED LAGRANGIAN FUNCTION



Augmented Lagrangian function for min  $x_1^2 + x_2^2$  subject to  $x_1 + x_2^2 = 1$  with fixed  $\mu = 1$ 

# CONTOURS OF THE AUGMENTED LAGRANGIAN FUNCTION (cont.)



Augmented Lagrangian function for min  $x_1^2 + x_2^2$  subject to  $x_1 + x_2^2 = 1$  with fixed  $\mu = 1$ 

# CONVERGENCE OF AUGMENTED LAGRANGIAN METHODS

- convergence guaranteed if  $y_k$  fixed and  $\mu \longrightarrow 0$  $\implies y_k \longrightarrow y_*$  and  $c(x_k) \longrightarrow 0$
- check if  $||c(x_k)|| \leq \eta_k$  where  $\{\eta_k\} \longrightarrow 0$

• if so, set 
$$y_{k+1} = y_k - c(x_k)/\mu_k$$
 and  $\mu_{k+1} = \mu_k$ 

- if not, set  $y_{k+1} = y_k$  and  $\mu_{k+1} \leq \tau \mu_k$  for some  $\tau \in (0, 1)$
- reasonable:  $\eta_k = \mu_k^{0.1+0.9j}$  where j iterations since  $\mu_k$  last changed
- under such rules, can ensure  $\mu_k$  eventually unchanged under modest assumptions and (fast) linear convergence
- need also to ensure  $\mu_k$  is sufficiently large that  $\nabla^2_{xx} \Phi(x_k, y_k, \mu_k)$  is positive (semi-)definite

#### BASIC AUGMENTED LAGRANGIAN ALGORITHM

Given  $\mu_0 > 0$  and  $y_0$ , set k = 0Until "convergence" iterate: Starting from  $x_k^s$ , use an unconstrained minimization algorithm to find an "approximate" minimizer  $x_k$  of  $\Phi(x, y_k, \mu_k)$  for which  $\|\nabla_x \Phi(x_k, y_k, \mu_k)\| \leq \epsilon_k$ If  $\|c(x_k)\| \leq \eta_k$ , set  $y_{k+1} = y_k - c(x_k)/\mu_k$  and  $\mu_{k+1} = \mu_k$ Otherwise set  $y_{k+1} = u_k$  and  $\mu_{k+1} \leq \tau \mu_k$ Set suitable  $\epsilon_{k+1}$  and  $\eta_{k+1}$  and increase k by 1

- often choose  $\tau = \min(0.1, \sqrt{\mu_k})$
- might choose  $x_{k+1}^{s} = x_k$
- reasonable:  $\epsilon_k = \mu_k^{j+1}$  where j iterations since  $\mu_k$  last changed

## Part 3b: Interior-point methods for inequality constrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

minimize f(x) subject to  $c(x) \ge 0$  $x \in \mathbb{R}^n$ 

Course on continuous optimization, STFC-RAL, February 2021

#### CONSTRAINED MINIMIZATION

 $\underset{x \in {\rm I\!R}^n}{\text{minimize}} f(x) \text{ subject to } c(x) \ge 0$ 

where the **objective function**  $f : \mathbb{IR}^n \longrightarrow \mathbb{IR}$ and the **constraints**  $c : \mathbb{IR}^n \longrightarrow \mathbb{IR}^m$ 

- assume that  $f, c \in C^1$  (sometimes  $C^2$ ) and Lipschitz
- often in practice this assumption violated, but not necessary

#### CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:

- minimize the objective function f(x)
- satisfy the constraints

Recall — overcome this by minimizing a composite **merit function**  $\Phi(x, p)$  for which

- *p* are parameters
- (some) minimizers of  $\Phi(x, p)$  wrt x approach those of f(x) subject to the constraints as p approaches some set  $\mathcal{P}$
- only uses **unconstrained** minimization methods

#### A MERIT $F^{\underline{n}}$ FOR INEQUALITY CONSTRAINTS

 $\begin{array}{ll} \text{minimize} & f(x) & \text{subject to} & c(x) \ge 0 \\ & x \in \mathrm{IR}^n \end{array}$ 

Merit function (logarithmic barrier function):

$$\Phi(x,\mu) = f(x) - \mu \sum_{i=1}^{m} \log c_i(x)$$

- required solution as  $\mu$  approaches {0} from above
- may have other useless stationary points
- requires a strictly interior point to start
- consequent points are interior

#### **CONTOURS OF THE BARRIER FUNCTION**



## CONTOURS OF THE BARRIER FUNCTION (cont.)



#### **BASIC BARRIER FUNCTION ALGORITHM**

Given  $\mu_0 > 0$ , set k = 0Until "convergence" iterate: Find  $x_k^s$  for which  $c(x_k^s) > 0$ Starting from  $x_k^s$ , use an unconstrained minimization algorithm to find an "approximate" minimizer  $x_k$  of  $\Phi(x, \mu_k)$ Compute  $\mu_{k+1} > 0$  smaller than  $\mu_k$  such that  $\lim_{k\to\infty} \mu_{k+1} = 0$  and increase k by 1

- often choose  $\mu_{k+1} = 0.1\mu_k$  or even  $\mu_{k+1} = \mu_k^2$
- might choose  $x_{k+1}^{s} = x_k$
## MAIN CONVERGENCE RESULT

The **active set**  $\mathcal{A}(x) = \{i : c_i(x) = 0\}$ 

**Theorem 3.7.** Suppose that  $f, c \in C^2$ , that

 $\|\nabla_x \Phi(x_k, \mu_k)\|_2 \leqslant \epsilon_k$ 

where  $\epsilon_k$  converges to zero as  $k \to \infty$ , that

$$(y_k)_i := \mu_k / c_i(x_k)$$
 for  $i = 1, ..., m$ ,

and that  $x_k$  converges to  $x_*$  for which  $\{a_i(x_*)\}_{i \in \mathcal{A}(x_*)}$  are linearly independent. Then  $x_*$  satisfies the first-order necessary optimality conditions for the problem

minimize f(x) subject to  $c(x) \ge 0$  $x \in \mathbb{R}^n$ and  $\{y_k\}$  converge to the associated Lagrange multipliers  $y_*$ .

#### ACTIVE AND INACTIVE CONSTRAINTS

Since (complementary slackness)

$$c_i(x_*)(y_*)_i = 0$$
 for all  $i = 1, \dots m$ 

Often have  $\{x_k\} \to x_*$  and  $\{y_k\} \to y_*$  with

- $c_i(x_k) \to 0$  and  $(y_k)_i \to (y_*)_i > 0$  for  $i \in \mathcal{A}(x_*)$ active constraints
- $c_i(x_k) \to c_i(x_*) > 0$  and  $(y_k)_i \to 0$  for  $i \in \mathcal{I}(x_*) = \{1, \dots, m\} \setminus \mathcal{A}(x_*)$ inactive constraints
- sometimes **degeneracy**:  $c_i(x_*) = 0$  and  $(y_*)_i = 0$

# ALGORITHMS TO MINIMIZE $\Phi(x, \mu)$

Can use

- linesearch methods
  - should use specialized linesearch to cope with singularity of log
- trust-region methods
  - need to reject points for which  $c(x_k + s_k) \ge 0$
  - (ideally) need to "shape" trust region to cope with contours of the singularity

#### DERIVATIVES OF THE BARRIER FUNCTION

• 
$$\nabla_x \Phi(x,\mu) = g(x,y(x))$$
  
•  $\nabla_{xx}^2 \Phi(x,\mu) = H(x,y(x)) + \mu A^T(x) C^{-2}(x) A(x)$   
 $= H(x,y(x)) + A^T(x) C^{-1}(x) Y(x) A(x)$   
 $= H(x,y(x)) + \frac{1}{\mu} A^T(x) Y^2(x) A(x)$ 

where

• Lagrange multiplier estimates:  $y(x) = \mu C^{-1}(x)e$ where e is the vector of ones

• 
$$C(x) = diag(c_1(x), ..., c_m(x))$$

- $Y(x) = \text{diag}(y_1(x), \dots, y_m(x)) = \mu C^{-1}(x)$
- $g(x, y(x)) = g(x) A^{T}(x)y(x)$ : gradient of the Lagrangian

• 
$$H(x, y(x)) = H(x) - \sum_{i=1}^{m} y_i(x) H_i(x)$$
: Lagrangian Hessian

#### LIMITING DERIVATIVES OF $\Phi$

Let  $\mathcal{I}$  = inactive set at  $x_* = \{1, \ldots, m\} \setminus \mathcal{A}$ For small  $\mu$ : roughly

 $\nabla_x \Phi(x,\mu) = q(x) - \mu A^T(x) C^{-1}(x) e$  $= q(x) - A_{\mathcal{A}}^{T}(x)Y_{\mathcal{A}}(x)e - \mu A_{\mathcal{T}}^{T}(x)C_{\mathcal{T}}^{-1}(x)e$ moderate small  $\approx q(x) - A_{A}^{T}(x)y_{A}(x)$  $\nabla_{xx}^2 \Phi(x,\mu) = H(x,y(x)) + \mu A_{\mathcal{I}}^T(x) C_{\mathcal{I}}^{-2}(x) A_{\mathcal{I}}(x) + \frac{1}{\mu} A_{\mathcal{A}}^T(x) Y_{\mathcal{A}}^2(x) A_{\mathcal{A}}(x)$ moderate small large  $\approx \frac{1}{\mu} A_{\mathcal{A}}^T(x) Y_{\mathcal{A}}^2(x) A_{\mathcal{A}}(x)$  $= A_{\mathcal{A}}^{T}(x)C_{\mathcal{A}}^{-1}(x)Y_{\mathcal{A}}(x)A_{\mathcal{A}}(x)$  $= \mu A_{A}^{T}(x) C_{A}^{-2}(x) A_{A}(x)$ 

## GENERIC BARRIER NEWTON SYSTEM

Newton correction s from x for barrier function is

$$\left(H(x, y(x)) + A^{T}(x)C^{-1}(x)Y(x)A(x)\right)s = -g(x, y(x))$$

# LIMITING NEWTON METHOD

For small  $\mu$ : roughly

$$\frac{1}{\mu}A_{\mathcal{A}}^{T}(x)Y_{\mathcal{A}}^{2}(x)A_{\mathcal{A}}(x)s \approx -\left(g(x) - A_{\mathcal{A}}^{T}(x)y_{\mathcal{A}}(x)\right)$$

## POTENTIAL DIFFICULTIES I

**Ill-conditioning of the Hessian of the barrier function:** roughly speaking (non-degenerate case)

•  $m_a$  eigenvalues  $\approx \lambda_i \left[ A_A^T Y_A^2 A_A \right] / \mu_k$ 

• 
$$n - m_a$$
 eigenvalues  $\approx \lambda_i \left[ N_A^T H(x_*, y_*) N_A \right]$ 

where

 $m_a$  = number of active constraints

$$\mathcal{A} = \text{active set at } x_*$$

Y = diagonal matrix of Lagrange multipliers

 $N_{\mathcal{A}}$  = orthogonal basis for null-space of  $A_{\mathcal{A}}$ 

 $\implies$  condition number of  $\nabla_{xx}^2 \Phi(x_k, \mu_k) = O(1/\mu_k)$  $\implies$  may not be able to find minimizer easily

## POTENTIAL DIFFICULTIES II

Value  $x_{k+1}^{s} = x_{k}$  is a poor starting point: Suppose

$$0 \approx \nabla_x \Phi(x_k, \mu_k) = g(x_k) - \mu_k A^T(x_k) C^{-1}(x_k) e$$
  
 
$$\approx g(x_k) - \mu_k A^T_{\mathcal{A}}(x_k) C^{-1}_{\mathcal{A}}(x_k) e$$

Roughly speaking (non-degenerate case) Newton correction satisfies

$$\mu_{k+1} A_{\mathcal{A}}^T(x_k) C_{\mathcal{A}}^{-2}(x_k) A_{\mathcal{A}}(x_k) s \approx (\mu_{k+1} - \mu_k) A_{\mathcal{A}}^T(x_k) C_{\mathcal{A}}^{-1}(x_k) e$$
$$\implies \text{(full rank)}$$

$$A_{\mathcal{A}}(x_k)s \approx \left(1 - \frac{\mu_k}{\mu_{k+1}}\right)c_{\mathcal{A}}(x_k)$$

 $\implies$  (Taylor expansion)

$$c_{\mathcal{A}}(x_k+s) \approx c_{\mathcal{A}}(x_k) + A_{\mathcal{A}}(x_k)s \approx \left(2 - \frac{\mu_k}{\mu_{k+1}}\right)c_{\mathcal{A}}(x_k) < 0$$

if  $\mu_{k+1} < \frac{1}{2}\mu_k \implies$  Newton step infeasible  $\implies$  slow convergence

# PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

$$\begin{array}{ll} \text{minimize} & f(x) & \text{subject to} & c(x) \ge 0 \\ & x \in \mathrm{IR}^n \end{array}$$

are:

$$g(x) - A^{T}(x)y = 0$$
  

$$C(x)y = 0$$
 con  

$$c(x) \ge 0 \text{ and } y \ge 0$$

dual feasibility complementary slackness

Consider the "perturbed" problem

$$g(x) - A^{T}(x)y = 0$$
 dual feasibility  

$$C(x)y = \mu e$$
 **perturbed** comp. slkns.  

$$c(x) > 0 \text{ and } y > 0$$

where  $\mu > 0$ 

# CENTRAL PATH TRAJECTORY



Trajectory  $x(\mu)$  of perturbed optimality conditions as  $\mu$  ranges from infinity down to zero

## TRAJECTORIES FOR THE NON-CONVEX CASE



 $\min -2(x_1 - 0.25)^2 + 2(x_2 - 0.5)^2$ subject to  $x_1 + x_2 \le 1$  $3x_1 + x_2 \le 1.5$  $(x_1, x_2) \ge 0$ 

Trajectories  $x(\mu)$  of perturbed optimality conditions as  $\mu$  ranges from infinity down to zero

### PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of

$$g(x) - A^{T}(x)y = 0$$
 and  $C(x)y - \mu e = 0$ 

as  $0 < \mu \rightarrow 0$ , while maintaining c(x) > 0 and y > 0

• this is a nonlinear system  $\implies$  use Newton's method

Newton correction (s, w) to (x, y) satisfies

$$\begin{pmatrix} H(x,y) & -A^{T}(x) \\ YA(x) & C(x) \end{pmatrix} \begin{pmatrix} s \\ w \end{pmatrix} = -\begin{pmatrix} g(x) - A^{T}(x)y \\ C(x)y - \mu e \end{pmatrix}$$

Eliminate  $w \Longrightarrow$ 

$$\left(H(x,y) + A^{T}(x)C^{-1}(x)YA(x)\right)s = -\left(g(x) - \mu A^{T}(x)C^{-1}(x)e\right)$$

c.f. Newton method for barrier minimization!

## PRIMAL VS. PRIMAL-DUAL

## **Primal:**

$$\left(H(x, y(x)) + A^{T}(x)C^{-1}(x)Y(x)A(x)\right)s^{P} = -g(x, y(x))$$

# **Primal-dual:**

$$\left(H(x,y) + A^T(x)C^{-1}(x)YA(x)\right)s^{PD} = -g(x,y(x))$$

where

$$y(x) = \mu C^{-1}(x)e$$

What is the difference?

- freedom to choose y in  $H(x, y) + A^T(x)C^{-1}(x)YA(x)$  for primal-dual ... vital
- Hessian approximation for small  $\mu$

 $H(x,y) + A^{T}(x)C^{-1}(x)YA(x) \approx A^{T}_{\mathcal{A}}(x)C^{-1}_{\mathcal{A}}(x)Y_{\mathcal{A}}A_{\mathcal{A}}(x)$ 

#### POTENTIAL DIFFICULTY II ... REVISITED

Value  $x_{k+1}^{s} = x_k$  can be a good starting point:

- primal method has to choose  $y = y(x_k^s) = \mu_{k+1}C^{-1}(x_k)e$ 
  - factor  $\mu_{k+1}/\mu_k$  too small for a good Lagrange multiplier estimate
- primal-dual method can choose  $y = \mu_k C^{-1}(x_k) e \rightarrow y_*$

Advantage: roughly (non-degenerate case) correction  $s^{PD}$  satisfies

 $\mu_k A_{\mathcal{A}}^T(x_k) C_{\mathcal{A}}^{-2}(x_k) A_{\mathcal{A}}(x_k) s^{\text{\tiny PD}} \approx (\mu_{k+1} - \mu_k) A_{\mathcal{A}}^T(x_k) C_{\mathcal{A}}^{-1}(x_k) e$  $\implies \text{(full rank)}$ 

$$A_{\mathcal{A}}(x_k)s^{\text{\tiny PD}} \approx \left(\frac{\mu_{k+1}}{\mu_k} - 1\right)c_{\mathcal{A}}(x_k)$$

 $\implies$  (Taylor expansion)

$$c_{\mathcal{A}}(x_k + s^{\text{PD}}) \approx c_{\mathcal{A}}(x_k) + A_{\mathcal{A}}(x_k)s^{\text{PD}} \approx \frac{\mu_{k+1}}{\mu_k}c_{\mathcal{A}}(x_k) > 0$$

 $\implies$  Newton step allowed  $\implies$  fast convergence

#### PRIMAL-DUAL BARRIER METHODS

Choose a search direction s for  $\Phi(x, \mu_k)$  by (approximately) solving the problem

minimize  $g(x, y(x))^T s + \frac{1}{2} s^T \left( H(x, y) + A^T(x) C^{-1}(x) Y A(x) \right) s$  $s \in \mathbb{R}^n$ 

possibly subject to a trust-region constraint

• 
$$y(x) = \mu C^{-1}(x) e \Longrightarrow g(x, y(x)) = \nabla_x \Phi(x, \mu)$$

•  $y = \dots$ 

•  $y(x) \implies$  primal Newton method

- occasionally  $(\mu_{k-1}/\mu_k)y(x) \implies$  good starting point
- $y^{\text{OLD}} + w^{\text{OLD}} \implies$  primal-dual Newton method
- $\max(y^{\text{OLD}} + w^{\text{OLD}}, \epsilon(\mu_k)e)$  for "small"  $\epsilon(\mu_k) > 0$ (e.g.,  $\epsilon(\mu_k) = \mu_k^{1.5} \implies$  practical primal-dual method

### POTENTIAL DIFFICULTY I ... REVISITED

Ill-conditioning  $\Rightarrow$  we can't solve equations accurately: roughly (non-degenerate case,  $\mathcal{I} =$  inactive set at  $x_*$ )

$$\begin{pmatrix} H & -A^{T} \\ YA & C \end{pmatrix} \begin{pmatrix} s \\ w \end{pmatrix} = -\begin{pmatrix} g - A^{T}y \\ Cy - \mu e \end{pmatrix} \Longrightarrow$$
$$\begin{pmatrix} H & -A_{\mathcal{A}}^{T} - A_{\mathcal{I}}^{T} \\ Y_{\mathcal{A}}A_{\mathcal{A}} & C_{\mathcal{A}} & 0 \\ Y_{\mathcal{I}}A_{\mathcal{I}} & 0 & C_{\mathcal{I}} \end{pmatrix} \begin{pmatrix} s \\ w_{\mathcal{A}} \\ w_{\mathcal{I}} \end{pmatrix} = -\begin{pmatrix} g - A_{\mathcal{A}}^{T}y_{\mathcal{A}} - A_{\mathcal{I}}^{T}y_{\mathcal{I}} \\ C_{\mathcal{A}}y_{\mathcal{A}} - \mu e \\ C_{\mathcal{I}}y_{\mathcal{I}} - \mu e \end{pmatrix} \Longrightarrow$$
$$\begin{pmatrix} H + A_{\mathcal{I}}^{T}C_{\mathcal{I}}^{-1}Y_{\mathcal{I}}A_{\mathcal{I}} & -A_{\mathcal{A}}^{T} \\ A_{\mathcal{A}} & C_{\mathcal{A}}Y_{\mathcal{A}}^{-1} \end{pmatrix} \begin{pmatrix} s \\ w_{\mathcal{A}} \end{pmatrix} = -\begin{pmatrix} g - A_{\mathcal{A}}^{T}y_{\mathcal{A}} - \mu A_{\mathcal{I}}^{T}C_{\mathcal{I}}^{-1}e \\ c_{\mathcal{A}} - \mu Y_{\mathcal{A}}^{-1}e \end{pmatrix}$$

• potentially bad terms  $C_{\mathcal{I}}^{-1}$  and  $Y_{\mathcal{A}}^{-1}$  bounded

• in the limit becomes well-behaved

$$\begin{pmatrix} H & -A_{\mathcal{A}}^{T} \\ A_{\mathcal{A}} & 0 \end{pmatrix} \begin{pmatrix} s \\ w_{\mathcal{A}} \end{pmatrix} = -\begin{pmatrix} g - A_{\mathcal{A}}^{T} y_{\mathcal{A}} \\ 0 \end{pmatrix}$$

# PRACTICAL PRIMAL-DUAL METHOD

Given  $\mu_0 > 0$  and feasible  $(x_0^s, y_0^s)$ , set k = 0Until "convergence" iterate: **Inner minimization**: starting from  $(x_k^s, y_k^s)$ , use an unconstrained minimization algorithm to find  $(x_k, y_k)$  for which  $\|C(x_k)y_k - \mu_k e\| \leq \mu_k$  and  $\|g(x_k) - A^T(x_k)y_k\| \leq \mu_k^{1.00005}$ Set  $\mu_{k+1} = \min(0.1\mu_k, \mu_k^{1.9999})$ Find  $(x_{k+1}^s, y_{k+1}^s)$  using a primal-dual Newton step from  $(x_k, y_k)$ If  $(x_{k+1}^s, y_{k+1}^s)$  is infeasible, reset  $(x_{k+1}^s, y_{k+1}^s)$  to  $(x_k, y_k)$ Increase k by 1

## FAST ASYMPTOTIC CONVERGENCE

**Theorem 3.8.** Suppose that  $f, c \in C^2$ , that a subsequence  $\{(x_k, y_k)\}, k \in \mathcal{K}$ , of the practical primal-dual method converges to  $(x_*, y_*)$  satisfying second-order sufficiency conditions, that  $A_{\mathcal{A}}(x_*)$  is full-rank, and that  $(y_*)_{\mathcal{A}} > 0$ . Then the starting point satisfies the inner-minimization termination test (i.e.,  $(x_k, y_k) = (x_k^s, y_k^s)$ ) and the whole sequence  $\{(x_k, y_k)\}$  converges to  $(x_*, y_*)$  at a superlinear rate (Q-factor 1.9998).

# **OTHER ISSUES**

- polynomial algorithms for many convex problems
  - linear programming
  - quadratic programming
  - semi-definite programming ...
- excellent practical performance
- globally, need to keep away from constraint boundary until near convergence, otherwise very slow
- initial interior point:

minimize  $\langle e, c \rangle$  subject to  $c(x) + c \ge 0$ (x,c)

# Part 3c: SQP methods for equality constrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

minimize f(x) subject to c(x) = 0 $x \in \mathbb{R}^n$ 

Course on continuous optimization, STFC-RAL, February 2021

### EQUALITY CONSTRAINED MINIMIZATION

 $\begin{array}{ll} \text{minimize} & f(x) & \text{subject to} & c(x) = 0 \\ & x \in {\rm I\!R}^n \end{array}$ 

where the **objective function**  $f : \mathbb{IR}^n \longrightarrow \mathbb{IR}$ and the **constraints**  $c : \mathbb{IR}^n \longrightarrow \mathbb{IR}^m$   $(m \leq n)$ 

- assume that  $f, c \in C^1$  (sometimes  $C^2$ ) and Lipschitz
- often in practice this assumption violated, but not necessary
- easily generalized to inequality constraints . . . but may be better to use interior-point methods for these

## **OPTIMALITY AND NEWTON'S METHOD**

1st order optimality:

 $\implies$ 

 $\Longrightarrow$ 

$$g(x,y) \equiv g(x) - A^T(x)y = 0$$
 and  $c(x) = 0$ 

this is a nonlinear system (linear in y)

use Newton's method to find a correction (s, w) to (x, y)

$$\begin{pmatrix} H(x,y) & -A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ w \end{pmatrix} = -\begin{pmatrix} g(x,y) \\ c(x) \end{pmatrix}$$

# **ALTERNATIVE FORMULATIONS**

unsymmetric:

$$\begin{pmatrix} H(x,y) & -A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ w \end{pmatrix} = -\begin{pmatrix} g(x,y) \\ c(x) \end{pmatrix}$$

or symmetric:

$$\begin{pmatrix} H(x,y) & A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ -w \end{pmatrix} = -\begin{pmatrix} g(x,y) \\ c(x) \end{pmatrix}$$

or (with  $y^+ = y + w$ ) unsymmetric:

$$\begin{pmatrix} H(x,y) & -A^T(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ y^+ \end{pmatrix} = -\begin{pmatrix} g(x) \\ c(x) \end{pmatrix}$$

or symmetric:

$$\begin{pmatrix} H(x,y) & A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ -y^{+} \end{pmatrix} = -\begin{pmatrix} g(x) \\ c(x) \end{pmatrix}$$

## DETAILS

• Often approximate with symmetric  $B \approx H(x, y) \Longrightarrow$  e.g.

$$\begin{pmatrix} B & A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ -y^{+} \end{pmatrix} = -\begin{pmatrix} g(x) \\ c(x) \end{pmatrix}$$

• solve system using

• unsymmetric (LU) factorization of 
$$\begin{pmatrix} B & -A^T(x) \\ A(x) & 0 \end{pmatrix}$$
  
• symmetric (indefinite) factorization of  $\begin{pmatrix} B & A^T(x) \\ A(x) & 0 \end{pmatrix}$ 

- symmetric factorizations of B and the Schur Complement  $A(x)B^{-1}A^{T}(x)$
- iterative method (GMRES(k), MINRES, CG within  $\mathcal{N}(A), \dots$ )

## AN ALTERNATIVE INTERPRETATION

**QP** : minimize  $\langle s, g(x) \rangle + \frac{1}{2} \langle s, Bs \rangle$  subject to A(x)s = -c(x) $s \in \mathbb{R}^n$ 

- QP = quadratic program
- first-order model of constraints c(x+s)
- second-order model of objective  $f(x + s) \dots$  but B includes curvature of constraints

solution to QP satisfies

$$\begin{pmatrix} B & A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ -y^{+} \end{pmatrix} = -\begin{pmatrix} g(x) \\ c(x) \end{pmatrix}$$

# SEQUENTIAL QUADRATIC PROGRAMMING - SQP

or **successive** quadratic programming or **recursive** quadratic programming (RQP)

```
Given (x_0, y_0), set k = 0
Until "convergence" iterate:
Compute a suitable symmetric B_k using (x_k, y_k)
Find
s_k = \underset{s \in \mathbb{R}^n}{\operatorname{arg\ min}} \langle g_k, s \rangle + \frac{1}{2} \langle s, B_k s \rangle subject to A_k s = -c_k
along with associated Lagrange multiplier estimates y_{k+1}
Set x_{k+1} = x_k + s_k and increase k by 1
```

# ADVANTAGES

- simple
- fast
  - quadratically convergent with  $B_k = H(x_k, y_k)$
  - superlinearly convergent with good  $B_k \approx H(x_k, y_k)$ 
    - don't actually need  $B_k \longrightarrow H(x_k, y_k)$

# PROBLEMS WITH PURE SQP

- how to choose  $B_k$ ?
- what if  $QP_k$  is unbounded from below? and when?
- how do we globalize this iteration?