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Sampling the Fourier transform

In many applications, we are required to recover some function f ∈ L2(Ω),
Ω ⊂ Rd, from pointwise evaluations of its Fourier transform:

Ff(ω) =

∫
x∈Ω

f(x)e−2πi〈ω,x〉dx.

I Medical imaging: Magnetic Resonance Imaging (MRI)/ Computed
Tomography

I Astronomy: Radio Interferometry

I Biology: Electron/Fluorescence Microscopy



The Shannon Nyquist Sampling Theorem
Whittaker 1929, Kotelnikov 1933, Shannon 1949

If f has support included in [−T, T ], then for ε−1 ≥ 2T ,

f = ε
∑
n∈Z2

Ff(εn)e2πiεn·, with L2 convergence,

Ff =
∑
n∈Z2

Ff(εn)sinc
( ·+ nε

ε

)
, with L∞, L2 convergence.

Under no further assumptions, the sampling rate ε−1 must be at least T−1,
the Nyquist rate.
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Sparsity
In the last few decades, sparsity has played a prominent role in image processing.

Wavelet: W
=⇒

Gradient: D
=⇒

Total variation (1992), wavelets (1988), contourlets (2005), curvelets (2000),
shearlets (2006), ...



An intriguing experiment
Candès, Romberg & Tao, 2006
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min
z∈CN×N

‖z‖TV subject to PΩUz = PΩUx

I Uz =
(∑N

j1=1

∑N
j2=1 zj1,j2e

i2π(k1j1+k2j2)
)
k1,k2=−bN/2c,...,dN/2e−1

.

I Dz = D1z + iD2z where

D1z = (xk+1,j − zk,j)Nk,j=1, D2z = (zk,j+1 − zk,j)Nk,j=1

with zN+1,j := z1,j and zk,N+1 := zk,1. Let ‖z‖TV := ‖Dz‖1.



A theoretical explanation towards sub-Nyquist sampling

Candès, Romberg & Tao, 2006: Let x ∈ CN be s-sparse in its discrete
gradient and suppose we observe its 0th Fourier coefficient plus O (s logN)
of its Fourier coefficients chosen uniformly at random. Then, with
overwhelming probability, x is the unique solution to

min
z∈CN

‖z‖TV subject to PΩUz = PΩUx.
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I O (s logN) represents a substantial saving in the number of samples.

I The sampling cardinality of O (s logN) is optimal for s-sparse vectors.
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Compressed sensing?

How can we recover an s-sparse vector x ∈ CN from Ux
where U ∈ Cm×N and m = O (s logN)� N?

I Thousands of papers developing algorithms and random sensing
matrices.

I But many applications where compressed sensing is of practical
interest are constrained to Fourier sampling, and one of the most
widely used sparsifying transform is the gradient operator.

I Lustig et al. (2007) on MRI, Wiaux et al. (2009) on radio
interferometry, Leary et al. (2013) on electron microscopy, ....

?Introduced in 2006 independently by Donoho and Candès, Romberg & Tao.



This talk:

2 key questions

In practice, signals are only approximately sparse and measurements are
noisy. Given y = PΩUx+ η ∈ Cm with ‖η‖2 ≤ δ

√
m, we seek to solve

min
z
‖z‖TV subject to ‖PΩUz − y‖2 ≤ δ

√
m.

Original Uniform random sampling Variable density sampling

Reconstructions from sampling 10% of the Fourier coefficients.

1. What can we say about robustness to noise and stability to inexact
sparsity under uniform random sampling at O (s logN)?

2. Why does variable density sampling outperform uniform random
sampling?
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Remark: Feasible sampling patterns

Spirals Radial lines Cartesian lines

In practical applications such as MRI, the hardware constraints mean that
uniform random sampling cannot be implemented. Thus, there is a need to
understand how one should sample along trajectories.

Last part of this talk: Sampling along Cartesian lines.



Notation

1D case: For x ∈ CN , Λ ⊂ Z,

I Ux =
(∑N

j=1 xje
i2πkj

)
k=−bN/2c,...,dN/2e−1

.

I PΛ : CN → CN , (PΛx)j = xj if j ∈ Λ and 0 otherwise.

I Dx := (−xj + xj+1)Nj=1 with xN+1 := x1. Let ‖x‖TV = ‖Dx‖1 .

2D case: For x ∈ CN×N , Λ ⊂ Z2,

I Ux =
(∑N

j1=1

∑N
j2=1 xj1,j2e

i2π(k1j1+k2j2)
)
k1,k2=−bN/2c,...,dN/2e−1

I PΛ : CN×N → CN×N , (PΛx)k,j = xk,j if (k, j) ∈ Λ and 0 otherwise.

I Dx = D1x+ iD2x where

D1x = (xk+1,j − xk,j)Nk,j=1, D2x = (xk,j+1 − xk,j)Nk,j=1

with xN+1,j := x1,j and xk,N+1 := xk,1. Let ‖x‖TV := ‖Dx‖1.

Given y and Ω ⊂ Z (resp. Z2) of cardinality m, we will consider the solutions

R(Ω, δ, y) = argmin
z∈CN (resp.CN×N )

‖z‖TV subject to ‖PΩU − y‖2 ≤
√
m · δ.
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Uniform + power law sampling (1D case)

Definition
Ω = Ω1 ∪ Ω2 ⊂ {−bN/2c+ 1, . . . , dN/2e} is a uniform + power law
sampling scheme of cardinality 2m if

I Ω1 consists of m indices chosen uniformly at random.

I Ω2 = {k1, . . . , km} consist of m indices which are independent and
identically distributed (i.i.d.) such that for each j = 1, . . . ,m and
n = −N/2 + 1, . . . , N/2,

P(kj = n) = p(n), p(n) =
C log(N)

max{1, |n|} ,

where C is an appropriate constant such that p is a probability
measure.
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Uniform + power law sampling (1D case)

Theorem (P. 2015)
Let N = 2J with J ∈ N, δ ≥ 0 and ε ∈ (0, 1).

I Let x ∈ CN and let ∆ index the largest s coefficients of Dx.

I Suppose we are given y = PΩUx+ η where ‖η‖2 ≤
√
m · δ and Ω is a uniform

+ power law sampling scheme of cardinality m = O
(
s log(N)(1 + log(ε−1)

)
.

Then with probability exceeding 1− ε, ξ ∈ R(Ω, δ, y) satisfies

‖Dx−Dξ‖2 .

(
δ
√
s+ L2 ·

‖P∆cDx‖1√
s

)
,

‖x− ξ‖2√
N

. L1 ·
(
δ
√
s

+ L2 ·
‖P∆cDx‖1

s

)
,

where L1 = log2(s) log(N) log(m) and L2 = log(s) log
1
2 (m).

DeVore (1998): The optimal error decay rate for any bounded variation
function f ∈ BV [0, 1) by any type of nonlinear approximation f̃ from s
samples is

‖f̃ − f‖L2[0,1) = O
(
‖f‖V · s

−1).
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Uniform + power law sampling (2D case)
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Uniform + power law sampling (2D case)

Theorem (P. 2015)
Let N = 2J , J ∈ N, ε ∈ (0, 1) and δ ≥ 0.

I Let x ∈ CN×N and let ∆ index the largest s coefficients of Dx.

I Suppose we are given y = PΩUx+ η where ‖η‖2 ≤
√
m · δ and Ω is a uniform

+ power law sampling scheme of cardinality

m = O
(
s log(N)(1 + log(ε−1)

)
.

Then, with probability exceeding 1− ε, ξ ∈ R(Ω, δ, y) satisfies

‖Dx−Dξ‖2 .

(
δ ·
√
s+ L2 ·

‖P∆cDx‖1√
s

)
,

‖x− ξ‖2 . L1 ·
(
δ + L2 ·

‖P∆cDx‖1√
s

)
,

where L1 = log(s) log(N
2

s
) log

1
2 (N) log

1
2 (m), and L2 = log

1
2 (m) log(s).

Candès & Tao (2006), Needell & Ward (2013):
The optimal error estimate from O

(
s log(N2/s)

)
nonadaptive samples is

δ +
‖P∆cDx‖1√

s
.



Uniform + power law sampling (2D case)

Theorem (P. 2015)
Let N = 2J , J ∈ N, ε ∈ (0, 1) and δ ≥ 0.

I Let x ∈ CN×N and let ∆ index the largest s coefficients of Dx.

I Suppose we are given y = PΩUx+ η where ‖η‖2 ≤
√
m · δ and Ω is a uniform

+ power law sampling scheme of cardinality

m = O
(
s log(N)(1 + log(ε−1)

)
.

Then, with probability exceeding 1− ε, ξ ∈ R(Ω, δ, y) satisfies

‖Dx−Dξ‖2 .

(
δ ·
√
s+ L2 ·

‖P∆cDx‖1√
s

)
,

‖x− ξ‖2 . L1 ·
(
δ + L2 ·

‖P∆cDx‖1√
s

)
,

where L1 = log(s) log(N
2

s
) log

1
2 (N) log

1
2 (m), and L2 = log

1
2 (m) log(s).

Candès & Tao (2006), Needell & Ward (2013):
The optimal error estimate from O

(
s log(N2/s)

)
nonadaptive samples is

δ +
‖P∆cDx‖1√

s
.



Uniform + power law sampling (2D case)
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√
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+ power law sampling scheme of cardinality

m = O
(
s log(N)(1 + log(ε−1)

)
.

Then, with probability exceeding 1− ε, ξ ∈ R(Ω, δ, y) satisfies

‖Dx−Dξ‖2 .

(
δ ·
√
s+ L2 ·

‖P∆cDx‖1√
s

)
,

‖x− ξ‖2 . L1 ·
(
δ + L2 ·
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,

where L1 = log(s) log(N
2

s
) log

1
2 (N) log

1
2 (m), and L2 = log

1
2 (m) log(s).

Krahmer & Ward (2014): Given O
(
s log5(N) log3(s)

)
Fourier

coefficients distributed by a power law, TV regularization guarantees stable
recovery up to gradient sparsity s.
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Uniform random sampling (1D case)

Theorem (P. 2015)

Let N ∈ N, δ ≥ 0 and ε ∈ (0, 1).

I Let x ∈ CN and let ∆ index the largest s coefficients of Dx.

I Suppose we are given y = PΩUx+ η ∈ Cm where ‖η‖2 ≤
√
m · δ and Ω

includes 0 and m indices chosen uniformly at random with

m = O
(
s · log (N) ·

(
1 + log(ε−1)

))
.

Then, with probability exceeding 1− ε, ξ ∈ R(Ω, δ, y) satisfies

‖Dx−Dξ‖2 . δ ·
√
s+ L ·

‖P∆cDx‖1√
s

,

‖x− ξ‖2√
N

. δ ·
√
s+ L · ‖P∆cDx‖1 ,

where L = log
1
2 (m) log(s).



Uniform random sampling (2D case)

Theorem (P. 2015)

Let N ∈ N, δ ≥ 0 and ε ∈ (0, 1).

I Let x ∈ CN×N and let ∆ index the largest s coefficients of Dx.

I Suppose we are given y = PΩUx+ η ∈ Cm where ‖η‖2 ≤
√
m · δ and Ω

includes 0 and m indices chosen uniformly at random with

m = O
(
s · log (N) ·

(
1 + log(ε−1)

))
.

Then, with probability exceeding 1− ε, ξ ∈ R(Ω, δ, y) satisfies

‖Dx−Dξ‖2 . δ ·
√
s+ L ·

‖P∆cDx‖1√
s

,

‖x− ξ‖2 . δ ·
√
s+ L · ‖P∆cDx‖1 ,

where L = log
1
2 (m) log(s).



Question...
So, uniform random sampling does achieve robustness and stability...

Example: Reconstructions from 35% uniform random sampling:

Original No noise SNR = 10 SNR = 5
Err = 20% Err = 22% Err = 46%.

However, the error bounds obtained for the uniform random sampling
strategy are sub-optimal, whereas, by adding the samples which concentrate
on low frequencies, one can guarantee near-optimal error bounds.

Does dense sampling at low frequencies actually improve stability, or is the
difference between the theorems simply an artefact of the proofs?



A numerical comparison

Consider the recovery of x+ h from 10% of its Fourier coefficients, with different
SNR = 10 log10(‖x‖2 / ‖h‖2).
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Detour: super resolution (discrete case)

The recovery of a super position of spikes, x =
∑
j αjδtj with tj ∈ [0, 1],

from low frequency samples only.

Candès & Fernandez-Granda (2012):
Let x ∈ CN , let ∆ be its support and suppose that

min
t,t′∈∆,t 6=t′

|t− t′|
N

≥ 2

M
.

Then, given y = P[M ]Ux (first 2M + 1 DFT coefficients of x) with
[M ] = {−M, . . . ,M}, x is the unique solution of

min
z
‖z‖1 subject to P[M ]Uz = y.

If instead, Dx has support ∆:

1. recover Dx by solving an `1 problem.

2. recover x from Dx by shifting by the mean of x (i.e. 0th Fourier
coefficient of x).

Tang & Bhaskar & Shah & Recht (2013): An analogous compressed sensing result.
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Low frequency sampling

Theorem (P. 2015)
Let N ∈ N, let ε ∈ [0, 1] and let M ∈ N be such that N/4 ≥M ≥ 10.

I Let x ∈ CN and ∆ ⊂ {1, . . . , N} be of cardinality s and suppose that

min
k,j∈∆,k 6=j

|k − j|
N

≥
2

M
.

I Let Ω ⊂ {−M, . . . ,M} include 0 and m indices chosen uniformly at random
with

m & max

{
log2

(
M

ε

)
, log(N), s · log

( s
ε

)
· log

(
M

ε

)}
.

Then with probability exceeding 1− ε, given y = PΩAx+ η and ‖η‖2 ≤ δ ·
√
m,

any solution ξ ∈ R(Ω, δ, y) satisfies

‖x− ξ‖2√
N

.
N2

M2
·
(
δ · s+

√
s · ‖P∆cDx‖1

)
.

If m = 2M + 1, then the error bound holds with probability 1.



The price of randomness

Suppose that x ∈ CN was s-gradient sparse with a minimum separation of
2/s. Then, x can be exactly recovered from 2s+ 1 Fourier coefficients.
However, random sampling guarantees recovery only with O (s logN)
samples.
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This signal can be recovered exactly from 3.9% of its Fourier coefficient of lowest
frequencies, but uniform random sampling would require sampling at 10%.



What about the 2D case?

Candès & Fernandez-Granda (2012):

Let x ∈ CN×N have support ∆. If mink,j∈∆,k 6=j |k− j| ≥ 2.38/M and we
observe the Fourier coefficients of x up to frequency M ∈ N, y = P[M ]Ux.
Then x is the unique solution of

min
z
‖z‖1 subject to P[M ]Uz = y.

The difficulty with the recovery of images is that there is no separation in
the edge set.
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Sampling along Cartesian lines

In 1D, the number of samples depends on the gradient sparsity, and the range
that we sample from depends on the separation of the support set. In 2D:

I The number of lines depends on the gradient sparsity along each direction.

I The sampling range depends on the separation along each direction.



Separation concepts

Definition
Let N ∈ N and let ∆ ⊂ {1, . . . , N}2. The minimum separation distance of

I its rows is defined to be

νrow(∆, N) =
N

min
n=1

min

{
|j − k|
N

: j, k ∈ ∆ ∩ {{n} × {1, . . . , N}}
}
,

I its columns is defined to be

νcol(∆, N) =
N

min
n=1

min

{
|j − k|
N

: j, k ∈ ∆ ∩ {{1, . . . , N} × {n}}
}
.

νcol(∆, N) = 1/2 νrow(∆, N) = 1/3



Sparsity concepts

Definition
Let ∆ ⊂ {1, . . . , N}2. ∆ is of cardinality s

I along its columns if s = maxNj=1

∣∣∣∆[col]
j

∣∣∣, where

∆
[col]
j = {(n1, j) ∈ ∆ : n1 = 1, . . . , N} .

I along its rows if s = maxNj=1

∣∣∣∆[row]
j

∣∣∣, where

∆
[row]
j = {(j, n2) ∈ ∆ : n2 = 1, . . . , N} .

Definition
Let x ∈ CN×N . Let x[col,j] be the jth column of x and x[row,j] be the jth

row of x. We say that x has T distinct supports

I along its columns if T =
∣∣∣{x[col,j] : j = 1, . . . , N

}∣∣∣ .
I along its rows if T =

∣∣∣{x[row,j] : j = 1, . . . , N
}∣∣∣ .



Our assumptions

Let x ∈ CN×N and let ∆1,∆2 ⊂ {1, . . . , N}2 index the largest s1

coefficients of D1x and the largest s2 coefficients of D2x resp.

I Along its columns, ∆1 has a minimum separation of 2/M1 and is of
cardinality s1.

I Along its rows, ∆2 has a minimum separation of 2/M2 and is of
cardinality s2.

I P∆1sgn(D1x) has T1 distinct supports along its columns.

I P∆2sgn(D2x) has T2 distinct supports along its rows.

For a Cartesian line sampling index set Ω with |Ω| = m and y = PΩx+ η
with ‖η‖ ≤ δ

√
m, we will consider the solutions of

min
z∈CN×N

‖z‖TV,aniso subject to ‖PΩUz − y‖ ≤ δ
√
m.

Recall that D1 performs finite differences along each column and D2 performs finite
differences along each row. The anisotropic total variation norm of x ∈ CN×N is

‖x‖TV,aniso := ‖D1x‖1 + ‖D2x‖1 =
∑
j

|(D1x)j|+ |(D2x)j| ,

as opposed to the isotropic total variation norm ‖x‖TV =
∑

j

√
|(D1x)j|2 + |(D2x)j|2.



Sampling along Cartesian lines

Theorem (P. 2015)

Let ε ∈ (0, 1). Let Ω = {0} ∪ {Ω1 × [N ]} ∪ {[N ]× Ω2} , and m = |Ω|, where

Ω1 ∼ Unif([M1],m1), Ω2 ∼ Unif([M2],m2),

m1 & max
{

log2(T1M1/ε), log(N), s1 log(T1s1/ε) log(T1M1/ε)
}
,

and

m2 & max
{

log2(T2M2/ε), log(N), s2 log(T2s2/ε) log(T2M2/ε)
}
.

Then, with probability exceeding 1− ε, any minimizer x̂ satisfies

‖D(x− x̂)‖2 .
N2

M2
0

(
(m0N)−1/2√mδ +

∥∥∥P⊥∆1
D1x

∥∥∥
1

+
∥∥∥P⊥∆2

D2x
∥∥∥

1

)
,

and

‖x− x̂‖ . N2

M2
0

√
s
(

(m/m0)1/2δ +
∥∥∥P⊥∆1

D1x
∥∥∥

1
+
∥∥∥P⊥∆2

D2x
∥∥∥

1

)
,

where s = max {s1, s2}, m0 = min {m1,m2}, and M0 = min {M1,M2}.

If Ω1 = [M1] and Ω2 = [M2], then these bounds hold with probability one.



Example: Sampling 1.2% of the Fourier coefficients

If x has at most s1 discontinuities along each of its columns with a
minimum separation of 2/s1 and it has at most s2 discontinuities along
each of its rows with a minimum separation of 2/s2, then one is guaranteed
exact recovery by sampling along 2(s1 + s2) Cartesian lines.

Sampling in accordance to sparsity structure allows for sub-O (s logN) recovery.



Reconstruction of the 1951 USAF resolution test chart (6.5% sampling)

Unif. ran. Unif. ran. + pow. Low. freq. lines Semi-ran. lines Semi-ran. points

Err 38.3% Err 9.5% Err 8.5% Err 3.9% 2.5%



Conclusions
Although uniform random sampling is stable and robust...

I a uniform + power law sampling strategy achieves recovery guarantees
which are optimal (for sparse vectors) up to log factors.

I in the 1D case where the discontinuities of the underlying signal are
sufficiently far apart, one only needs to sample from low Fourier
frequencies to ensure exact recovery.

I in the 2D case, recovery guarantees were presented for sampling along
Cartesian lines. The sampling result is dependent both on sparsity and
the sparsity separation in each direction.

I by accounting for sparsity structure, one can circumvent the
O (s logN) bound.

I variable density sampling schemes appear to combine the benefits of
super resolution and compressed sensing: allows for a linear
correspondence between the coarse features recovered and the number
of samples, and also the recovery of fine features at the price of a log
factor.

Thanks for listening!

On the role of total variation in compressed sensing. SIAM J. Imaging Sci., 8(1),

682-720, 2015.
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Remark on the proofs

One can show that if x ∈ CN and supp(Dx) = ∆, then x is the unique
solution to

min
z
‖z‖TV subject to PΩUx = PΩUz,

provided that

1. PΩUP∆ is injective,

2. There exists η ∈ ran(U∗PΩ) such that ηj = sgn(Dx)j for all j ∈ ∆ and
‖η‖∞ ≤ 1.

3. ‖h‖ ≤ C(N) ‖h‖TV whenever PΩUh = 0.

I The second condition is simply asking if there exists a trigonometric
polynomial

p =
∑
j∈Ω

αje
2πi〈j,·〉

which interpolates the sign pattern of Dx and ‖p‖∞ ≤ 1.

I The third condition is true if 0 ∈ Ω, and one can show that this
condition holds with smaller constants C(N) under power law
sampling.
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