Part 1: A gentle introduction to nonlinear optimization

Nick Gould (nick.gould@stfc.ac.uk)
minimize $f(x)$ subject to $c_{\mathcal{E}}(x)=0$ and $c_{\mathcal{I}}(x) \geqslant 0$ $x \in \mathbb{R}^{n}$

Course on continuous optimization, STFC-RAL, February 2021

WHAT IS NONLINEAR PROGRAMMING?

Nonlinear optimization \equiv nonlinear programming

$$
\underset{x}{\operatorname{minimize}} f(x) \text { subject to } c_{\mathcal{E}}(x)=0 \text { and } c_{\mathcal{I}}(x) \geqslant 0
$$

where
objective function $f: \mathrm{IR}^{n} \longrightarrow \mathrm{IR}$
constraints $c_{\mathcal{E}}: \mathbb{R}^{n} \longrightarrow \operatorname{IR}^{m_{e}}\left(m_{e} \leqslant n\right)$ and $c_{\mathcal{I}}: \operatorname{IR}^{n} \longrightarrow \mathbb{R}^{m_{i}}$

- there may also be integrality restrictions
- concentrate on minimization since

$$
\max _{x \in \mathcal{F}} f(x)=-\min _{x \in \mathcal{F}}(-f(x))
$$

AN EXAMPLE

Optimization of a high-pressure gas network

British Gas (Transco) Oxford University RAL

Transco
National
Transmission
System

NODE EQUATIONS

$q_{1}+q_{2}-q_{3}-d_{1}=0$
where q_{i} flows
d_{i} demands

In general: $A q-d=0$

- linear
- sparse
- structured

PIPE EQUATIONS

In general: $A^{T} p^{2}+K q^{2.8359}=0$

- non-linear
- sparse
- structured

COMPRESSOR CONSTRAINTS

OTHER CONSTRAINTS

Bounds on pressures and flows

$$
\begin{aligned}
& p_{\min } \leqslant p \leqslant p_{\max } \\
& q_{\min } \leqslant q \leqslant q_{\max }
\end{aligned}
$$

- simple bounds on variables

OBJECTIVES

Many possible objectives

- maximize / minimize sum of pressures
- minimize compressor fuel costs
- minimize supply
+ combinations of these

STATISTICS

British Gas National Transmission System

- 199 nodes
- 196 pipes
- 21 machines

Steady state problem
~ 400 variables
24-hour variable demand problem with 10 minute discretization
$\sim 58,000$ variables
Challenge: Solve this in real time

TYPICAL PROBLEM

This problem is typical of real-world, large-scale applications

- simple bounds
- linear constraints
- nonlinear constraints
- structure
- global solution "required"
- integer variables
- discretization

(SOME) OTHER APPLICATION AREAS

- minimum energy problems
- gas production models
- hydro-electric power scheduling
- structural design problems
- portfolio selection
- parameter determination in financial markets
- production scheduling problems
- computer tomography (image reconstruction)
- efficient models of alternative energy sources
- traffic equilibrium models
- machine learning/neural nets

CLASSIFICATION OF OPTIMIZATION PROBLEMS

OPTIMIZATION PROBLEMS

Unconstrained minimization:

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)
$$

where the objective function $f: \mathbb{R}^{n} \longrightarrow \mathrm{IR}$

Equality constrained minimization:

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)=0
$$

where the constraints $c: \mathbb{R}^{n} \longrightarrow \operatorname{IR}^{m}(m \leqslant n)$

Inequality constrained minimization:

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x) \geqslant 0
$$

where $c: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}(m$ may be larger than $n)$

OPTIMALITY CONDITIONS

Optimality is hidden; it needs further thought and work to verify

Optimality conditions are useful because:

- they provide a means of guaranteeing that a candidate solution is indeed optimal (sufficient conditions), and
- they indicate when a point is not optimal (necessary conditions)

Furthermore they

- guide in the design of algorithms, since
lack of optimality \Longleftrightarrow indication of improvement

THE GRADIENT

Let $x \in \mathbb{R}^{n}$
Suppose that $f(x)$ is continuously differentiable $\left(f \in C^{1}\right)$.
Then its gradient $g(x)$ is the vector whose i-th component

$$
g_{i}(x)=\frac{\partial f(x)}{\partial x_{i}}
$$

for $1 \leqslant i \leqslant n$
E.g, if

$$
f(x)=x_{1}^{2}+x_{1} x_{2}
$$

then

$$
g(x)=\binom{2 x_{1}+x_{2}}{x_{1}}
$$

THE HESSIAN MATRIX

Suppose that $f(x)$ is twice-continuously differentiable $\left(f \in C^{2}\right)$. Then its Hessian (Otto Hesse, 1811-1874) $H(x)$ is the matrix whose i, j-th component

$$
H_{i, j}(x)=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}
$$

for $1 \leqslant i, j \leqslant n$
E.g, if

$$
f(x)=x_{1}^{2}+x_{1} x_{2}
$$

then

$$
H(x)=\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right)
$$

Notice that the Hessian is always symmetric

THE JACOBIAN MATRIX

Suppose that $c(x)$ is vector-valued and continuously differentiable $\left(c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, c \in C^{1}\right)$. Then its Jacobian (Carl Jacobi, 1804-1851) $J(x)$ is the matrix whose i, j-th component

$$
J_{i, j}(x)=\frac{\partial c_{i}(x)}{\partial x_{j}}
$$

for $1 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant n$
E.g, if

$$
c(x)=\binom{x_{1}^{2}}{x_{1}+x_{2}^{3}}
$$

then

$$
J(x)=\left(\begin{array}{cc}
2 x_{1} & 0 \\
1 & 3 x_{2}^{2}
\end{array}\right)
$$

Notice that the i-th row of the Jacobian is the transpose of the gradient of $c_{i}(x)$. Also that if $c(x)=g(x)$, then $J(x)=H(x)$

INNER PRODUCTS AND NORMS

Suppose that $x, y \in \mathrm{IR}^{n}$. Then the inner product $\langle x, y\rangle$ between x and y is the component-wise sum

$$
\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}
$$

This defines the (Euclidean) norm

$$
\|x\|_{2}=\sqrt{\langle x, x\rangle} \equiv \sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

Notice that $\|x\|_{2}$ is always non-negative and only zero when $x=0$

- If S is a symmetric matrix, $\|S\|=\max _{\|x\|=1}\|S x\|$
- There are other norms, e.g., $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$ and $\|x\|_{\infty}=\max _{1 \leqslant i \leqslant n}\left|x_{i}\right|$
- if we don't say otherwise $\|\cdot\|=\|\cdot\|_{2}$

EIGENPAIRS \& POSITIVE-DEFINITE MATRICES

Let S be a real, symmetric $n \times n$ matrix.
S is said to have an eigenpair (λ, v) if

$$
S v=\lambda v
$$

where the eigenvalue λ is real and its eigenvector v has $\|v\|=1$.

- S has n eigenvalues λ_{i}, and associated eigenvectors $v_{i}, 1 \leqslant i \leqslant n$
- the eigenvectors are mutually orthogonal i.e., $\left\langle v_{i}, v_{j}\right\rangle=0$ if $i \neq j$.
- $V=\left(v_{1}, \ldots, v_{n}\right), S$ has a spectral decomposition

$$
S=V^{T} \Lambda V, \text { where } \Lambda=\operatorname{diag}\left(\lambda_{i}\right)
$$

S is positive (semi) definite if (equivalently)

- $\lambda_{i}>0(\geqslant 0)$ for $1 \leqslant i \leqslant n$
- $\langle u, S u\rangle>0(\geqslant 0)$ for all nonzero vectors u

LIPSCHITZ CONTINUITY (don't panic!!)

- \mathcal{X} and \mathcal{Y} sets
- $F: \mathcal{X} \rightarrow \mathcal{Y}$
- $\|\cdot\|_{\mathcal{X}}$ and $\|\cdot\|_{\mathcal{Y}}$ are norms

Then

- F is Lipschitz (Rudolf Lipschitz, 1832-1903) continuous at $x \in \mathcal{X}$ if $\exists \gamma(x)$ such that

$$
\|F(z)-F(x)\|_{\mathcal{Y}} \leqslant \gamma(x)\|z-x\|_{\mathcal{X}}
$$

for all $z \in \mathcal{X}$.

- F is Lipschitz continuous throughout/in \mathcal{X} if $\exists \gamma$ such that

$$
\|F(z)-F(x)\|_{\mathcal{Y}} \leqslant \gamma\|z-x\|_{\mathcal{X}}
$$

for all x and $z \in \mathcal{X}$.
Essentially controls how far $F(z)$ is from $F(x)$ as z approaches x

TAYLOR-SERIES APPROXIMATIONS

A fundamental question is:
if we have a function f and know its value and derivatives at x, can we say anything about f at a nearby point $x+s$?

This question was addressed by Brook Taylor (1685-1731), who showed that in many cases a series approximation

$$
f(x+s) \approx T_{p}(s):=f(x)+\sum_{i=1}^{p} \frac{f^{(i)}(x)[s]^{i}}{i!}
$$

where $f^{(i)}(x)$ is the i-th derivative of f at x, is increasingly accurate as $p \rightarrow \infty$ (NB ... there is a lot hidden here in the notation!)

Computationally useful for $p=1$ and 2 :

$$
\begin{aligned}
& m^{L}(x+s)=T_{1}(s)=f(x)+\langle g(x), s\rangle \\
& m^{Q}(x+s)=T_{2}(s)=f(x)+\langle g(x), s\rangle+\frac{1}{2}\langle s, H(x) s\rangle
\end{aligned}
$$

A USEFUL TAYLOR APPROXIMATION

Theorem 1.1. Let \mathcal{S} be an open subset of IR^{n}, and suppose $f: \mathcal{S} \rightarrow \mathrm{IR}$ is continuously differentiable throughout \mathcal{S}. Suppose further that $g(x)$ is Lipschitz continuous at x, with Lipschitz constant $\gamma^{L}(x)$ in some appropriate vector norm. Then, if the segment $x+\theta s \in \mathcal{S}$ for all $\theta \in[0,1]$,

$$
\begin{gathered}
\left|f(x+s)-m^{L}(x+s)\right| \leqslant \frac{1}{2} \gamma^{L}(x)\|s\|^{2}, \text { where } \\
m^{L}(x+s)=f(x)+\langle g(x), s\rangle
\end{gathered}
$$

If f is twice continuously differentiable throughout \mathcal{S} and $H(x)$ is Lipschitz continuous at x, with Lipschitz constant $\gamma^{Q}(x)$,

$$
\begin{aligned}
& \left|f(x+s)-m^{Q}(x+s)\right| \leqslant \frac{1}{6} \gamma^{Q}(x)\|s\|^{3}, \text { where } \\
& m^{Q}(x+s)=f(x)+\langle g(x), s\rangle+\frac{1}{2}\langle s, H(x) s\rangle .
\end{aligned}
$$

ANOTHER USEFUL TAYLOR APPROXIMATION

Theorem 1.2. Let \mathcal{S} be an open subset of IR^{n}, and suppose F : $\mathcal{S} \rightarrow \mathrm{IR}^{m}$ is continuously differentiable throughout \mathcal{S}. Suppose further that $\nabla_{x} F(x)$ is Lipschitz continuous at x, with Lipschitz constant $\gamma^{L}(x)$ in some appropriate vector norm and its induced matrix norm. Then, if the segment $x+\theta s \in \mathcal{S}$ for all $\theta \in[0,1]$,

$$
\begin{gathered}
\left\|F(x+s)-M^{L}(x+s)\right\| \leqslant \frac{1}{2} \gamma^{L}(x)\|s\|^{2}, \text { where } \\
M^{L}(x+s)=F(x)+\nabla_{x} F(x) s
\end{gathered}
$$

COROLLARY - NEWTON'S METHOD

Given a Lipschitz C^{1} function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, Taylor \Longrightarrow

$$
\begin{gathered}
\left\|F(x+s)-M^{L}(x+s)\right\| \leqslant \frac{1}{2} \gamma^{L}(x)\|s\|^{2}, \text { where } \\
M^{L}(x+s)=F(x)+\nabla_{x} F(x) s
\end{gathered}
$$

From given x with small $F(x)$, pick s so that

$$
M^{L}(x+s)=F(x)+\nabla_{x} F(x) s=0
$$

\Longrightarrow

$$
\|F(x+s)\| \leqslant \frac{1}{2} \gamma^{L}(x)\|s\|^{2} \leqslant \gamma^{L}(x)\left\|\left(\nabla_{x} F(x)\right)^{-1}\right\|^{2}\|F(x)\|^{2}
$$

\Longrightarrow usually quadratic rate of decrease
Choosing $s: \nabla_{x} F(x) s=-F(x)$ is Newton's method for finding a root of the nonlinear system $F(x)=0$

BLOCK NEWTON

Given Lipschitz C^{1} function $F: \mathrm{IR}^{n+m} \rightarrow \mathrm{IR}^{n+m}$ such that

$$
F(x, y)=\binom{b(x, y)}{c(x, y)}
$$

with $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}, b: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$ and $c: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{m}$
Newton equations are

$$
\left(\begin{array}{cc}
\nabla_{x} b(x, y) & \nabla_{y} b(x, y) \\
\nabla_{x} c(x, y) & \nabla_{y} c(x, y)
\end{array}\right)\binom{s_{x}}{s_{y}}=-\binom{b(x, y)}{c(x, y)}
$$

to get an improvement $x+s_{x}$ and $y+s_{y}$

Part 2: Unconstrained optimization

Nick Gould (nick.gould@stfc.ac.uk)
minimize $f(x)$
$x \in \mathbb{R}^{n}$

Course on continuous optimization, STFC-RAL, February 2021

UNCONSTRAINED MINIMIZATION

$\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)$
where the objective function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$

- assume that $f \in C^{1}$ (sometimes C^{2}) and Lipschitz
- often in practice this assumption violated, but not necessary

CONTENT

We shall discuss:

- optimality conditions
- quadratic minimization
- linesearch methods
- trust-region methods
- (regularization methods)

OPTIMALITY CONDITIONS FOR UNCONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 2.1. Suppose that $f \in C^{1}$, and that x_{*} is a local minimizer of $f(x)$. Then

$$
g\left(x_{*}\right)=0 .
$$

Second-order necessary optimality:

Theorem 2.2. Suppose that $f \in C^{2}$, and that x_{*} is a local minimizer of $f(x)$. Then $g\left(x_{*}\right)=0$ and $H\left(x_{*}\right)$ is positive semi-definite, that is

$$
\left\langle s, H\left(x_{*}\right) s\right\rangle \geqslant 0 \text { for all } s \in \mathbb{R}^{n} .
$$

OPTIMALITY CONDITIONS (cont.)

Second-order sufficient optimality:

Theorem 2.3. Suppose that $f \in C^{2}$, that x_{*} satisfies the condition $g\left(x_{*}\right)=0$, and that additionally $H\left(x_{*}\right)$ is positive definite, that is

$$
\left\langle s, H\left(x_{*}\right) s\right\rangle>0 \text { for all } s \neq 0 \in \mathbb{R}^{n} .
$$

Then x_{*} is an isolated local minimizer of f.

MINIMIZING A CONVEX QUADRATIC FUNCTION

Generic convex quadratic problem: (B sym. positive definite)

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} q(x)=\langle g, x\rangle+\frac{1}{2}\langle x, B x\rangle
$$

If x_{*} is a minimizer, necessarily

$$
\nabla q\left(x_{*}\right)=g+B x_{*}=0 \Longrightarrow B x_{*}=-g
$$

Since B is positive definite, x_{*} is the unique (global) minimizer

How do we find x_{*} ?

- by factorization
- dense/spares Cholesky factorization of $B=L L^{T}, L$ triangular
- Forward and back solution $L z=-g$ then $L^{T} x_{*}=z$
- approximately by iteration

ITERATIVE QUADRATIC MINIMIZATION

Many possible methods, the most effective is the method of conjugate gradients:

Given:

- a sequence of linearly-independent vectors $\left\{p_{j}\right\}, 0 \leqslant j \leqslant n-1$
- a sequence of expanding matrices $P_{j}=\left(p_{0}, \ldots, p_{j-1}\right)$
- a sequence of expanding subspaces

$$
\mathcal{P}_{j}=\left\{x: x=P_{j} v \text { for some } v \in \mathbb{R}^{j}\right\}
$$

Generate a sequence of successively improving estimates

$$
x_{j}=\arg \min _{x \in \mathcal{P}_{j}} q(x)
$$

$\Longrightarrow x_{n}=x_{*}$

CONJUGATE GRADIENTS - THE CLEVER PARTS

Let $g_{j}=\nabla q\left(x_{j}\right)=B x_{j}+g$

- (easy) if we can select p_{j} so that $\left\{p_{i}\right\}$ are \boldsymbol{B}-conjugate, i.e.,

$$
\left\langle p_{j}, B p_{i}\right\rangle=0 \text { for } i \leqslant j
$$

\Longrightarrow

$$
x_{j+1}=x_{j}+\alpha_{j} p_{j}, \text { where } \alpha_{j}=-\frac{\left\langle p_{j}, g_{j}\right\rangle}{\left\langle p_{j}, B p_{j}\right\rangle}
$$

- (trivial)

$$
g_{j+1}=g_{j}+\alpha_{j} B p_{j}
$$

- (messy) we can select p_{j} so that $\left\{p_{i}\right\}$ are B-conjugate via

$$
p_{j+1}=-g_{j+1}+\beta_{j} p_{j}, \text { where } \beta_{j}=\frac{\left\|g_{j+1}\right\|}{\left\|g_{j}\right\|}
$$

CONJUGATE-GRADIENT (CG) METHOD

Set $x_{0}=0, g_{0}=g, p_{0}=-g$ and $i=0$.
Until g_{i} "small", iterate

$$
\begin{aligned}
& \alpha_{i}=-\left\langle g_{i}, p_{i}\right\rangle /\left\langle p_{i}, B p_{i}\right\rangle \equiv \arg \min _{\alpha} q\left(x_{i}+\alpha p_{i}\right) \\
& x_{i+1}=x_{i}+\alpha_{i} p_{i} \\
& g_{i+1}=g_{i}+\alpha_{i} B p_{i} \equiv \nabla q\left(x_{i+1}\right) \\
& \beta_{i}=\left\|g_{i+1}\right\|_{2}^{2} /\left\|g_{i}\right\|_{2}^{2} \\
& p_{i+1}=-g_{i+1}+\beta_{i} p_{i} \\
& \text { and increase } i \text { by } 1
\end{aligned}
$$

Important features:

- $q\left(x_{j}\right) \leqslant q\left(x_{j-1}\right)$
- $x_{n}=x_{*}$ (in exact arithmetic)
- may stop earlier if B is structured, e.g. clustered eigenvalues
- can accelerate by preconditioning

ITERATIVE METHODS FOR GENERAL $\boldsymbol{f}(\boldsymbol{x})$

- in practice very rare to be able to provide explicit minimizer of f
- iterative method: given starting "guess" x_{0}, generate sequence

$$
\left\{x_{k}\right\}, \quad k=1,2, \ldots
$$

- AIM: ensure that (a subsequence) has some favourable limiting properties:
- satisfies first-order necessary conditions
- satisfies second-order necessary conditions

Notation: $f_{k}=f\left(x_{k}\right), g_{k}=g\left(x_{k}\right), H_{k}=H\left(x_{k}\right)$.

Part 2a: Linesearch methods for unconstrained optimization

Nick Gould (nick.gould@stfc.ac.uk)
minimize $f(x)$ $x \in \mathbb{R}^{n}$

Course on continuous optimization, STFC-RAL, February 2021

LINESEARCH METHODS

- calculate a search direction d_{k} from x_{k}
- ensure that this direction is a descent direction, i.e.,

$$
\left\langle g_{k}, d_{k}\right\rangle<0 \text { if } g_{k} \neq 0
$$

(the slope $\left\langle d_{k}, g_{k}\right\rangle$ is negative) so that, for small steps along d_{k}, the objective function will be reduced (Taylor's theorem)

- calculate a suitable steplength $\alpha_{k}>0$ so that

$$
f\left(x_{k}+\alpha_{k} d_{k}\right)<f_{k}
$$

- computation of α_{k} is the linesearch-may itself be an iteration
- generic linesearch method:

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k}
$$

STEPS MIGHT BE TOO LONG

The objective function $f(x)=x^{2}$ and the iterates $x_{k+1}=x_{k}+\alpha_{k} d_{k}$ generated by the descent directions $d_{k}=(-1)^{k+1}$ and steps $\alpha_{k}=$ $2+3 / 2^{k+1}$ from $x_{0}=2$

STEPS MIGHT BE TOO SHORT

The objective function $f(x)=x^{2}$ and the iterates $x_{k+1}=x_{k}+\alpha_{k} d_{k}$ generated by the descent directions $d_{k}=-1$ and steps $\alpha_{k}=1 / 2^{k+1}$ from $x_{0}=2$

PRACTICAL LINESEARCH METHODS

- in early days, pick α_{k} to minimize

$$
f\left(x_{k}+\alpha d_{k}\right)
$$

- exact linesearch-univariate minimization
- rather expensive and certainly not cost effective
- modern methods: inexact linesearch
- ensure steps are neither too long nor too short
- try to pick "useful" initial stepsize for fast convergence
- best methods are either
- "backtracking- Armijo" or
- "Armijo-Goldstein"
based

BACKTRACKING LINESEARCH

Procedure to find the stepsize α_{k} :

Given $\alpha_{\text {init }}>0$ (e.g., $\alpha_{\text {init }}=1$)
let $\alpha^{(0)}=\alpha_{\text {init }}$ and $l=0$
Until $f\left(x_{k}+\alpha^{(l)} d_{k}\right) "<" f_{k}$ set $\alpha^{(l+1)}=\tau \alpha^{(l)}$, where $\tau \in(0,1)$ (e.g., $\tau=\frac{1}{2}$) and increase l by 1
Set $\alpha_{k}=\alpha^{(l)}$

- this prevents the step from getting too small . . . but does not prevent too large steps relative to decrease in f
- need to tighten requirement

$$
f\left(x_{k}+\alpha^{(l)} d_{k}\right) "<" f_{k}
$$

ARMIJO CONDITION

In order to prevent large steps relative to decrease in f, instead require

$$
f\left(x_{k}+\alpha_{k} d_{k}\right) \leqslant f\left(x_{k}\right)+\beta \alpha_{k}\left\langle g_{k}, d_{k}\right\rangle
$$

for some $\beta \in(0,1)$ (e.g., $\beta=0.1$ or even $\beta=0.0001$)

BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize α_{k} :

Given $\alpha_{\text {init }}>0$ (e.g., $\alpha_{\text {init }}=1$)
let $\alpha^{(0)}=\alpha_{\text {init }}$ and $l=0$
Until $f\left(x_{k}+\alpha^{(l)} d_{k}\right) \leqslant f\left(x_{k}\right)+\beta \alpha^{(l)}\left\langle g_{k}, d_{k}\right\rangle$
set $\alpha^{(l+1)}=\tau \alpha^{(l)}$, where $\tau \in(0,1)$ (e.g., $\left.\tau=\frac{1}{2}\right)$
and increase l by 1
Set $\alpha_{k}=\alpha^{(l)}$

SATISFYING THE ARMIJO CONDITION

Theorem 2.4. Suppose that $f \in C^{1}$, that $g(x)$ is Lipschitz continuous with Lipschitz constant $\gamma(x)$, that $\beta \in(0,1)$ and that d is a descent direction at x. Then the Armijo condition

$$
f(x+\alpha d) \leqslant f(x)+\alpha \beta\langle g(x), d\rangle
$$

is satisfied for all $\alpha \in\left[0, \alpha_{\max (x)}\right]$, where

$$
\alpha_{\max }=\frac{2(\beta-1)\langle g(x), d\rangle}{\gamma(x)\|d\|_{2}^{2}}
$$

THE ARMIJO LINESEARCH TERMINATES

Corollary 2.5. Suppose that $f \in C^{1}$, that $g(x)$ is Lipschitz continuous with Lipschitz constant γ_{k} at x_{k}, that $\beta \in(0,1)$ and that d_{k} is a descent direction at x_{k}. Then the stepsize generated by the backtracking-Armijo linesearch terminates with

$$
\alpha_{k} \geqslant \min \left(\alpha_{\text {init }}, \frac{2 \tau(\beta-1)\left\langle g_{k}, d_{k}\right\rangle}{\gamma_{k}\left\|d_{k}\right\|_{2}^{2}}\right)
$$

GENERIC LINESEARCH METHOD

Given an initial guess x_{0}, let $k=0$
Until convergence:
Find a descent direction d_{k} at x_{k}
Compute a stepsize α_{k} using a
backtracking-Armijo linesearch along d_{k}
Set $x_{k+1}=x_{k}+\alpha_{k} d_{k}$, and increase k by 1

GLOBAL CONVERGENCE THEOREM

Theorem 2.6. Suppose that $f \in C^{1}$ and that g is Lipschitz continuous on \mathbb{R}^{n}. Then, for the iterates generated by the Generic Linesearch Method,
either

$$
g_{l}=0 \text { for some } l \geqslant 0
$$

or

$$
\lim _{k \rightarrow \infty} f_{k}=-\infty
$$

or

$$
\lim _{k \rightarrow \infty} \min \left(\mid\left\langle d_{k}, g_{k}\right\rangle, \frac{\left|\left\langle d_{k}, g_{k}\right\rangle\right|}{\left\|d_{k}\right\|_{2}}\right)=0
$$

METHOD OF STEEPEST DESCENT

The search direction

$$
d_{k}=-g_{k}
$$

gives the so-called steepest-descent direction.

- d_{k} is a descent direction
- d_{k} solves the problem

$$
\begin{aligned}
& \underset{d \in \mathbb{R}^{n}}{\operatorname{minimize}} m_{k}^{L}\left(x_{k}+d\right):=f_{k}+\left\langle g_{k}, d\right\rangle \\
& \text { subject to }\|d\|_{2}=\left\|g_{k}\right\|_{2}
\end{aligned}
$$

Any method that uses the steepest-descent direction is a method of steepest descent.

GLOBAL CONVERGENCE FOR STEEPEST DESCENT

Theorem 2.7. Suppose that $f \in C^{1}$ and that g is Lipschitz continuous on \mathbb{R}^{n}. Then, for the iterates generated by the Generic Linesearch Method using the steepest-descent direction, either

$$
g_{l}=0 \text { for some } l \geqslant 0
$$

or

$$
\lim _{k \rightarrow \infty} f_{k}=-\infty
$$

or

$$
\lim _{k \rightarrow \infty} g_{k}=0 .
$$

METHOD OF STEEPEST DESCENT (cont.)

- archetypical globally convergent method
- many other methods resort to steepest descent in bad cases
- not scale invariant
- convergence is usually very (very!) slow (linear)
- numerically often not convergent at all

STEEPEST DESCENT EXAMPLE

Contours for the objective function $f(x, y)=10\left(y-x^{2}\right)^{2}+(x-1)^{2}$, and the iterates generated by the Generic Linesearch steepest-descent method

MORE GENERAL DESCENT METHODS

Let B_{k} be a symmetric, positive definite matrix, and define the search direction d_{k} so that

$$
B_{k} d_{k}=-g_{k}
$$

Then

- d_{k} is a descent direction as $\left\langle g_{k}, d_{k}\right\rangle=-\left\langle d_{k}, B_{k} d_{k}\right\rangle<0$
- d_{k} solves the problem

$$
\underset{d \in \mathbb{R}^{n}}{\operatorname{minimize}} m_{k}^{Q}\left(x_{k}+d\right):=f_{k}+\left\langle g_{k}, d\right\rangle+\frac{1}{2}\left\langle d, B_{k} d\right\rangle
$$

- if the Hessian H_{k} is positive definite, and $B_{k}=H_{k}$, this is Newton's method

MORE GENERAL GLOBAL CONVERGENCE

Theorem 2.8. Suppose that $f \in C^{1}$ and that g is Lipschitz continuous on \mathbb{R}^{n}. Then, for the iterates generated by the Generic Linesearch Method using the more general descent direction, either

$$
g_{l}=0 \text { for some } l \geqslant 0
$$

or

$$
\lim _{k \rightarrow \infty} f_{k}=-\infty
$$

or

$$
\lim _{k \rightarrow \infty} g_{k}=0
$$

provided that the eigenvalues of B_{k} are uniformly bounded and bounded away from zero.

MORE GENERAL DESCENT METHODS (cont.)

- may be viewed as "scaled" steepest descent
- convergence is often faster than steepest descent
- can be made scale invariant for suitable B_{k}

CONVERGENCE OF NEWTON'S METHOD

Theorem 2.9. Suppose that $f \in C^{2}$ and that H is Lipschitz continuous on IR^{n}. Then suppose that the iterates generated by the Generic Linesearch Method with $\alpha_{\text {init }}=1$ and $\beta<\frac{1}{2}$, in which the search direction is chosen to be the Newton direction $d_{k}=-H_{k}^{-1} g_{k}$ whenever possible, has a limit point x_{*} for which $H\left(x_{*}\right)$ is positive definite. Then
(i) $\alpha_{k}=1$ for all sufficiently large k,
(ii) the entire sequence $\left\{x_{k}\right\}$ converges to x_{*}, and
(iii) the rate is Q-quadratic, i.e, there is a constant $\kappa \geqslant 0$.

$$
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x_{*}\right\|_{2}}{\left\|x_{k}-x_{*}\right\|_{2}^{2}} \leqslant \kappa
$$

NEWTON METHOD EXAMPLE

Contours for the objective function $f(x, y)=10\left(y-x^{2}\right)^{2}+(x-1)^{2}$, and the iterates generated by the Generic Linesearch Newton method

MODIFIED NEWTON METHODS

If H_{k} is indefinite, it is usual to solve instead

$$
\left(H_{k}+M_{k}\right) d_{k} \equiv B_{k} d_{k}=-g_{k}
$$

where

- M_{k} chosen so that $B_{k}=H_{k}+M_{k}$ is "sufficiently" positive definite
- $M_{k}=0$ when H_{k} is itself "sufficiently" positive definite

Possibilities:

- If H_{k} has the spectral decomposition $H_{k}=V_{k}^{T} \Lambda_{k} V_{k}$ then

$$
B_{k} \equiv H_{k}+M_{k}=V_{k}^{T} \max \left(\epsilon,\left|\Lambda_{k}\right|\right) V_{k}
$$

- $M_{k}=\max \left(0, \epsilon-\lambda_{\min }\left(H_{k}\right)\right) I$
- Modified Cholesky: $B_{k} \equiv H_{k}+M_{k}=L_{k} L_{k}^{T}$

QUASI-NEWTON METHODS

Various attempts to approximate H_{k} :

1. Finite-difference approximations:

$$
\left(H_{k}\right) e_{i} \approx \frac{g\left(x_{k}+h e_{i}\right)-g_{k}}{h}=\left(B_{k}\right) e_{i}
$$

for some "small" scalar $h>0$

- needs n evaluations of g to get H, fewer if sparse
- may need to symmetrize $H_{k}=\frac{1}{2}\left(H_{k}+H_{k}^{T}\right)$
- obviously parallel

QUASI-NEWTON METHODS (continued)

2. Secant approximations: try to ensure the secant condition

$$
B_{k+1} s_{k}=y_{k}, \text { where } s_{k}=x_{k+1}-x_{k} \text { and } y_{k}=g_{k+1}-g_{k}
$$

Why? Because $H_{k} s_{k}=y_{k}$ when f is quadratic

Examples:

- Symmetric Rank-1 method (but may be indefinite or even fail):

$$
B_{k+1}=B_{k}+\frac{\left(y_{k}-B_{k} s_{k}\right)\left(y_{k}-B_{k} s_{k}\right)^{T}}{\left\langle y_{k}-B_{k} s_{k}, s_{k}\right\rangle}
$$

- BFGS method: (symmetric and positive definite if $\left\langle y_{k}, s_{k}\right\rangle>0$):

$$
B_{k+1}=B_{k}+\frac{y_{k} y_{k}^{T}}{\left\langle y_{k}, s_{k}\right\rangle}-\frac{B_{k} s_{k} s_{k}^{T} B_{k}}{\left\langle s_{k}, B_{k} s_{k}\right\rangle}
$$

Generally a low-rank (rank-one or -two) update of the existing B_{k}

LIMITED-MEMORY METHODS

Quasi-Newton methods pick

$$
\begin{gathered}
B_{k+1}=B_{k}+\text { low-rank matrix combination }\left(y_{k}, s_{k}, B_{k}\right) \text { where } \\
s_{k}=x_{k+1}-x_{k} \text { and } y_{k}=g_{k+1}-g_{k}
\end{gathered}
$$

$$
B_{k+1}=B_{0}+\text { matrix combination }\left(y_{1}, \ldots, y_{k}, s_{1}, \ldots, s_{k}, B_{0}\right)
$$

Limited-memory methods pick

$$
B_{k+1}=B_{j}+\text { matrix combination }\left(y_{j+1}, \ldots, y_{k}, s_{j+1}, \ldots, s_{k}, B_{j+1}\right)
$$

for some j close to k

- re-initialize using simple B_{j} (e.g $B_{j}=I \Longrightarrow B_{k+1}$ is a low-rank modification of B_{j} using data $\left\{y_{j+1}, \ldots, y_{k}, s_{j+1}, \ldots, s_{k}\right\}$
- efficient formulae to compute $d_{k+1}=-B_{k+1}^{-1} g_{k+1}$
- L-BFGS using BFGS formula

USE CG TO MINIMIZE CONVEX QUADRATIC MODEL

For convex models (B_{k} positive definite)

$$
d_{k}=(\text { approximate }) \underset{d \in \mathbb{R}^{n}}{\arg \min } m_{k}^{Q}\left(x_{k}+d\right) f_{k}+\left\langle g_{k}, d\right\rangle+\frac{1}{2}\left\langle d, B_{k} d\right\rangle
$$

Can apply conjugate-gradients method to minimize

$$
q(d)=m_{k}^{Q}\left(x_{k}+d\right)
$$

Stop CG when

$$
\left\|\nabla q\left(d_{k}\right)\right\| \leqslant \min \left(\left\|g_{k}\right\|^{\omega}, \eta\right)\left\|g_{k}\right\| \quad(0<\eta, \omega<1)
$$

\Longrightarrow fast convergence

NONLINEAR CONJUGATE-GRADIENT METHODS

method for minimizing quadratic $f(x)$

Given x_{0} and $g\left(x_{0}\right)$, set $p_{0}=-g\left(x_{0}\right)$ and $i=0$.
Until $g\left(x_{k}\right)$ "small" iterate

$$
\begin{aligned}
& \alpha_{i}=\underset{\alpha}{\arg \min } f\left(x_{i}+\alpha p_{i}\right) \\
& x_{i+1}=x_{i}+\alpha_{i} p_{i} \\
& \beta_{i}=\left\|g\left(x_{i+1}\right)\right\|_{2}^{2} /\left\|g\left(x_{i}\right)\right\|_{2}^{2} \\
& p_{i+1}=-g\left(x_{i+1}\right)+\beta_{i} p_{i} \\
& \text { and increase } i \text { by } 1
\end{aligned}
$$

may also be used for nonlinear $f(x)$ (Fletcher \& Reeves)

- replace calculation of α_{i} by suitable linesearch
- other methods pick different β_{i} to ensure descent (Polyak-Ribière, Hestenes-Stiefel, Hager-Zhang ...)

Part 2b: Trust-region methods for unconstrained optimization

Nick Gould (nick.gould@stfc.ac.uk)
minimize $f(x)$ $x \in \mathbb{R}^{n}$

Course on continuous optimization, STFC-RAL, February 2021

UNCONSTRAINED MINIMIZATION

$\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)$
where the objective function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$

- assume that $f \in C^{1}$ (sometimes C^{2}) and Lipschitz
- often in practice this assumption violated, but not necessary

LINESEARCH VS TRUST-REGION METHODS

- Linesearch methods
- pick descent direction d_{k}
- pick stepsize α_{k} to "reduce" $f\left(x_{k}+\alpha d_{k}\right)$
- $x_{k+1}=x_{k}+\alpha_{k} d_{k}$
- Trust-region methods
- pick step s_{k} to reduce "model" of $f\left(x_{k}+s\right)$
- accept $x_{k+1}=x_{k}+s_{k}$ if decrease in model inherited by $f\left(x_{k}+s_{k}\right)$
- otherwise set $x_{k+1}=x_{k}$, "refine" model

TRUST-REGION MODEL PROBLEM

Model $f\left(x_{k}+s\right)$ by:

- linear model

$$
m_{k}^{L}(s)=f_{k}+\left\langle s, g_{k}\right\rangle
$$

- quadratic model - symmetric B_{k}

$$
m_{k}^{Q}(s)=f_{k}+\left\langle g_{k}, s\right\rangle+\frac{1}{2}\left\langle s, B_{k} s\right\rangle
$$

Major difficulties:

- models may not resemble $f\left(x_{k}+s\right)$ if s is large
- models may be unbounded from below
- linear model - always unless $g_{k}=0$
- quadratic model - always if B_{k} is indefinite, possibly if B_{k} is only positive semi-definite

THE TRUST REGION

Prevent model $m_{k}(s)$ from unboundedness by imposing a trust-region constraint

$$
\|s\| \leqslant \Delta_{k}
$$

for some "suitable" scalar radius $\Delta_{k}>0$
\Longrightarrow trust-region subproblem

$$
\text { approx } \underset{s \in \mathbb{R}^{n}}{\operatorname{minimize}} m_{k}(s) \text { subject to }\|s\| \leqslant \Delta_{k}
$$

- in theory does not depend on norm $\|\cdot\|$
- in practice it might!

OUR MODEL

For simplicity, concentrate on the second-order (Newton-like) model

$$
m_{k}(s)=m_{k}^{Q}(s)=f_{k}+\left\langle s, g_{k}\right\rangle+\frac{1}{2}\left\langle s, B_{k} s\right\rangle
$$

and the ℓ_{2}-trust region norm $\|\cdot\|=\|\cdot\|_{2}$
Note:

- $B_{k}=H_{k}$ is allowed
- analysis for other trust-region norms simply adds extra constants in following results

TRUST-REGION EXAMPLES

Contours for the objective function $f(x, y)=x^{4}+x y+(y+1)^{2}$

TRUST-REGION EXAMPLES (cont)

Contours of quadratic model $m_{k}(s)$ at $(1,-0.5)$ with radius $\Delta=1.1$

TRUST-REGION EXAMPLES (cont)

Contours of linear model $m_{k}(s)$ at $(1,-0.5)$ with radius $\Delta=1.1$

TRUST-REGION EXAMPLES (cont)

Contours of quadratic model $m_{k}(s)$ at $(0,0)$ with radius $\Delta=1.1$

TRUST-REGION EXAMPLES (cont)

Contours of quadratic model $m_{k}(s)$ at $(-0.25,0.5)$ with radius $\Delta=1.1$

BASIC TRUST-REGION METHOD

Given $k=0, \Delta_{0}>0$ and x_{0}, until "convergence" do:
Build the second-order model $m_{k}(s)$ of $f\left(x_{k}+s\right)$.
"Solve" the trust-region subproblem to find s_{k} for which $m_{k}\left(s_{k}\right)$ " $<$ " f_{k} and $\left\|s_{k}\right\| \leqslant \Delta_{k}$, and define

$$
\rho_{k}=\frac{f_{k}-f\left(x_{k}+s_{k}\right)}{f_{k}-m_{k}\left(s_{k}\right)} .
$$

If $\rho_{k} \geqslant \eta_{v}$ [very successful]	$0<\eta_{v}<1$
set $x_{k+1}=x_{k}+s_{k}$ and $\Delta_{k+1}=\gamma_{i} \Delta_{k}$	$\gamma_{i} \geqslant 1$

Otherwise if $\rho_{k} \geqslant \eta_{s}$ then [successful] $\quad 0<\eta_{s} \leqslant \eta_{v}<1$
set $x_{k+1}=x_{k}+s_{k}$ and $\Delta_{k+1}=\Delta_{k}$
Otherwise [unsuccessful]
set $x_{k+1}=x_{k}$ and $\Delta_{k+1}=\gamma_{d} \Delta_{k} \quad 0<\gamma_{d}<1$
Increase k by 1

"SOLVE" THE TRUST REGION SUBPROBLEM?

At the very least

- aim to achieve as much reduction in the model as would an iteration of steepest descent
- Cauchy point: $s_{k}^{\mathrm{C}}=-\alpha_{k}^{\mathrm{C}} g_{k}$ where

$$
\begin{aligned}
\alpha_{k}^{\mathrm{c}} & =\underset{\alpha>0}{\arg \min } m_{k}\left(-\alpha g_{k}\right) \text { subject to } \alpha\left\|g_{k}\right\| \leqslant \Delta_{k} \\
& =\underset{0<\alpha \leqslant \Delta_{k} /\left\|g_{k}\right\|}{\arg \min } m_{k}\left(-\alpha g_{k}\right)
\end{aligned}
$$

- minimize 1-D quadratic on line segment \Longrightarrow very easy!
- require that

$$
m_{k}\left(s_{k}\right) \leqslant m_{k}\left(s_{k}^{\mathrm{C}}\right) \text { and }\left\|s_{k}\right\| \leqslant \Delta_{k}
$$

- in practice, hope to do far better than this

ACHIEVABLE MODEL DECREASE

Theorem 2.10. If $m_{k}(s)$ is the second-order model and s_{k}^{C} is its Cauchy point within the trust-region $\|s\| \leqslant \Delta_{k}$,

$$
f_{k}-m_{k}\left(s_{k}^{\mathrm{c}}\right) \geqslant \frac{1}{2}\left\|g_{k}\right\| \min \left[\frac{\left\|g_{k}\right\|}{1+\left\|B_{k}\right\|}, \Delta_{k}\right]
$$

Corollary 2.11. If $m_{k}(s)$ is the second-order model, and s_{k} is an improvement on the Cauchy point within the trust-region $\|s\| \leqslant \Delta_{k}$,

$$
f_{k}-m_{k}\left(s_{k}\right) \geqslant \frac{1}{2}\left\|g_{k}\right\| \min \left[\frac{\left\|g_{k}\right\|}{1+\left\|B_{k}\right\|}, \Delta_{k}\right]
$$

DIFFERENCE BETWEEN MODEL AND FUNCTION

Lemma 2.12. Suppose that $f \in C^{2}$, and that the true and model Hessians satisfy the bounds $\|H(x)\| \leqslant \kappa_{h}$ for all x and $\left\|B_{k}\right\| \leqslant \kappa_{b}$ for all k and some $\kappa_{h} \geqslant 1$ and $\kappa_{b} \geqslant 0$. Then

$$
\left|f\left(x_{k}+s_{k}\right)-m_{k}\left(s_{k}\right)\right| \leqslant \kappa_{d} \Delta_{k}^{2},
$$

where $\kappa_{d}=\frac{1}{2}\left(\kappa_{h}+\kappa_{b}\right)$, for all k.

ULTIMATE PROGRESS AT NON-OPTIMAL POINTS

Lemma 2.13. Suppose that $f \in C^{2}$, that the true and model Hessians satisfy the bounds $\left\|H_{k}\right\| \leqslant \kappa_{h}$ and $\left\|B_{k}\right\| \leqslant \kappa_{b}$ for all k and some $\kappa_{h} \geqslant 1$ and $\kappa_{b} \geqslant 0$. Suppose furthermore that $g_{k} \neq 0$ and that

$$
\Delta_{k} \leqslant\left(\frac{1-\eta_{v}}{\kappa_{h}+\kappa_{b}}\right)\left\|g_{k}\right\|
$$

Then iteration k is very successful and

$$
\Delta_{k+1} \geqslant \Delta_{k}
$$

RADIUS WON'T SHRINK TO ZERO AT NON-OPTIMAL POINTS

Lemma 2.14. Suppose that $f \in C^{2}$, that the true and model Hessians satisfy the bounds $\left\|H_{k}\right\| \leqslant \kappa_{h}$ and $\left\|B_{k}\right\| \leqslant \kappa_{b}$ for all k and some $\kappa_{h} \geqslant 1$ and $\kappa_{b} \geqslant 0$. Suppose furthermore that there is a constant $\epsilon>0$ such that

$$
\left\|g_{k}\right\| \geqslant \epsilon \text { for all } k .
$$

Then

$$
\Delta_{k} \geqslant \kappa_{\epsilon} \text { where } \kappa_{\epsilon}:=\epsilon \gamma_{d}\left(\frac{1-\eta_{v}}{\kappa_{h}+\kappa_{b}}\right)
$$

for all k.

POSSIBLE FINITE TERMINATION

Lemma 2.15. Suppose that $f \in C^{2}$, and that both the true and model Hessians remain bounded for all k. Suppose furthermore that there are only finitely many successful iterations. Then $x_{k}=x_{*}$ for all sufficiently large k and $g\left(x_{*}\right)=0$.

GLOBAL CONVERGENCE OF ONE SEQUENCE

Theorem 2.16. Suppose that $f \in C^{2}$, and that both the true and model Hessians remain bounded for all k. Then either

$$
g_{l}=0 \text { for some } l \geqslant 0
$$

or

$$
\lim _{k \rightarrow \infty} f_{k}=-\infty
$$

or

$$
\liminf _{k \rightarrow \infty}\left\|g_{k}\right\|=0
$$

GLOBAL CONVERGENCE

Theorem 2.17. Suppose that $f \in C^{2}$, and that both the true and model Hessians remain bounded for all k. Then either

$$
g_{l}=0 \text { for some } l \geqslant 0
$$

or

$$
\lim _{k \rightarrow \infty} f_{k}=-\infty
$$

or

$$
\lim _{k \rightarrow \infty} g_{k}=0
$$

II: SOLVING THE TRUST-REGION SUBPROBLEM

(approximately) minimize $q(s) \equiv\langle g, s\rangle+\frac{1}{2}\langle s, B s\rangle$ subject to $\|s\| \leqslant \Delta$

$$
s \in \mathbb{R}^{n}
$$

AIM: find s_{*} so that

$$
q\left(s_{*}\right) \leqslant q\left(s^{\mathrm{C}}\right) \text { and }\left\|s_{*}\right\| \leqslant \Delta
$$

Might solve

- exactly \Longrightarrow Newton-like method
- approximately \Longrightarrow steepest descent/conjugate gradients

THE ℓ_{2}-NORM TRUST-REGION SUBPROBLEM

$$
\underset{s \in \mathbb{R}^{n}}{\operatorname{minimize}} q(s) \equiv\langle s, g\rangle+\frac{1}{2}\langle s, B s\rangle \text { subject to }\|s\|_{2} \leqslant \Delta
$$

Solution characterisation result:

Theorem 2.18. Any global minimizer s_{*} of $q(s)$ subject to $\|s\|_{2} \leqslant \Delta$ satisfies the equation

$$
\left(B+\lambda_{*} I\right) s_{*}=-g
$$

where $B+\lambda_{*} I$ is positive semi-definite,

$$
\lambda_{*} \geqslant 0 \text { and } \lambda_{*}\left(\left\|s_{*}\right\|_{2}-\Delta\right)=0
$$

If $B+\lambda_{*} I$ is positive definite, s_{*} is unique.

ALGORITHMS FOR THE ℓ_{2}-NORM SUBPROBLEM

Two cases:

- B positive-semi definite and $B s=-g$ satisfies $\|s\|_{2} \leqslant \Delta$ $\Longrightarrow s_{*}=s$
- B indefinite or $B s=-g$ satisfies $\|s\|_{2}>\Delta$
- $\left(B+\lambda_{*} I\right) s_{*}=-g$ and $\left\langle s_{*}, s_{*}\right\rangle=\Delta^{2}$
- nonlinear (quadratic) system in s and λ
- concentrate on this

EQUALITY CONSTRAINED ℓ_{2}-NORM SUBPROBLEM

Suppose B has spectral decomposition

$$
B=V^{T} \Lambda V
$$

- V orthogonal matrix of eigenvectors
- Λ diagonal matrix of eigenvalues: $\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \leqslant \lambda_{n}$

Require $B+\lambda I=V^{T}(\Lambda+\lambda I) V$ positive semi-definite $\Longrightarrow \lambda \geqslant-\lambda_{1}$
Define

$$
s(\lambda)=-(B+\lambda I)^{-1} g
$$

Require the secular function

$$
\psi(\lambda):=\|s(\lambda)\|_{2}^{2}=\Delta^{2}
$$

Note

$$
\left(\gamma_{i}=\left\langle e_{i}, V g\right\rangle\right)
$$

$$
\psi(\lambda)=\left\|V^{T}(\Lambda+\lambda I)^{-1} V g\right\|_{2}^{2}=\sum_{i=1}^{n} \frac{\gamma_{i}^{2}}{\left(\lambda_{i}+\lambda\right)^{2}}
$$

CONVEX EXAMPLE

NONCONVEX EXAMPLE

THE "HARD" CASE

SUMMARY

For indefinite B :
Hard case occurs when g orthogonal to eigenvector v_{1} for most negative eigenvalue λ_{1} and Δ "too large"

- OK if radius Δ is small enough
- No "obvious" solution to equations ... but solution is actually of the form

$$
s_{\lim }+\sigma v_{1}
$$

where

$$
\begin{gathered}
s_{\lim }=\lim _{\lambda \xrightarrow{+}-\lambda_{1}} s(\lambda) \\
\left\|s_{\lim }+\sigma v_{1}\right\|_{2}=\Delta
\end{gathered}
$$

- very rare in practice ("probability 0" event)

HOW TO SOLVE $\|\mathbf{s}(\lambda)\|_{2}=\Delta$
DON'T!!
Solve instead the secular equation

$$
\phi(\lambda):=\frac{1}{\|s(\lambda)\|_{2}}-\frac{1}{\Delta}=0
$$

- no poles
- smallest at eigenvalues (except in hard case!)
- analytic function \Longrightarrow ideal for Newton
- global convergent (ultimately quadratic rate except in hard case)
- need to safeguard to protect Newton from the hard \& interior solution cases

THE SECULAR EQUATION

NEWTON'S METHOD \& THE SECULAR EQUATION

Let $\lambda>-\lambda_{1}$ and $\Delta>0$ be given
Until "convergence" do:
Factorize $B+\lambda I=L L^{T}$
Solve $L L^{T} s=-g$
Solve $L w=s$
Replace λ by

$$
\lambda+\left(\frac{\|s\|_{2}-\Delta}{\Delta}\right)\left(\frac{\|s\|_{2}^{2}}{\|w\|_{2}^{2}}\right)
$$

SOLVING THE LARGE-SCALE PROBLEM

- when n is large, factorization may be impossible
- may instead try to use an iterative method to approximate
- steepest descent leads to the Cauchy point
- obvious generalization: conjugate gradients . . . but
- what about the trust region?
- what about negative curvature $\langle s, B s\rangle \leqslant 0$?

CONJUGATE GRADIENTS TO "MINIMIZE" q(s)

Set $s_{0}=0, g_{0}=g, p_{0}=-g$ and $i=0$
Until g_{i} "small" or breakdown, iterate

$$
\begin{aligned}
& \alpha_{i}=\left\|g_{i}\right\|_{2}^{2} /\left\langle p_{i}, B p_{i}\right\rangle \\
& s_{i+1}=s_{i}+\alpha_{i} p_{i} \\
& g_{i+1}=g_{i}+\alpha_{i} B p_{i} \\
& \beta_{i}=\left\|g_{i+1}\right\|_{2}^{2} /\left\|g_{i}\right\|_{2}^{2} \\
& p_{i+1}=-g_{i+1}+\beta_{i} p_{i}
\end{aligned}
$$

and increase i by 1

Important features

- $g_{j}=B s_{j}+g$ for all $j=0, \ldots, i$
- $\left\langle d_{j}, g_{i+1}\right\rangle=0$ for all $j=0, \ldots, i$
- $\left\langle g_{j}, g_{i+1}\right\rangle=0$ for all $j=0, \ldots, i$

CRUCIAL PROPERTY OF CONJUGATE GRADIENTS

Theorem 2.19. Suppose that the conjugate gradient method is applied to minimize $q(s)$ starting from $s_{0}=0$, and that

$$
\left\langle p_{i}, B p_{i}\right\rangle>0 \text { for } 0 \leqslant i \leqslant k
$$

Then the iterates s_{j} satisfy the inequalities

$$
\left\|s_{j}\right\|_{2}<\left\|s_{j+1}\right\|_{2}
$$

for $0 \leqslant j \leqslant k-1$.

TRUNCATED CONJUGATE GRADIENTS

Apply the conjugate gradient method, but terminate at iteration i if

1. $\left\langle d_{i}, B d_{i}\right\rangle \leqslant 0 \Longrightarrow$ problem unbounded along d_{i}
2. $\left\|s_{i}+\alpha_{i} d_{i}\right\|_{2}>\Delta \Longrightarrow$ solution on trust-region boundary

In both cases, stop with $s_{*}=s_{i}+\alpha^{\mathrm{B}} d_{i}$, where α^{B} chosen as positive root of

$$
\left\|s_{i}+\alpha^{\mathrm{B}} d_{i}\right\|_{2}=\Delta
$$

Crucially

$$
q\left(s_{*}\right) \leqslant q\left(s^{\mathrm{c}}\right) \text { and }\left\|s_{*}\right\|_{2} \leqslant \Delta
$$

\Longrightarrow TR algorithm converges to a first-order critical point

HOW GOOD IS TRUNCATED C.G.?

In the convex case ... very good

Theorem 2.20. Suppose that the truncated conjugate gradient method is applied to minimize $q(s)$ and that B is positive definite. Then the truncated and actual solutions to the problem, s_{*} and s_{*}^{M}, satisfy the bound

$$
q\left(s_{*}\right) \leqslant \frac{1}{2} q\left(s_{*}^{M}\right)
$$

In the non-convex case . . . maybe poor

- e.g., if $g=0$ and B is indefinite $\Longrightarrow q\left(s_{*}\right)=0$
- instead continue using equivalent Lanczos method to solve trust-region subproblem in subspace (GLTR method, see notes)

Part 2c: Miscellaneous methods for unconstrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

$$
\operatorname{minimize} \frac{1}{2}\|c(x)\|_{2}^{2}
$$

$$
x \in \mathbb{R}^{n}
$$

AN ALTERNATIVE - CUBIC REGULARIZATION

Trust-region subproblem:

$$
\text { (approx) } \underset{s \in \mathbb{R}^{n}}{\operatorname{minimize}} f_{k}+\left\langle s, g_{k}\right\rangle+\frac{1}{2}\left\langle s, B_{k} s\right\rangle \text { subject to }\|s\| \leqslant \Delta_{k}
$$

for adjustable radius $\Delta_{k}>0$
A modern alternative ... the cubic-regularization subproblem:

$$
\text { (approx) } \underset{s \in \mathbb{R}^{n}}{\operatorname{minimize}} f_{k}+\left\langle s, g_{k}\right\rangle+\frac{1}{2}\left\langle s, B_{k} s\right\rangle+\frac{1}{3} \sigma_{k}\|s\|^{3}
$$

for adjustable weight $\sigma_{k}>0$

- can consider weight as "one over radius"
- solve regularization subproblem using related secular equation
- perform essentially the same in practice
- theoretical better worst-case behaviour

NONLINEAR LEAST-SQUARES

Given vector of residuals $c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ find

$$
(\text { approx }) \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}}\|c(x)\|_{2}
$$

Equivalent to the smooth nonlinear least-squares problem

$$
\text { (approx) } \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)=\frac{1}{2}\|c(x)\|_{2}^{2}
$$

- the major use of unconstrained optimization
- model fitting to experimental data, e.g. $c_{i}(x)=r_{i}(x)-d_{i}$, where $r_{i}=r\left(x, p_{i}\right)$ and given parameters p_{i}
- $f(x)$ is bounded from below (by zero)

NOTATION

Use the following in what follows:

$$
\begin{aligned}
a_{i}(x):=\nabla_{x} c_{i}(x) & \text { gradient of } i \text {-th residual } \\
A(x):=\left[\nabla_{x} c^{T}(x)\right]^{T} \equiv\left(\begin{array}{c}
a_{1}^{T}(x) \\
\ldots \\
a_{m}^{T}(x)
\end{array}\right) & \text { Jacobian matrix of } c \\
H_{i}(x):=\nabla_{x x}^{2} c_{i}(x) & \\
& \text { Hessian of } i \text {-th residual }
\end{aligned}
$$

DERIVATIVES OF THE LEAST-SQUARES FUNCTION

$$
\begin{aligned}
& \quad \text { (approx) } \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)=\frac{1}{2}\|c(x)\|_{2}^{2} \\
& g(x)=A^{T}(x) c(x) \\
& \text { - } H(x)=A^{T}(x) A(x)+\sum_{i=1}^{m} c_{i}(x) H_{i}(x)
\end{aligned}
$$

Notice that

- if $c(x)$ is zero $\Longrightarrow H(x)=A^{T}(x) A(x)$
- if $c(x)$ is small $\Longrightarrow H(x) \approx A^{T}(x) A(x)$
- suggests using second-derivative models with $B_{k}=A_{k}^{T} A_{k}$

METHODS FOR NONLINEAR LEAST-SQUARES

$$
\text { (approx) } \underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)=\frac{1}{2}\|c(x)\|_{2}^{2}
$$

So long as c is twice-continuously differentiable, can use linesearch/trustregion/regularization method to minimize $f(x)$

Alternative: use first-order Taylor model

$$
r_{k}(s)=c_{k}+A_{k} s
$$

of the residual $c\left(x_{k}+s\right) \Longrightarrow$ Gauss-Newton model

$$
\begin{aligned}
m_{k}^{L S}(s) & =\frac{1}{2}\left\|r_{k}(s)\right\|_{2}^{2}=\frac{1}{2}\left\|c_{k}+A_{k} s\right\|_{2}^{2} \\
& =\frac{1}{2}\left\|c_{k}\right\|_{2}^{2}+\left\langle s, A_{k}^{T} c_{k}\right\rangle+\frac{1}{2}\left\langle s, A_{k}^{T} A_{k} s\right\rangle
\end{aligned}
$$

of $f\left(x_{k}+s\right)$

METHODS FOR NONLINEAR LEAST-SQUARES (cont)

Gauss-Newton model:

$$
\begin{aligned}
m_{k}^{L S}(s) & =\frac{1}{2}\left\|r_{k}(s)\right\|_{2}^{2}=\frac{1}{2}\left\|c_{k}+A_{k} s\right\|_{2}^{2} \\
& =\frac{1}{2}\left\|c_{k}\right\|_{2}^{2}+\left\langle s, A_{k}^{T} c_{k}\right\rangle+\frac{1}{2}\left\langle s, A_{k}^{T} A_{k} s\right\rangle
\end{aligned}
$$

- linesearch in direction d_{k} :

$$
A_{k}^{T} A_{k} d_{k}=-A_{k}^{T} c_{k}
$$

- may fail if A_{k} is (or becomes) rank deficient
- trust-region imposes $\|s\| \leqslant \Delta_{k}$ implies implicitly

$$
\left(A_{k}^{T} A_{k}+\lambda_{k} I\right) s_{k}=-A_{k}^{T} c_{k}
$$

- + quadratic regularization $\frac{1}{2} \sigma_{k}\|s\|_{2}^{2}$ implies explicitly

$$
\left(A_{k}^{T} A_{k}+\sigma_{k} I\right) s_{k}=-A_{k}^{T} c_{k}
$$

Last two are \approx Levenberg-Morrison-Marquardt method

Part 3: Constrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)\left\{\begin{array}{l}
\geqslant \\
=
\end{array}\right\} 0
$$

Course on continuous optimization, STFC-RAL, February 2021

CONSTRAINED MINIMIZATION

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)\left\{\begin{array}{l}
\geqslant \\
=
\end{array}\right\} 0
$$

where the objective function $f: \mathbb{R}^{n} \longrightarrow \mathbb{I}$ and the constraints $c: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$

- assume that $f, c \in C^{1}$ (sometimes C^{2}) and Lipschitz
- often in practice this assumption violated, but not necessary

CONTENT

We shall discuss:

- optimality conditions
- (gradient projection methods for bound constraints)
- penalty and augmented-Lagrangian methods
- barrier-function and interior-point methods
- (Sequential Quadratic Programming methods)

NOTATION

Use the following from now on:

$$
\begin{aligned}
a_{i}(x) & :=\nabla_{x} c_{i}(x) & & \text { gradient of } i \text { th constraint } \\
A(x) & :=\left[\nabla_{x} c^{T}(x)\right]^{T} \equiv\left(\begin{array}{c}
a_{1}^{T}(x) \\
\cdots \\
a_{m}^{T}(x)
\end{array}\right) & & \text { Jacobian matrix of } c \\
H_{i}(x) & :=\nabla_{x x}^{2} c_{i}(x) & & \text { Hessian of } i \text { th constraint } \\
\ell(x, y) & :=f(x)-\langle y, c(x)\rangle & & \text { Lagrangian function, where } \\
H(x, y) & :=\nabla_{x x}^{2} \ell(x, y) & & y \text { are Lagrange multipliers } \\
& \equiv H(x)-\sum_{i=1}^{m} y_{i} H_{i}(x) & &
\end{aligned}
$$

EQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 3.1. Suppose that $f, c \in C^{1}$, and that x_{*} is a local minimizer of $f(x)$ subject to $c(x)=0$. Then, so long as a firstorder constraint qualification holds, there exist a vector of Lagrange multipliers y_{*} such that

$$
\begin{aligned}
c\left(x_{*}\right) & =0(\text { primal feasibility }) \text { and } \\
g\left(x_{*}\right)-A^{T}\left(x_{*}\right) y_{*} & =0 \quad(\text { dual feasibility })
\end{aligned}
$$

EQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

Theorem 3.2. Suppose that $f, c \in C^{2}$, and that x_{*} is a local minimizer of $f(x)$ subject to $c(x)=0$. Then, provided that firstand second-order constraint qualifications hold, there exist a vector of Lagrange multipliers y_{*} such that

$$
\left\langle s, H\left(x_{*}, y_{*}\right) s\right\rangle \geqslant 0 \text { for all } s \in \mathcal{N}
$$

where

$$
\mathcal{N}=\left\{s \in \mathbb{R}^{n} \mid A\left(x_{*}\right) s=0\right\} .
$$

INEQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 3.3. Suppose that $f, c \in C^{1}$, and that x_{*} is a local minimizer of $f(x)$ subject to $c(x) \geqslant 0$. Then, provided that a firstorder constraint qualification holds, there exist a vector of Lagrange multipliers y_{*} such that

$$
\begin{aligned}
& c\left(x_{*}\right) \geqslant 0 \quad \text { (primal feasibility) }, \\
& g\left(x_{*}\right)-A^{T}\left(x_{*}\right) y_{*}=0 \\
& \text { and } y_{*} \geqslant 0 \\
& c_{i}\left(x_{*}\right)\left[y_{*}\right]_{i}=0 \text { (dual feasibility) and } \\
& \text { (complementary slackness). }
\end{aligned}
$$

Often known as the Karush-Kuhn-Tucker (KKT) conditions

- second-order conditions are more complicated!

SIMPLE-BOUND MINIMIZATION

First-order necessary optimality:

Theorem 3.4. Suppose that $f \in C^{1}$, and that x_{*} is a local minimizer of $f(x)$ subject to $x^{\mathrm{L}} \leqslant x \leqslant x^{\mathrm{U}}$. Then

$$
x^{\mathrm{L}} \leqslant x_{*} \leqslant x^{\mathrm{U}} \text { and } P\left[x_{*}-\alpha g\left(x_{*}\right)\right]=x_{*},
$$

for all $\alpha \geqslant 0$, where the projection of x into the feasible region is

$$
P_{i}[x]=\operatorname{mid}\left(x_{i}^{\mathrm{L}}, x_{i}, x_{i}^{\mathrm{U}}\right)=\left\{\begin{array}{l}
x_{i}^{\mathrm{L}} \text { if } x_{i}<x_{i}^{\mathrm{L}} \\
x_{i}^{\mathrm{U}} \text { if } x_{i}>x_{i}^{\mathrm{U}} \\
x_{i} \text { if } x_{i}^{\mathrm{L}} \leqslant x_{i} \leqslant x_{i}^{\mathrm{U}}
\end{array}\right.
$$

True more generally: if \mathcal{F} is a closed, non-empty convex set, x_{*} is a local minimizer of $f(x): x \in \mathcal{F}$, then $P_{\mathcal{F}}\left[x_{*}-\alpha g\left(x_{*}\right)\right]=x_{*}$ and $x_{*} \in \mathcal{F}$, where $P_{\mathcal{F}}(x)=\arg \min \|x-y\|$ is the projection of x into \mathcal{F} $y \in \mathcal{F}$

GRADIENT-PROJECTION METHODS

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } x \in(\text { closed, convex }) \mathcal{F},
$$

Generalise steepest-descent to cope with convex constraints, starting from $x_{0} \in \mathcal{F}$

Linesearch variant:

$$
d_{k}=P_{\mathcal{F}}\left[x_{k}-g\left(x_{k}\right)\right]-x_{k}
$$

+ Armjio linesearch for $f\left(x_{k}+\alpha d_{k}\right)$ for $\alpha \in(0,1]$
Trust-region variant: for model $m_{k}(s)$

$$
s_{k}^{\mathrm{c}}=s_{k}\left(\alpha_{k}\right), \text { where } \operatorname{arc} s_{k}(\alpha)=P_{\mathcal{F}}\left[x_{k}-\alpha g\left(x_{k}\right)\right]-x_{k}
$$

and

$$
\alpha_{k}=\underset{\alpha>0}{\arg \min } m_{k}\left(s_{k}(\alpha)\right) \text { subject to }\left\|s_{k}(\alpha)\right\| \leqslant \Delta_{k}
$$

BOUND-CONSTRAINED TRUST-REGION EXAMPLE

Arc $s_{k}(\alpha)$ (green) from $(1,-0.5)$ with radius $\Delta=1.1$ and $x \geqslant(0.7,-1.2)$

Part 3a: Penalty and augmented Lagrangian methods for equality constrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

```
minimize }f(x)\mathrm{ subject to }c(x)=
```

 \(x \in \mathbb{R}^{n}\)
 Course on continuous optimization, STFC-RAL, February 2021

CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:

- minimize the objective function $f(x)$
- satisfy the constraints

Overcome this by minimizing a composite merit function $\Phi(x, p)$ for which

- p are parameters
- (some) minimizers of $\Phi(x, p)$ wrt x approach those of $f(x)$ subject to the constraints as p approaches some set \mathcal{P}
- only uses unconstrained minimization methods

AN EXAMPLE FOR EQUALITY CONSTRAINTS

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)=0
$$

Merit function (quadratic penalty function):

$$
\Phi(x, \mu)=f(x)+\frac{1}{2 \mu}\|c(x)\|_{2}^{2}
$$

- required solution as μ approaches $\{0\}$ from above
- may have other useless stationary points

CONTOURS OF THE PENALTY FUNCTION

$$
\mu=100
$$

$$
\mu=1
$$

Quadratic penalty function for $\min x_{1}^{2}+x_{2}^{2}$ subject to $x_{1}+x_{2}^{2}=1$

CONTOURS OF THE PENALTY FUNCTION (cont.)

Quadratic penalty function for $\min x_{1}^{2}+x_{2}^{2}$ subject to $x_{1}+x_{2}^{2}=1$

BASIC QUADRATIC PENALTY FUNCTION ALGORITHM

Given $\mu_{0}>0$, set $k=0$
Until "convergence" iterate:
Starting from x_{k}^{s}, use an unconstrained minimization algorithm to find an "approximate" minimizer x_{k} of $\Phi\left(x, \mu_{k}\right)$
Compute $\mu_{k+1}>0$ smaller than μ_{k} such that $\lim _{k \rightarrow \infty} \mu_{k+1}=0$ and increase k by 1

- often choose $\mu_{k+1}=0.1 \mu_{k}$ or even $\mu_{k+1}=\mu_{k}^{2}$
- might choose $x_{k+1}^{\mathrm{s}}=x_{k}$

MAIN CONVERGENCE RESULT

Theorem 3.5. Suppose that $f, c \in \mathcal{C}^{2}$, that

$$
\left\|\nabla_{x} \Phi\left(x_{k}, \mu_{k}\right)\right\|_{2} \leqslant \epsilon_{k},
$$

where ϵ_{k} and μ_{k} converge to zero as $k \rightarrow \infty$, that

$$
y_{k}^{Q}:=-\frac{c\left(x_{k}\right)}{\mu_{k}}
$$

and that x_{k} converges to x_{*} for which $A\left(x_{*}\right)$ is full rank. Then x_{*} satisfies the first-order necessary optimality conditions for the problem

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)=0
$$

and $\left\{y_{k}^{\mathrm{Q}}\right\}$ converge to the associated Lagrange multipliers y_{*}.

ALGORITHMS TO MINIMIZE $\Phi(x, \mu)$

Can use

- linesearch methods
- might use specialized linesearch to cope with large quadratic term $\|c(x)\|_{2}^{2} / 2 \mu$
- trust-region methods
- (ideally) need to "shape" trust region to cope with contours of the $\|c(x)\|_{2}^{2} / 2 \mu$ term

DERIVATIVES OF THE QUADRATIC PENALTY FUNCTION

- $\Phi(x, \mu)=f(x)+\frac{1}{2 \mu}\|c(x)\|_{2}^{2}$
- $\nabla_{x} \Phi(x, \mu)=g(x)+\frac{1}{\mu} A^{T}(x) c(x)=g\left(x, y^{Q}(x)\right)$
- $\nabla_{x x}^{2} \Phi(x, \mu)=H\left(x, y^{Q}(x)\right)+\frac{1}{\mu} A^{T}(x) A(x)$
where
- $g(x, y)=g(x)-A^{T}(x) y$: gradient of the Lagrangian
- Lagrange multiplier estimates:

$$
y^{Q}(x)=-\frac{c(x)}{\mu}
$$

- $H(x, y)=H(x)-\sum_{i=1}^{m} y_{i} H_{i}(x):$ Lagrangian Hessian

GENERIC QUADRATIC PENALTY NEWTON SYSTEM

Newton correction s from x for quadratic penalty function is

$$
\left(H\left(x, y^{Q}(x)\right)+\frac{1}{\mu} A^{T}(x) A(x)\right) s=-g\left(x, y^{\mathrm{Q}}(x)\right)
$$

LIMITING DERIVATIVES OF Φ

For small μ : roughly

$$
\begin{aligned}
& \nabla_{x} \Phi(x, \mu)=\underbrace{g(x)-A^{T}(x) y^{\mathrm{Q}}(x)}_{\text {moderate }} \\
& \nabla_{x x}^{2} \Phi(x, \mu)=\underbrace{H\left(x, y^{\mathrm{Q}}(x)\right)}_{\text {moderate }}+\underbrace{\frac{1}{\mu} A^{T}(x) A(x)}_{\text {large }} \approx \underbrace{\frac{1}{\mu} A^{T}(x) A(x)}_{\text {rank defficient }}
\end{aligned}
$$

POTENTIAL DIFFICULTY

Ill-conditioning of the Hessian of the penalty function:

roughly speaking (non-degenerate case)

- m eigenvalues $\approx \lambda_{i}\left[A^{T}(x) A(x)\right] / \mu_{k}$
- $n-m$ eigenvalues $\approx \lambda_{i}\left[S^{T}(x) H\left(x_{*}, y_{*}\right) S(x)\right]$
where $S(x)$ orthogonal basis for null-space of $A(x)$
\Longrightarrow condition number of $\nabla_{x x}^{2} \Phi\left(x_{k}, \mu_{k}\right)=O\left(1 / \mu_{k}\right)$
\Longrightarrow may not be able to find minimizer easily

THE ILL-CONDITIONING IS BENIGN

Newton system:

$$
\left(H\left(x, y^{\mathrm{Q}}(x)\right)+\frac{1}{\mu} A^{T}(x) A(x)\right) s=-\left(g(x)+\frac{1}{\mu} A^{T}(x) c(x)\right)
$$

Define auxiliary variables

$$
w=\frac{1}{\mu}(A(x) s+c(x))
$$

\Longrightarrow

$$
\left(\begin{array}{cc}
H\left(x, y^{Q}(x)\right) & A^{T}(x) \\
A(x) & -\mu I
\end{array}\right)\binom{s}{w}=-\binom{g(x)}{c(x)}
$$

- essentially independent of μ for small $\mu \Longrightarrow$ no inherent ill-conditioning
- thus can solve Newton equations accurately
- more sophisticated analysis \Longrightarrow original system OK

PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)=0
$$

are:

$$
\begin{array}{cc}
g(x)-A^{T}(x) y=0 & \text { dual feasibility } \\
c(x)=0 & \text { primal feasibility }
\end{array}
$$

Consider the "perturbed" problem

$$
\begin{array}{cc}
g(x)-A^{T}(x) y=0 & \text { dual feasibility } \\
c(x)+\mu y=0 & \text { perturbed primal feasibility }
\end{array}
$$

where $\mu>0$

PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of

$$
g(x)-A^{T}(x) y=0 \text { and } c(x)+\mu y=0
$$

as $0<\mu \rightarrow 0$

- nonlinear system \Longrightarrow use Newton's method

Newton correction (s, v) to (x, y) satisfies

$$
\left(\begin{array}{cc}
H(x, y) & -A^{T}(x) \\
A(x) & \mu I
\end{array}\right)\binom{s}{v}=-\binom{g(x)-A^{T}(x) y}{c(x)+\mu y}
$$

Eliminate $v \Longrightarrow$

$$
\left(H(x, y)+\frac{1}{\mu} A^{T}(x) A(x)\right) s=-\left(g(x)+\frac{1}{\mu} A^{T}(x) c(x)\right)
$$

c.f. Newton method for quadratic penalty function minimization!

PRIMAL VS. PRIMAL-DUAL

Primal:

$$
\left(H\left(x, y^{\mathrm{Q}}(x)\right)+\frac{1}{\mu} A^{T}(x) A(x)\right) s^{\mathrm{p}}=-g\left(x, y^{\mathrm{Q}}(x)\right)
$$

Primal-dual:

$$
\left(H(x, y)+\frac{1}{\mu} A^{T}(x) A(x)\right) s^{\mathrm{PD}}=-g\left(x, y^{\mathrm{Q}}(x)\right)
$$

where

$$
y^{Q}(x)=-\frac{c(x)}{\mu}
$$

What is the difference?

- freedom to choose y in $H(x, y)$ for primal-dual \ldots vital

ANOTHER EXAMPLE FOR EQUALITY CONSTRAINTS

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)=0
$$

Merit function (augmented Lagrangian function):

$$
\Phi(x, u, \mu)=f(x)-\langle y, c(x)\rangle+\frac{1}{2 \mu}\|c(x)\|_{2}^{2}
$$

where y and μ are auxiliary parameters

Two interpretations -

- shifted quadratic penalty function
- convexification of the Lagrangian function

Aim: adjust μ and y to encourage convergence

DERIVATIVES OF THE AUGMENTED LAGRANGIAN FUNCTION

- $\Phi(x, y, \mu)=f(x)-\langle y, c(x)\rangle+\frac{1}{2 \mu}\|c(x)\|_{2}^{2}$
- $\nabla_{x} \Phi(x, y, \mu)=g(x)-A^{T}(x) y+\frac{1}{\mu} A^{T}(x) c(x)=g\left(x, y^{\mathrm{A}}(x)\right)$
- $\nabla_{x x}^{2} \Phi(x, y, \mu)=H\left(x, y^{\mathrm{A}}(x)\right)+\frac{1}{\mu} A^{T}(x) A(x)$
where
- $g(x, y)=g(x)-A^{T}(x) y$: gradient of the Lagrangian
- First-order Lagrange multiplier estimates:
- $H(x, y)=H(x)-\sum_{i=1}^{m} y_{i}(x) H_{i}(x)$: Lagrangian Hessian

Crucially

$$
c(x)=\mu\left[y^{A}(x)-y\right]
$$

AUGMENTED LAGRANGIAN CONVERGENCE

Theorem 3.6. Suppose that $f, c \in \mathcal{C}^{2}$, that

$$
\left\|\nabla_{x} \Phi\left(x_{k}, y_{k}, \mu_{k}\right)\right\|_{2} \leqslant \epsilon_{k},
$$

for given $\left\{y_{k}\right\}$, where ϵ_{k} converges to zero as $k \rightarrow \infty$, that

$$
y_{k}^{\mathrm{A}}:=y_{k}-c\left(x_{k}\right) / \mu_{k},
$$

and that x_{k} converges to x_{*} for which $A\left(x_{*}\right)$ is full rank. Then $\left\{y_{k}^{A}\right\}$ converge to some y_{*} for which $g\left(x_{*}\right)=A^{T}\left(x_{*}\right) y_{*}$.
If additionally either
(i) μ_{k} converges to zero for bounded y_{k} or
(ii) y_{k} converges to y_{*} for bounded μ_{k},
then x_{*} and y_{*} satisfy the first-order necessary optimality conditions for the problem

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)=0
$$

CONTOURS OF THE AUGMENTED LAGRANGIAN FUNCTION

Augmented Lagrangian function for $\min x_{1}^{2}+x_{2}^{2}$ subject to $x_{1}+x_{2}^{2}=1$ with fixed $\mu=1$

CONTOURS OF THE AUGMENTED LAGRANGIAN FUNCTION (cont.)

Augmented Lagrangian function for $\min x_{1}^{2}+x_{2}^{2}$ subject to $x_{1}+x_{2}^{2}=1$ with fixed $\mu=1$

CONVERGENCE OF AUGMENTED LAGRANGIAN METHODS

- convergence guaranteed if y_{k} fixed and $\mu \longrightarrow 0$

$$
\Longrightarrow y_{k} \longrightarrow y_{*} \text { and } c\left(x_{k}\right) \longrightarrow 0
$$

- check if $\left\|c\left(x_{k}\right)\right\| \leqslant \eta_{k}$ where $\left\{\eta_{k}\right\} \longrightarrow 0$
- if so, set $y_{k+1}=y_{k}-c\left(x_{k}\right) / \mu_{k}$ and $\mu_{k+1}=\mu_{k}$
- if not, set $y_{k+1}=y_{k}$ and $\mu_{k+1} \leqslant \tau \mu_{k}$ for some $\tau \in(0,1)$
- reasonable: $\eta_{k}=\mu_{k}^{0.1+0.9 j}$ where j iterations since μ_{k} last changed
- under such rules, can ensure μ_{k} eventually unchanged under modest assumptions and (fast) linear convergence
- need also to ensure μ_{k} is sufficiently large that $\nabla_{x x}^{2} \Phi\left(x_{k}, y_{k}, \mu_{k}\right)$ is positive (semi-)definite

BASIC AUGMENTED LAGRANGIAN ALGORITHM

Given $\mu_{0}>0$ and y_{0}, set $k=0$
Until "convergence" iterate:
Starting from x_{k}^{s}, use an unconstrained minimization algorithm to find an "approximate" minimizer x_{k} of $\Phi\left(x, y_{k}, \mu_{k}\right)$ for which $\left\|\nabla_{x} \Phi\left(x_{k}, y_{k}, \mu_{k}\right)\right\| \leqslant \epsilon_{k}$
If $\left\|c\left(x_{k}\right)\right\| \leqslant \eta_{k}$, set $y_{k+1}=y_{k}-c\left(x_{k}\right) / \mu_{k}$ and $\mu_{k+1}=\mu_{k}$
Otherwise set $y_{k+1}=u_{k}$ and $\mu_{k+1} \leqslant \tau \mu_{k}$
Set suitable ϵ_{k+1} and η_{k+1} and increase k by 1

- often choose $\tau=\min \left(0.1, \sqrt{\mu_{k}}\right)$
- might choose $x_{k+1}^{\mathrm{s}}=x_{k}$
- reasonable: $\epsilon_{k}=\mu_{k}^{j+1}$ where j iterations since μ_{k} last changed

Part 3b: Interior-point methods for inequality constrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

```
minimize }f(x)\mathrm{ subject to }c(x)\geqslant
    x\in\mp@subsup{\mathbb{R}}{}{n}
```


CONSTRAINED MINIMIZATION

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x) \geqslant 0
$$

where the objective function $f: \mathbb{R}^{n} \longrightarrow \mathrm{IR}$ and the constraints $c: \mathbb{R}^{n} \longrightarrow \mathrm{IR}^{m}$

- assume that $f, c \in C^{1}$ (sometimes C^{2}) and Lipschitz
- often in practice this assumption violated, but not necessary

CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:

- minimize the objective function $f(x)$
- satisfy the constraints

Recall - overcome this by minimizing a composite merit function $\Phi(x, p)$ for which

- p are parameters
- (some) minimizers of $\Phi(x, p)$ wrt x approach those of $f(x)$ subject to the constraints as p approaches some set \mathcal{P}
- only uses unconstrained minimization methods

A MERIT ${ }^{\underline{n}}{ }^{\text {h }}$ FOR INEQUALITY CONSTRAINTS

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x) \geqslant 0
$$

Merit function (logarithmic barrier function):

$$
\Phi(x, \mu)=f(x)-\mu \sum_{i=1}^{m} \log c_{i}(x)
$$

- required solution as μ approaches $\{0\}$ from above
- may have other useless stationary points
- requires a strictly interior point to start
- consequent points are interior

CONTOURS OF THE BARRIER FUNCTION

$$
\mu=10
$$

$\mu=1$

Barrier function for $\min x_{1}^{2}+x_{2}^{2}$ subject to $x_{1}+x_{2}^{2} \geqslant 1$

CONTOURS OF THE BARRIER FUNCTION (cont.)

Barrier function for $\min x_{1}^{2}+x_{2}^{2}$ subject to $x_{1}+x_{2}^{2} \geqslant 1$

BASIC BARRIER FUNCTION ALGORITHM

Given $\mu_{0}>0$, set $k=0$
Until "convergence" iterate:
Find x_{k}^{s} for which $c\left(x_{k}^{s}\right)>0$
Starting from x_{k}^{s}, use an unconstrained minimization algorithm to find an "approximate" minimizer x_{k} of $\Phi\left(x, \mu_{k}\right)$
Compute $\mu_{k+1}>0$ smaller than μ_{k} such that $\lim _{k \rightarrow \infty} \mu_{k+1}=0$ and increase k by 1

- often choose $\mu_{k+1}=0.1 \mu_{k}$ or even $\mu_{k+1}=\mu_{k}^{2}$
- might choose $x_{k+1}^{\mathrm{s}}=x_{k}$

MAIN CONVERGENCE RESULT

The active set $\mathcal{A}(x)=\left\{i: c_{i}(x)=0\right\}$

Theorem 3.7. Suppose that $f, c \in \mathcal{C}^{2}$, that

$$
\left\|\nabla_{x} \Phi\left(x_{k}, \mu_{k}\right)\right\|_{2} \leqslant \epsilon_{k}
$$

where ϵ_{k} converges to zero as $k \rightarrow \infty$, that

$$
\left(y_{k}\right)_{i}:=\mu_{k} / c_{i}\left(x_{k}\right) \text { for } i=1, \ldots, m,
$$

and that x_{k} converges to x_{*} for which $\left\{a_{i}\left(x_{*}\right)\right\}_{i \in \mathcal{A}\left(x_{*}\right)}$ are linearly independent. Then x_{*} satisfies the first-order necessary optimality conditions for the problem

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x) \geqslant 0
$$

and $\left\{y_{k}\right\}$ converge to the associated Lagrange multipliers y_{*}.

ACTIVE AND INACTIVE CONSTRAINTS

Since (complementary slackness)

$$
c_{i}\left(x_{*}\right)\left(y_{*}\right)_{i}=0 \text { for all } i=1, \ldots m
$$

Often have $\left\{x_{k}\right\} \rightarrow x_{*}$ and $\left\{y_{k}\right\} \rightarrow y_{*}$ with

- $c_{i}\left(x_{k}\right) \rightarrow 0$ and $\left(y_{k}\right)_{i} \rightarrow\left(y_{*}\right)_{i}>0$ for $i \in \mathcal{A}\left(x_{*}\right)$ active constraints
- $c_{i}\left(x_{k}\right) \rightarrow c_{i}\left(x_{*}\right)>0$ and $\left(y_{k}\right)_{i} \rightarrow 0$ for $i \in \mathcal{I}\left(x_{*}\right)=\{1, \ldots, m\} \backslash \mathcal{A}\left(x_{*}\right)$ inactive constraints
- sometimes degeneracy: $c_{i}\left(x_{*}\right)=0$ and $\left(y_{*}\right)_{i}=0$

ALGORITHMS TO MINIMIZE $\boldsymbol{\Phi}(\boldsymbol{x}, \boldsymbol{\mu})$

Can use

- linesearch methods
- should use specialized linesearch to cope with singularity of log
- trust-region methods
- need to reject points for which $c\left(x_{k}+s_{k}\right) \ngtr 0$
- (ideally) need to "shape" trust region to cope with contours of the singularity

DERIVATIVES OF THE BARRIER FUNCTION

- $\nabla_{x} \Phi(x, \mu)=g(x, y(x))$
- $\nabla_{x x}^{2} \Phi(x, \mu)=H(x, y(x))+\mu A^{T}(x) C^{-2}(x) A(x)$
$=H(x, y(x))+A^{T}(x) C^{-1}(x) Y(x) A(x)$
$=H(x, y(x))+\frac{1}{\mu} A^{T}(x) Y^{2}(x) A(x)$
where
- Lagrange multiplier estimates: $y(x)=\mu C^{-1}(x) e$ where e is the vector of ones
- $C(x)=\operatorname{diag}\left(c_{1}(x), \ldots, c_{m}(x)\right)$
- $Y(x)=\operatorname{diag}\left(y_{1}(x), \ldots, y_{m}(x)\right)=\mu C^{-1}(x)$
- $g(x, y(x))=g(x)-A^{T}(x) y(x):$ gradient of the Lagrangian
- $H(x, y(x))=H(x)-\sum_{i=1}^{m} y_{i}(x) H_{i}(x)$: Lagrangian Hessian

LIMITING DERIVATIVES OF Φ

Let $\mathcal{I}=$ inactive set at $x_{*}=\{1, \ldots, m\} \backslash \mathcal{A}$
For small μ : roughly

$$
\begin{aligned}
\nabla_{x} \Phi(x, \mu) & =g(x)-\mu A^{T}(x) C^{-1}(x) e \\
& =\underbrace{g(x)-A_{\mathcal{A}}^{T}(x) Y_{\mathcal{A}}(x) e}_{\text {moderate }}-\underbrace{\mu A_{\mathcal{I}}^{T}(x) C_{\mathcal{I}}^{-1}(x) e}_{\text {small }} \\
& \approx g(x)-A_{\mathcal{A}}^{T}(x) y_{\mathcal{A}}(x) \\
\nabla_{x x}^{2} \Phi(x, \mu) & =\underbrace{H(x, y(x))}_{\text {moderate }}+\underbrace{\mu A_{\mathcal{I}}^{T}(x) C_{\mathcal{I}}^{-2}(x) A_{\mathcal{I}}(x)}_{\text {small }}+\underbrace{\frac{1}{\mu} A_{\mathcal{A}}^{T}(x) Y_{\mathcal{A}}^{2}(x) A_{\mathcal{A}}(x)}_{\text {large }} \\
& \approx \frac{1}{\mu} A_{\mathcal{A}}^{T}(x) Y_{\mathcal{A}}^{2}(x) A_{\mathcal{A}}(x) \\
& =A_{\mathcal{A}}^{T}(x) C_{\mathcal{A}}^{-1}(x) Y_{\mathcal{A}}(x) A_{\mathcal{A}}(x) \\
& =\mu A_{\mathcal{A}}^{T}(x) C_{\mathcal{A}}^{-2}(x) A_{\mathcal{A}}(x)
\end{aligned}
$$

GENERIC BARRIER NEWTON SYSTEM

Newton correction s from x for barrier function is

$$
\left(H(x, y(x))+A^{T}(x) C^{-1}(x) Y(x) A(x)\right) s=-g(x, y(x))
$$

LIMITING NEWTON METHOD

For small μ : roughly

$$
\frac{1}{\mu} A_{\mathcal{A}}^{T}(x) Y_{\mathcal{A}}^{2}(x) A_{\mathcal{A}}(x) s \approx-\left(g(x)-A_{\mathcal{A}}^{T}(x) y_{\mathcal{A}}(x)\right)
$$

POTENTIAL DIFFICULTIES I

Ill-conditioning of the Hessian of the barrier function:

roughly speaking (non-degenerate case)

- m_{a} eigenvalues $\approx \lambda_{i}\left[A_{\mathcal{A}}^{T} Y_{\mathcal{A}}^{2} A_{\mathcal{A}}\right] / \mu_{k}$
- $n-m_{a}$ eigenvalues $\approx \lambda_{i}\left[N_{\mathcal{A}}^{T} H\left(x_{*}, y_{*}\right) N_{\mathcal{A}}\right]$
where

$$
m_{a}=\text { number of active constraints }
$$

$$
\mathcal{A}=\text { active set at } x_{*}
$$

$$
Y=\text { diagonal matrix of Lagrange multipliers }
$$

$$
N_{\mathcal{A}}=\text { orthogonal basis for null-space of } A_{\mathcal{A}}
$$

\Longrightarrow condition number of $\nabla_{x x}^{2} \Phi\left(x_{k}, \mu_{k}\right)=O\left(1 / \mu_{k}\right)$
\Longrightarrow may not be able to find minimizer easily

POTENTIAL DIFFICULTIES II

Value $x_{k+1}^{\mathrm{s}}=x_{k}$ is a poor starting point: Suppose

$$
\begin{aligned}
0 & \approx \nabla_{x} \Phi\left(x_{k}, \mu_{k}\right)=g\left(x_{k}\right)-\mu_{k} A^{T}\left(x_{k}\right) C^{-1}\left(x_{k}\right) e \\
& \approx g\left(x_{k}\right)-\mu_{k} A_{\mathcal{A}}^{T}\left(x_{k}\right) C_{\mathcal{A}}^{-1}\left(x_{k}\right) e
\end{aligned}
$$

Roughly speaking (non-degenerate case) Newton correction satisfies

$$
\mu_{k+1} A_{\mathcal{A}}^{T}\left(x_{k}\right) C_{\mathcal{A}}^{-2}\left(x_{k}\right) A_{\mathcal{A}}\left(x_{k}\right) s \approx\left(\mu_{k+1}-\mu_{k}\right) A_{\mathcal{A}}^{T}\left(x_{k}\right) C_{\mathcal{A}}^{-1}\left(x_{k}\right) e
$$

\Longrightarrow (full rank)

$$
A_{\mathcal{A}}\left(x_{k}\right) s \approx\left(1-\frac{\mu_{k}}{\mu_{k+1}}\right) c_{\mathcal{A}}\left(x_{k}\right)
$$

\Longrightarrow (Taylor expansion)

$$
c_{\mathcal{A}}\left(x_{k}+s\right) \approx c_{\mathcal{A}}\left(x_{k}\right)+A_{\mathcal{A}}\left(x_{k}\right) s \approx\left(2-\frac{\mu_{k}}{\mu_{k+1}}\right) c_{\mathcal{A}}\left(x_{k}\right)<0
$$

if $\mu_{k+1}<\frac{1}{2} \mu_{k} \Longrightarrow$ Newton step infeasible \Longrightarrow slow convergence

PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x) \geqslant 0
$$

are:

$$
\begin{array}{cc}
g(x)-A^{T}(x) y=0 & \text { dual feasibility } \\
C(x) y=0 & \text { complementary slackness } \\
c(x) \geqslant 0 \text { and } y \geqslant 0 &
\end{array}
$$

Consider the "perturbed" problem

$$
\begin{array}{cc}
g(x)-A^{T}(x) y=0 & \text { dual feasibility } \\
C(x) y=\mu e & \text { perturbed comp. slkns. } \\
c(x)>0 \text { and } y>0 &
\end{array}
$$

where $\mu>0$

CENTRAL PATH TRAJECTORY

$$
\begin{gathered}
\min \left(x_{1}-1\right)^{2}+\left(x_{2}-0.5\right)^{2} \\
\text { subject to } x_{1}+x_{2} \leqslant 1 \\
3 x_{1}+x_{2} \leqslant 1.5 \\
\left(x_{1}, x_{2}\right) \geqslant 0
\end{gathered}
$$

Trajectory $x(\mu)$ of perturbed optimality conditions
as μ ranges from infinity down to zero

TRAJECTORIES FOR THE NON-CONVEX CASE

$$
\begin{gathered}
\min -2\left(x_{1}-0.25\right)^{2}+2\left(x_{2}-0.5\right)^{2} \\
\text { subject to } x_{1}+x_{2} \leqslant 1 \\
3 x_{1}+x_{2} \leqslant 1.5 \\
\left(x_{1}, x_{2}\right) \geqslant 0
\end{gathered}
$$

Trajectories $x(\mu)$ of perturbed optimality conditions
as μ ranges from infinity down to zero

PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of

$$
g(x)-A^{T}(x) y=0 \text { and } C(x) y-\mu e=0
$$

as $0<\mu \rightarrow 0$, while maintaining $c(x)>0$ and $y>0$

- this is a nonlinear system \Longrightarrow use Newton's method

Newton correction (s, w) to (x, y) satisfies

$$
\left(\begin{array}{cc}
H(x, y) & -A^{T}(x) \\
Y A(x) & C(x)
\end{array}\right)\binom{s}{w}=-\binom{g(x)-A^{T}(x) y}{C(x) y-\mu e}
$$

Eliminate $w \longrightarrow$

$$
\left(H(x, y)+A^{T}(x) C^{-1}(x) Y A(x)\right) s=-\left(g(x)-\mu A^{T}(x) C^{-1}(x) e\right)
$$

c.f. Newton method for barrier minimization!

PRIMAL VS. PRIMAL-DUAL

Primal:

$$
\left(H(x, y(x))+A^{T}(x) C^{-1}(x) Y(x) A(x)\right) s^{\mathrm{p}}=-g(x, y(x))
$$

Primal-dual:

$$
\left(H(x, y)+A^{T}(x) C^{-1}(x) Y A(x)\right) s^{\mathrm{PD}}=-g(x, y(x))
$$

where

$$
y(x)=\mu C^{-1}(x) e
$$

What is the difference?

- freedom to choose y in $H(x, y)+A^{T}(x) C^{-1}(x) Y A(x)$ for primal-dual . . . vital
- Hessian approximation for small μ

$$
H(x, y)+A^{T}(x) C^{-1}(x) Y A(x) \approx A_{\mathcal{A}}^{T}(x) C_{\mathcal{A}}^{-1}(x) Y_{\mathcal{A}} A_{\mathcal{A}}(x)
$$

POTENTIAL DIFFICULTY II ... REVISITED

Value $x_{k+1}^{\mathrm{s}}=x_{k}$ can be a good starting point:

- primal method has to choose $y=y\left(x_{k}^{\mathrm{s}}\right)=\mu_{k+1} C^{-1}\left(x_{k}\right) e$
- factor μ_{k+1} / μ_{k} too small for a good Lagrange multiplier estimate
- primal-dual method can choose $y=\mu_{k} C^{-1}\left(x_{k}\right) e \rightarrow y_{*}$

Advantage: roughly (non-degenerate case) correction s^{PD} satisfies

$$
\mu_{k} A_{\mathcal{A}}^{T}\left(x_{k}\right) C_{\mathcal{A}}^{-2}\left(x_{k}\right) A_{\mathcal{A}}\left(x_{k}\right) s^{\mathrm{PD}} \approx\left(\mu_{k+1}-\mu_{k}\right) A_{\mathcal{A}}^{T}\left(x_{k}\right) C_{\mathcal{A}}^{-1}\left(x_{k}\right) e
$$

\Longrightarrow (full rank)

$$
A_{\mathcal{A}}\left(x_{k}\right) s^{\mathrm{PD}} \approx\left(\frac{\mu_{k+1}}{\mu_{k}}-1\right) c_{\mathcal{A}}\left(x_{k}\right)
$$

\Longrightarrow (Taylor expansion)

$$
c_{\mathcal{A}}\left(x_{k}+s^{\mathrm{PD}}\right) \approx c_{\mathcal{A}}\left(x_{k}\right)+A_{\mathcal{A}}\left(x_{k}\right) s^{\mathrm{PD}} \approx \frac{\mu_{k+1}}{\mu_{k}} c_{\mathcal{A}}\left(x_{k}\right)>0
$$

\Longrightarrow Newton step allowed \Longrightarrow fast convergence

PRIMAL-DUAL BARRIER METHODS

Choose a search direction s for $\Phi\left(x, \mu_{k}\right)$ by
(approximately) solving the problem

$$
\underset{s \in \mathbb{R}^{n}}{\operatorname{minimize}} g(x, y(x))^{T} s+\frac{1}{2} s^{T}\left(H(x, y)+A^{T}(x) C^{-1}(x) Y A(x)\right) s
$$

possibly subject to a trust-region constraint

- $y(x)=\mu C^{-1}(x) e \Longrightarrow g(x, y(x))=\nabla_{x} \Phi(x, \mu)$
- $y=\ldots$
- $y(x) \Longrightarrow$ primal Newton method
- occasionally $\left(\mu_{k-1} / \mu_{k}\right) y(x) \Longrightarrow$ good starting point
- $y^{\text {oLD }}+w^{\text {oLD }} \Longrightarrow$ primal-dual Newton method
- $\max \left(y^{\text {oLD }}+w^{\text {oLD }}, \epsilon\left(\mu_{k}\right) e\right)$ for "small" $\epsilon\left(\mu_{k}\right)>0$
(e.g., $\left.\epsilon\left(\mu_{k}\right)=\mu_{k}^{1.5}\right) \Longrightarrow$ practical primal-dual method

POTENTIAL DIFFICULTY I ...REVISITED

Ill-conditioning $\#$ we can't solve equations accurately: roughly (non-degenerate case, $\mathcal{I}=$ inactive set at x_{*})

$$
\begin{gathered}
\left(\begin{array}{cc}
H & -A^{T} \\
Y A & C
\end{array}\right)\binom{s}{w}=-\binom{g-A^{T} y}{C y-\mu e} \Longrightarrow \\
\left(\begin{array}{ccc}
H & -A_{\mathcal{A}}^{T} & -A_{\mathcal{I}}^{T} \\
Y_{\mathcal{A}} A_{\mathcal{A}} & C_{\mathcal{A}} & 0 \\
Y_{\mathcal{I}} A_{\mathcal{I}} & 0 & C_{\mathcal{I}}
\end{array}\right)\left(\begin{array}{c}
s \\
w_{\mathcal{A}} \\
w_{\mathcal{I}}
\end{array}\right)=-\left(\begin{array}{c}
g-A_{\mathcal{A}}^{T} y_{\mathcal{A}}-A_{\mathcal{I}}^{T} y_{\mathcal{I}} \\
C_{\mathcal{A}} y_{\mathcal{A}}-\mu e \\
C_{\mathcal{I}} y_{\mathcal{I}}-\mu e
\end{array}\right) \Longrightarrow \\
\left(\begin{array}{cc}
H+A_{\mathcal{I}}^{T} C_{\mathcal{I}}^{-1} Y_{\mathcal{I}} A_{\mathcal{I}} & -A_{\mathcal{A}}^{T} \\
A_{\mathcal{A}} & C_{\mathcal{A}} Y_{\mathcal{A}}^{-1}
\end{array}\right)\binom{s}{w_{\mathcal{A}}}=-\binom{g-A_{\mathcal{A}}^{T} y_{\mathcal{A}}-\mu A_{\mathcal{I}}^{T} C_{\mathcal{I}}^{-1} e}{c_{\mathcal{A}}-\mu Y_{\mathcal{A}}^{-1} e}
\end{gathered}
$$

- potentially bad terms $C_{\mathcal{I}}^{-1}$ and $Y_{\mathcal{A}}^{-1}$ bounded
- in the limit becomes well-behaved

$$
\left(\begin{array}{cc}
H & -A_{\mathcal{A}}^{T} \\
A_{\mathcal{A}} & 0
\end{array}\right)\binom{s}{w_{\mathcal{A}}}=-\binom{g-A_{\mathcal{A}}^{T} y_{\mathcal{A}}}{0}
$$

PRACTICAL PRIMAL-DUAL METHOD

Given $\mu_{0}>0$ and feasible $\left(x_{0}^{\mathrm{s}}, y_{0}^{\mathrm{s}}\right)$, set $k=0$
Until "convergence" iterate:
Inner minimization: starting from $\left(x_{k}^{s}, y_{k}^{s}\right)$, use an unconstrained minimization algorithm to find $\left(x_{k}, y_{k}\right)$ for which

$$
\left\|C\left(x_{k}\right) y_{k}-\mu_{k} e\right\| \leqslant \mu_{k} \text { and }\left\|g\left(x_{k}\right)-A^{T}\left(x_{k}\right) y_{k}\right\| \leqslant \mu_{k}^{1.00005}
$$

Set $\mu_{k+1}=\min \left(0.1 \mu_{k}, \mu_{k}^{1.9999}\right)$
Find $\left(x_{k+1}^{\mathrm{s}}, y_{k+1}^{\mathrm{s}}\right)$ using a primal-dual Newton step from $\left(x_{k}, y_{k}\right)$
If $\left(x_{k+1}^{\mathrm{s}}, y_{k+1}^{\mathrm{s}}\right)$ is infeasible, reset $\left(x_{k+1}^{\mathrm{s}}, y_{k+1}^{\mathrm{s}}\right)$ to $\left(x_{k}, y_{k}\right)$
Increase k by 1

FAST ASYMPTOTIC CONVERGENCE

Theorem 3.8. Suppose that $f, c \in \mathcal{C}^{2}$, that a subsequence $\left\{\left(x_{k}, y_{k}\right)\right\}, k \in \mathcal{K}$, of the practical primal-dual method converges to $\left(x_{*}, y_{*}\right)$ satisfying second-order sufficiency conditions, that $A_{\mathcal{A}}\left(x_{*}\right)$ is full-rank, and that $\left(y_{*}\right)_{\mathcal{A}}>0$. Then the starting point satisfies the inner-minimization termination test (i.e., $\left.\left(x_{k}, y_{k}\right)=\left(x_{k}^{\mathrm{s}}, y_{k}^{\mathrm{s}}\right)\right)$ and the whole sequence $\left\{\left(x_{k}, y_{k}\right)\right\}$ converges to $\left(x_{*}, y_{*}\right)$ at a superlinear rate (Q-factor 1.9998).

OTHER ISSUES

- polynomial algorithms for many convex problems
- linear programming
- quadratic programming
- semi-definite programming ...
- excellent practical performance
- globally, need to keep away from constraint boundary until near convergence, otherwise very slow
- initial interior point:

$$
\underset{(x, c)}{\operatorname{minimize}}\langle e, c\rangle \text { subject to } c(x)+c \geqslant 0
$$

Part 3c: SQP methods for equality constrained optimization

Nick Gould (nick.gould@stfc.ac.uk)

$$
\text { minimize } f(x) \text { subject to } c(x)=0
$$

$$
x \in \mathbb{R}^{n}
$$

Course on continuous optimization, STFC-RAL, February 2021

EQUALITY CONSTRAINED MINIMIZATION

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)=0
$$

where the objective function $f: \mathbb{R}^{n} \longrightarrow \mathbb{I R}$ and the constraints $c: \mathbb{R}^{n} \longrightarrow \operatorname{IR}^{m}(m \leqslant n)$

- assume that $f, c \in C^{1}$ (sometimes C^{2}) and Lipschitz
- often in practice this assumption violated, but not necessary
- easily generalized to inequality constraints ... but may be better to use interior-point methods for these

OPTIMALITY AND NEWTON'S METHOD

1st order optimality:

$$
g(x, y) \equiv g(x)-A^{T}(x) y=0 \text { and } c(x)=0
$$

this is a nonlinear system (linear in y)
use Newton's method to find a correction (s, w) to (x, y)
\Longrightarrow

$$
\left(\begin{array}{cc}
H(x, y) & -A^{T}(x) \\
A(x) & 0
\end{array}\right)\binom{s}{w}=-\binom{g(x, y)}{c(x)}
$$

ALTERNATIVE FORMULATIONS

unsymmetric:

$$
\left(\begin{array}{cc}
H(x, y) & -A^{T}(x) \\
A(x) & 0
\end{array}\right)\binom{s}{w}=-\binom{g(x, y)}{c(x)}
$$

or symmetric:

$$
\left(\begin{array}{cc}
H(x, y) & A^{T}(x) \\
A(x) & 0
\end{array}\right)\binom{s}{-w}=-\binom{g(x, y)}{c(x)}
$$

or (with $y^{+}=y+w$) unsymmetric:

$$
\left(\begin{array}{cc}
H(x, y) & -A^{T}(x) \\
A(x) & 0
\end{array}\right)\binom{s}{y^{+}}=-\binom{g(x)}{c(x)}
$$

or symmetric:

$$
\left(\begin{array}{cc}
H(x, y) & A^{T}(x) \\
A(x) & 0
\end{array}\right)\binom{s}{-y^{+}}=-\binom{g(x)}{c(x)}
$$

DETAILS

- Often approximate with symmetric $B \approx H(x, y) \Longrightarrow$ e.g.

$$
\left(\begin{array}{cc}
B & A^{T}(x) \\
A(x) & 0
\end{array}\right)\binom{s}{-y^{+}}=-\binom{g(x)}{c(x)}
$$

- solve system using
- unsymmetric (LU) factorization of $\left(\begin{array}{cc}B & -A^{T}(x) \\ A(x) & 0\end{array}\right)$
- symmetric (indefinite) factorization of $\left(\begin{array}{cc}B & A^{T}(x) \\ A(x) & 0\end{array}\right)$
- symmetric factorizations of B and the Schur Complement $A(x) B^{-1} A^{T}(x)$
- iterative method $(\operatorname{GMRES}(\mathrm{k}), \operatorname{MINRES}, \mathrm{CG}$ within $\mathcal{N}(A), \ldots)$

AN ALTERNATIVE INTERPRETATION

QP : minimize $\langle s, g(x)\rangle+\frac{1}{2}\langle s, B s\rangle$ subject to $A(x) s=-c(x)$

$$
s \in \mathbb{R}^{n}
$$

- $\mathrm{QP}=$ quadratic program
- first-order model of constraints $c(x+s)$
- second-order model of objective $f(x+s)$... but B includes curvature of constraints
solution to QP satisfies

$$
\left(\begin{array}{cc}
B & A^{T}(x) \\
A(x) & 0
\end{array}\right)\binom{s}{-y^{+}}=-\binom{g(x)}{c(x)}
$$

SEQUENTIAL QUADRATIC PROGRAMMING - SQP

or successive quadratic programming or recursive quadratic programming (RQP)

Given $\left(x_{0}, y_{0}\right)$, set $k=0$
Until "convergence" iterate:
Compute a suitable symmetric B_{k} using $\left(x_{k}, y_{k}\right)$
Find

$$
s_{k}=\underset{s \in \mathbb{R}^{n}}{\arg \min }\left\langle g_{k}, s\right\rangle+\frac{1}{2}\left\langle s, B_{k} s\right\rangle \text { subject to } A_{k} s=-c_{k}
$$

along with associated Lagrange multiplier estimates y_{k+1}
Set $x_{k+1}=x_{k}+s_{k}$ and increase k by 1

ADVANTAGES

- simple
- fast
- quadratically convergent with $B_{k}=H\left(x_{k}, y_{k}\right)$
- superlinearly convergent with good $B_{k} \approx H\left(x_{k}, y_{k}\right)$
- don't actually need $B_{k} \longrightarrow H\left(x_{k}, y_{k}\right)$

PROBLEMS WITH PURE SQP

- how to choose B_{k} ?
- what if QP_{k} is unbounded from below? and when?
- how do we globalize this iteration?

