DGFEM for Hamilton-Jacobi-Bellman equations with Cordes coefficients

lain Smears

University of Oxford
$17^{\text {th }}$ IMA Leslie Fox Prize Meeting
joint work with
E. Süli

Talk outline

- Introduction: Stochastic optimal control and Hamilton-Jacobi-Bellman (HJB) equations.
- PDE Theory: Analysis of HJB equations with Cordes coefficients.
- Numerical methods: High-order discontinuous Galerkin methods for HJB equations with Cordes coefficients.

Talk outline

- Introduction: Stochastic optimal control and Hamilton-Jacobi-Bellman (HJB) equations.
- How HJB equations arise from stochastic optimal control problems.
- Some example applications.
- Examples of a broad class of fully nonlinear equations.
- PDE Theory: Analysis of HJB equations with Cordes coefficients.
- Numerical methods: High-order discontinuous Galerkin methods for HJB equations with Cordes coefficients.

1. Stochastic optimal control

What is a stochastic optimal control problem?
Find a control function $\alpha(\cdot): t \mapsto \alpha_{t}$ that minimises

$$
J(x, \alpha(\cdot))=\mathbb{E}\left[\int_{0}^{\tau_{\text {exit }}} f\left(X_{t}, \alpha_{t}\right) \exp \left(-\int_{0}^{t} c\left(X_{s}, \alpha_{s}\right) \mathrm{d} s\right) \mathrm{d} t\right]
$$

subject to the stochastic differential equation

$$
\mathrm{d} X_{t}=b\left(X_{t}, \alpha_{t}\right) \mathrm{d} t+\sigma\left(X_{t}, \alpha_{t}\right) \mathrm{d} B_{t}, \quad X_{0}=x .
$$

Notation: $\alpha \in \Lambda$ the set of controls, $x \in \Omega$ a domain in \mathbb{R}^{d}, $\mathrm{d} B_{t}$ a m-dimensional Brownian motion, $\tau_{\text {exit }}$ is the time of first exit of X_{t} from Ω.

$$
\sigma(x, \alpha) \in \mathbb{R}^{d \times m}, \quad b(x, \alpha) \in \mathbb{R}^{d}, \quad c(x, \alpha) \in \mathbb{R}, \quad f(x, \alpha) \in \mathbb{R} .
$$

\rightarrow an optimisation problem over a function space.

1. Stochastic optimal control: example applications

Engineering

Energy

Finance

Applications of optimal control theory are covered in a very wide literature. A couple of examples:
嗇 I. Karatzas, J. Lehoczky \& S. Shreve, SIAM J. Control Optim. 1987: Optimal portfolio and consumption decisions for a "small investor" on a finite horizon.
P. Parpas \& M. Webster, Eur. J. Op. Res. 2013:

A stochastic multiscale model for electricity generation capacity expansion.

1. Stochastic optimal control: dynamic programming principle

How does the HJB equation arise in stochastic control problems?

Bellman's dynamic programming principle

1. Define the value function of the optimal control problem.
2. DPP: the value function is the solution of an HJB equation.
3. Solving the HJB equation yields the value function and the optimal controls.

Full details in many references, e.g.
[Fleming \& Soner, 2006].

Richard Bellman (1920-1984)

1.HJB equation

$$
\begin{aligned}
\sup _{\alpha \in \Lambda}\left[L^{\alpha} u-f^{\alpha}\right]=0 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{aligned}
$$

where $L^{\alpha} u:=a^{\alpha}(x): D^{2} u+b^{\alpha}(x) \cdot \nabla u-c^{\alpha}(x) u$, with

$$
\begin{array}{ll}
a^{\alpha}(x):=\frac{1}{2} \sigma(x, \alpha) \sigma^{\top}(x, \alpha) \in \mathbb{R}^{d \times d}, & b^{\alpha}(x):=b(x, \alpha) \in \mathbb{R}^{d} \\
c^{\alpha}(x):=c(x, \alpha) \in \mathbb{R}, & f^{\alpha}(x):=f(x, \alpha) \in \mathbb{R}
\end{array}
$$

Notation:

Remark: the dependence of a function on $\alpha \in \Lambda$ is denoted by a superscript: $a:(x, \alpha) \rightarrow a^{\alpha}(x)$.

1.HJB equation

$$
\begin{align*}
\sup _{\alpha \in \Lambda}\left[L^{\alpha} u-f^{\alpha}\right]=0 & \text { in } \Omega \tag{HJB}\\
u=0 & \text { on } \partial \Omega,
\end{align*}
$$

where $L^{\alpha} u:=a^{\alpha}(x): D^{2} u+b^{\alpha}(x) \cdot \nabla u-c^{\alpha}(x) u$, with

$$
\begin{array}{ll}
a^{\alpha}(x):=\frac{1}{2} \sigma(x, \alpha) \sigma^{\top}(x, \alpha) \in \mathbb{R}^{d \times d}, & \\
b^{\alpha}(x):=b(x, \alpha) \in \mathbb{R}^{d}, \\
c^{\alpha}(x):=c(x, \alpha) \in \mathbb{R}, & f^{\alpha}(x):=f(x, \alpha) \in \mathbb{R} .
\end{array}
$$

Notation: $\quad a^{\alpha}(x): D^{2} u=\sum_{i, j=1}^{d} a_{i j}^{\alpha}(x) u_{x_{i} x_{j}}, \quad b^{\alpha}(x) \cdot \nabla u=\sum_{i=1}^{d} b_{i}^{\alpha}(x) u_{x_{i}}$.
Remark: the dependence of a function on $\alpha \in \Lambda$ is denoted by a superscript: $a:(x, \alpha) \rightarrow a^{\alpha}(x)$.

1. HJB equation: examples

How do HJB equations relate to other partial differential equations?

$$
\sup _{\alpha \in \Lambda}\left[L^{\alpha} u-f^{\alpha}\right]=0
$$

The HJB equation generalises many other equations:

- Linear nondivergence form elliptic equations

$$
a: D^{2} u+b \cdot \nabla u-c u=f, \quad \text { (assume that } \Lambda \text { is a singleton set). }
$$

- Linear advection-diffusion-reaction equation

$$
\left.\operatorname{div}(a \nabla u)+b \cdot \nabla u-c u=f, \quad \text { assuming } a \in C^{1}(\bar{\Omega})\right) .
$$

- Hamilton-Jacobi: e.g. eikonal equation

$$
\sup _{\alpha \in S^{d}}\left[\alpha \cdot \nabla_{u}-1\right]=|\nabla u|-1=0 .
$$

- Monge-Ampère equation

1. HJB equation: examples

How do HJB equations relate to other partial differential equations?

$$
\sup _{\alpha \in \Lambda}\left[L^{\alpha} u-f^{\alpha}\right]=0
$$

The HJB equation generalises many other equations:

- Linear nondivergence form elliptic equations

$$
a: D^{2} u+b \cdot \nabla u-c u=f, \quad \text { (assume that } \Lambda \text { is a singleton set). }
$$

- Linear advection-diffusion-reaction equation

$$
\left.\operatorname{div}(a \nabla u)+b \cdot \nabla u-c u=f, \quad \text { assuming } a \in C^{1}(\bar{\Omega})\right) .
$$

- Hamilton-Jacobi: e.g. eikonal equation

$$
\sup _{\alpha \in \mathbb{S}^{d}}[\alpha \cdot \nabla u-1]=|\nabla u|-1=0 .
$$

- Monge-Ampère equation

1. HJB equation: examples

How do HJB equations relate to other partial differential equations?

$$
\sup _{\alpha \in \Lambda}\left[L^{\alpha} u-f^{\alpha}\right]=0
$$

The HJB equation generalises many other equations:

- Linear nondivergence form elliptic equations

$$
a: D^{2} u+b \cdot \nabla u-c u=f, \quad \text { (assume that } \Lambda \text { is a singleton set). }
$$

- Linear advection-diffusion-reaction equation

$$
\operatorname{div}(a \nabla u)+b \cdot \nabla u-c u=f, \quad\left(\text { assuming } a \in C^{1}(\bar{\Omega})\right) .
$$

- Hamilton-Jacobi: e.g. eikonal equation

$$
\sup _{\alpha \in \mathbb{S}^{d}}[\alpha \cdot \nabla u-1]=|\nabla u|-1=0
$$

- Monge-Ampère equation

1. HJB equation: examples

How do HJB equations relate to other partial differential equations?

$$
\sup _{\alpha \in \Lambda}\left[L^{\alpha} u-f^{\alpha}\right]=0
$$

The HJB equation generalises many other equations:

- Linear nondivergence form elliptic equations

$$
a: D^{2} u+b \cdot \nabla u-c u=f, \quad \text { (assume that } \Lambda \text { is a singleton set). }
$$

- Linear advection-diffusion-reaction equation

$$
\left.\operatorname{div}(a \nabla u)+b \cdot \nabla u-c u=f, \quad \text { (assuming } a \in C^{1}(\bar{\Omega})\right)
$$

- Hamilton-Jacobi: e.g. eikonal equation

$$
\sup _{\alpha \in \mathbb{S}^{d}}[\alpha \cdot \nabla u-1]=|\nabla u|-1=0
$$

- Monge-Ampère equation

$$
\operatorname{det} D^{2} u-f=0 \Longleftrightarrow \inf _{\substack{\alpha \in \mathbb{R}_{\text {sym }}^{d \times d}+土 \\ \operatorname{Tr} \alpha=1}}\left[\alpha: D^{2} u-d(f \operatorname{det} \alpha)^{1 / d}\right]=0
$$

1. HJB equation: examples

$$
\sup _{\alpha \in \Lambda}\left[L^{\alpha} u-f^{\alpha}\right]=0
$$

Approach to numerical methods:

- Different numerical methods are commonly used for different special cases with specific structures (e.g. eikonal vs advection-diffusion-reaction).
- Our goal is to develop stable and efficient numerical methods for a subclass of HJB equations with a common structure.
- Previous methods either:
- had a convergence theory, but relied on discrete maximum principles and restricted to low-order schemes.
cf works of Motzkin \& Wasow, Kuo \& Trudinger, Barles \& Souganidis, Kocan, Camilli \& Falcone, Jakobsen \& Debrabant, and many others...
- did not rely on discrete maximum principles, but had no convergence theory. cf review paper [Feng et al., SIAM Rev, 2013].

1.HJB Equation: summary

1. Stochastic optimal control problems lead to HJB equations.
2. HJB equations are a broad class of fully nonlinear partial differential equations. They generalise many other PDE.
3. The nonlinearity leads to multiple challenges in designing stable and convergent numerical methods.

Talk outline

- Introduction: Stochastic optimal control and Hamilton-Jacobi-Bellman (HJB) equations.
- PDE Theory: Analysis of HJB equations with Cordes coefficients.
- What are Cordes coefficients, where do they come from?
- Why are they relevant to HJB equations?
- What is the PDE analysis of HJB equations with Cordes coefficients (existence, uniqueness and regularity of solutions)
- Numerical methods: High-order discontinuous Galerkin methods for HJB equations with Cordes coefficients.

2. PDE theory: Hamilton-Jacobi-Bellman Equation

We will consider the elliptic HJB equation

$$
\begin{aligned}
\sup _{\alpha \in \Lambda}\left[L^{\alpha} u-f^{\alpha}\right]=0 & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega,
\end{aligned}
$$

(Elliptic HJB)
where $L^{\alpha} u:=a^{\alpha}(x): D^{2} u+b^{\alpha}(x) \cdot \nabla u-c^{\alpha}(x) u$.
Assumptions:

- $\Omega \subset \mathbb{R}^{d}$ is bounded and convex, Λ a compact metric space.
- a, b, c and f are continuous functions in $x \in \bar{\Omega}, \alpha \in \Lambda$.
- a^{α} are symmetric positive definite, uniformly on $\bar{\Omega} \times \Lambda$, and $c^{\alpha} \geq 0$.
- Cordes coefficients: the coefficient functions a, b, c satisfy the Cordes condition (cf next slide)

2. PDE theory: Cordes condition

Cordes condition: assume that there exist $\lambda>0$ and $\varepsilon \in(0,1]$ s. t .

$$
\begin{equation*}
\frac{\left|a^{\alpha}\right|^{2}+\left|b^{\alpha}\right|^{2} / 2 \lambda+\left(c^{\alpha} / \lambda\right)^{2}}{\left(\operatorname{Tr} a^{\alpha}+c^{\alpha} / \lambda\right)^{2}} \leq \frac{1}{d+\varepsilon} \quad \forall \alpha \in \Lambda . \tag{Cordes}
\end{equation*}
$$

If $b^{\alpha} \equiv 0$ and $c^{\alpha} \equiv 0$, then (Cordes) is modified slightly:

$$
\begin{equation*}
\frac{\left|a^{\alpha}\right|^{2}}{\left(\operatorname{Tr} a^{\alpha}\right)^{2}} \leq \frac{1}{d-1+\varepsilon} \quad \forall \alpha \in \Lambda \tag{2}
\end{equation*}
$$

If dimension $d=2$, (Cordes ${ }^{2}$) equivalent to uniform ellipticity \Longrightarrow widely applicable.

Notation: $\quad\left|a^{\alpha}\right|^{2}=\sum_{i, j=1}^{d}\left|a_{i j}^{\alpha}\right|^{2}, \quad \operatorname{Tr} a^{\alpha}=\sum_{i=1}^{d} a_{i i}^{\alpha}, \quad\left|b^{\alpha}\right|^{2}=\sum_{i=1}^{d}\left|b_{i}^{\alpha}\right|^{2}$.

2. PDE theory: Cordes condition

The Cordes condition: [Cordes, 1956] \rightarrow PDE theory of nondivergence form elliptic equations with discontinuous coefficients.

$$
\begin{equation*}
a: D^{2} u=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \quad a \in L^{\infty}(\Omega) . \tag{1}
\end{equation*}
$$

If $a \in C(\bar{\Omega})$ and $\partial \Omega \in C^{1,1}$, then existence and uniqueness holds.
[Gilbarg \& Trudinger].
If $a \in L^{\infty}(\Omega)$, $a \notin C(\Omega)$, then uniqueness breaks down:
where B is the unit ball in \mathbb{R}^{d}. For $d>2(2-\theta)>2$, the equation has two solutions

$$
u_{1}(x)=0 \quad \text { and } \quad u_{2}(x)=|x|^{0}-1
$$

in $H^{2}(B) \cap H_{0}^{1}(B)$, whenever $d \geq 3$.

2. PDE theory: Cordes condition

The Cordes condition: [Cordes, 1956] \rightarrow PDE theory of nondivergence form elliptic equations with discontinuous coefficients.

$$
\begin{equation*}
a: D^{2} u=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \quad a \in L^{\infty}(\Omega) . \tag{1}
\end{equation*}
$$

If $a \in C(\bar{\Omega})$ and $\partial \Omega \in C^{1,1}$, then existence and uniqueness holds.
[Gilbarg \& Trudinger].
If $a \in L^{\infty}(\Omega), a \notin C(\Omega)$, then uniqueness breaks down:

$$
\Delta u+\rho \sum_{i, j=1}^{d} \frac{x_{i} x_{j}}{|x|^{2}} u_{x_{i} x_{j}}=0 \text { in } B, \quad \rho=-1+\frac{d-1}{1-\theta}, \quad 0<\theta<1,
$$

where B is the unit ball in \mathbb{R}^{d}. For $d>2(2-\theta)>2$, the equation has two solutions

$$
u_{1}(x)=0 \quad \text { and } \quad u_{2}(x)=|x|^{\theta}-1
$$

in $H^{2}(B) \cap H_{0}^{1}(B)$, whenever $d \geq 3$.

2. PDE theory: Cordes condition

The Cordes condition: [Cordes, 1956] \rightarrow PDE theory of nondivergence form elliptic equations with discontinuous coefficients.

$$
\begin{equation*}
a: D^{2} u=f \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \quad a \in L^{\infty}(\Omega) . \tag{1}
\end{equation*}
$$

Theorem (Cordes, 1956)
If $a \in L^{\infty}(\Omega), \Omega$ is convex, and the Cordes condition holds,

$$
\frac{|a|^{2}}{(\operatorname{Tr} a)^{2}} \leq \frac{1}{d-1+\varepsilon}
$$

then for any $f \in L^{2}(\Omega)$ there exists a unique $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ satisfying (1).
2. PDE theory: overview

Our motivation:
Recall that HJB generalises nondivergence form elliptic equations.
More specifically, nondivergence form elliptic equations with discontinuous coefficients arise as linearisations of HJB equations.

It is therefore natural to study the subclass of HJB equations that satisfy the Cordes condition.

2. PDE theory: well-posedness

Theorem

Let Ω be a bounded convex open subset of \mathbb{R}^{d}, and let Λ be a compact metric space.
Let the data be continuous on $\bar{\Omega} \times \Lambda$, and satisfy (Cordes) with uniformly elliptic a^{α} and $c^{\alpha} \geq 0$ for all $\alpha \in \Lambda$.
Then, there exists a unique $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ that solves (HJB) pointwise a.e. in Ω.

回 I. S. \& E. Süli, SIAM J. Numer. Anal. 2014:
Discontinuous Galerkin finite element approximation of
Hamilton-Jacobi-Bellman equations with Cordes coefficients.

2. PDE theory: proof of well-posedness

Define

$$
\begin{aligned}
\gamma^{\alpha} & :=\frac{\operatorname{Tr} a^{\alpha}+c^{\alpha} / \lambda}{\left|a^{\alpha}\right|^{2}+\left|b^{\alpha}\right|^{2} / 2 \lambda+\left(c^{\alpha} / \lambda\right)^{2}} \\
F_{\gamma}[u] & :=\sup _{\alpha \in \Lambda}\left[\gamma^{\alpha}\left(L^{\alpha} u-f^{\alpha}\right)\right]
\end{aligned}
$$

Because $\gamma^{\alpha}>0$, we have

$$
\begin{equation*}
F_{\gamma}[u]=0 \Longleftrightarrow \sup _{\alpha \in \Lambda}\left[L^{\alpha} u-f^{\alpha}\right]=0 \tag{2}
\end{equation*}
$$

The problem (HJB) for $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ is equivalent to

$$
\begin{equation*}
\mathcal{A}(u ; v):=\int_{\Omega} F_{\gamma}[u] L_{\lambda} v \mathrm{~d} x=0 \quad \forall v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega), \tag{3}
\end{equation*}
$$

where $L_{\lambda} v:=\Delta v-\lambda v$.

2. PDE theory: proof of well-posedness

$$
\text { Notation: } \quad\|v\|_{H^{2}, \lambda}^{2}:=\int_{\Omega}\left|D^{2} u\right|^{2}+2 \lambda|\nabla u|^{2}+\lambda^{2}|u|^{2} \mathrm{~d} x
$$

Key ingredients

1. The Cordes condition, which implies that

$$
\begin{equation*}
\left\|F_{\gamma}[u]-F_{\gamma}[v]-L_{\lambda}(u-v)\right\|_{L^{2}} \leq \sqrt{1-\varepsilon}\|u-v\|_{H^{2}, \lambda} \tag{4}
\end{equation*}
$$

2. Miranda-Talenti: for convex Ω,
[Maugeri et al., 2000]

$$
\begin{equation*}
\|w\|_{H^{2}, \lambda} \leq\left\|L_{\lambda} w\right\|_{L^{2}} \quad \forall w \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \tag{5}
\end{equation*}
$$

3. The Browder-Minty theorem, a central result from nonlinear functional analysis. (next slide)

2. PDE theory: proof of well-posedness

Browder-Minty Theorem: a general result from nonlinear functional analysis
Let X be a Banach space.
Let $\mathcal{A}: X \times X \rightarrow \mathbb{R}$ be linear in its second argument (only).
\mathcal{A} is hemicontinuous if the mapping $[0,1] \ni t \mapsto \mathcal{A}(t u+(1-t) v ; w)$ is continuous for any $u, v \in X$, uniformly over all $w \in X$.
\mathcal{A} is strongly monotone if there exists a positive constant $c>0$ such that

$$
\begin{equation*}
\frac{1}{c}\|u-v\|_{X}^{2} \leq \mathcal{A}(u ; u-v)-\mathcal{A}(v ; u-v) \quad \forall u, v \in X \tag{6}
\end{equation*}
$$

Theorem (Browder-Minty)

Let X be a separable reflexive Banach space and let $\mathcal{A}: X \times X \rightarrow \mathbb{R}$ be a hemicontinuous and strongly monotone. Then, for each $\ell \in X^{*}$, there exists a unique $u \in X$ such that $\mathcal{A}(u ; v)=\ell(v)$ for all $v \in X$.

Browder-Minty theorem is a generalisation of the Lax-Milgram theorem to nonlinear problems.
[Renardy, 2004]

2. PDE theory: proof of well-posedness

Hemicontinuity is easier to check, so we show here strong monotonicity: Recall $\mathcal{A}(u ; v)=\int_{\Omega} F_{\gamma}[u] L_{\lambda} v \mathrm{~d} x$.

$$
\mathcal{A}(u ; u-v)-\mathcal{A}(v ; u-v)=\int_{\Omega}\left(F_{\gamma}[u]-F_{\gamma}[v]\right) L_{\lambda}(u-v) \mathrm{d} x
$$

Addition-subtraction of $\left\|L_{\lambda}(u-v)\right\|_{L^{2}}^{2}$ gives

2. PDE theory: proof of well-posedness

Hemicontinuity is easier to check, so we show here strong monotonicity:
Recall $\mathcal{A}(u ; v)=\int_{\Omega} F_{\gamma}[u] L_{\lambda} v \mathrm{~d} x$.

$$
\mathcal{A}(u ; u-v)-\mathcal{A}(v ; u-v)=\int_{\Omega}\left(F_{\gamma}[u]-F_{\gamma}[v]\right) L_{\lambda}(u-v) \mathrm{d} x .
$$

Addition-subtraction of $\left\|L_{\lambda}(u-v)\right\|_{L^{2}}^{2}$ gives

$$
\begin{aligned}
\mathcal{A}(u ; u-v) & -\mathcal{A}(v ; u-v)=\left\|L_{\lambda}(u-v)\right\|_{L^{2}}^{2} \\
& +\int_{\Omega}\left(F_{\gamma}[u]-F_{\gamma}[v]-L_{\lambda}(u-v)\right) L_{\lambda}(u-v) \mathrm{d} x
\end{aligned}
$$

Next: Use the inequalities (Cordes+Miranda-Talenti)
$\left\|F_{\gamma}[u]-F_{\gamma}[v]-L_{\lambda}(u-v)\right\|_{L^{2}} \leq \sqrt{1-\varepsilon}\|u-v\|_{H^{2}, \lambda} \leq \sqrt{1-\varepsilon}\left\|L_{\lambda}(u-v)\right\|_{L^{2}}$

2. PDE theory: proof of well-posedness

Hemicontinuity is easier to check, so we show here strong monotonicity:
Recall $\mathcal{A}(u ; v)=\int_{\Omega} F_{\gamma}[u] L_{\lambda} v \mathrm{~d} x$.

$$
\mathcal{A}(u ; u-v)-\mathcal{A}(v ; u-v)=\int_{\Omega}\left(F_{\gamma}[u]-F_{\gamma}[v]\right) L_{\lambda}(u-v) \mathrm{d} x .
$$

Addition-subtraction of $\left\|L_{\lambda}(u-v)\right\|_{L^{2}}^{2}$ gives

$$
\begin{aligned}
& \mathcal{A}(u ; u-v)-\mathcal{A}(v ; u-v)=\left\|L_{\lambda}(u-v)\right\|_{L^{2}}^{2} \\
&+\int_{\Omega}\left(F_{\gamma}[u]-F_{\gamma}[v]-L_{\lambda}(u-v)\right) L_{\lambda}(u-v) \mathrm{d} x \\
& \geq(1-\sqrt{1-\varepsilon})\left\|L_{\lambda}(u-v)\right\|_{L^{2}}^{2} .
\end{aligned}
$$

Next: Use the inequalities (Cordes+Miranda-Talenti)
$\left\|F_{\gamma}[u]-F_{\gamma}[v]-L_{\lambda}(u-v)\right\|_{L^{2}} \leq \sqrt{1-\varepsilon}\|u-v\|_{H^{2}, \lambda} \leq \sqrt{1-\varepsilon}\left\|L_{\lambda}(u-v)\right\|_{L^{2}}$

2. PDE theory: proof of well-posedness

Hemicontinuity is easier to check, so we show here strong monotonicity: Recall $\mathcal{A}(u ; v)=\int_{\Omega} F_{\gamma}[u] L_{\lambda} v \mathrm{~d} x$.

$$
\begin{gathered}
\mathcal{A}(u ; u-v)-\mathcal{A}(v ; u-v)=\int_{\Omega}\left(F_{\gamma}[u]-F_{\gamma}[v]\right) L_{\lambda}(u-v) \mathrm{d} x . \\
\mathcal{A}(u ; u-v)-\mathcal{A}(v ; u-v) \geq(1-\sqrt{1-\varepsilon})\left\|L_{\lambda}(u-v)\right\|_{L^{2}}^{2}
\end{gathered}
$$

Use the Miranda-Talenti inequality

$$
\|w\|_{H^{2}, \lambda} \leq\left\|L_{\lambda} w\right\|_{L^{2}} \quad \forall w \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)
$$

to obtain strong monotonicity:

$$
\|u-v\|_{H^{2}, \lambda}^{2} \lesssim \mathcal{A}(u ; u-v)-\mathcal{A}(v ; u-v)
$$

The existence and uniqueness result follows from the Browder-Minty Theorem.
2. PDE theory

Approach to numerical analysis:
Since the proof of well-posedness hinges on the structure of

$$
\mathcal{A}(u ; v)=\int_{\Omega} F_{\gamma}[u] L_{\lambda} v \mathrm{~d} x
$$

we will attempt to discretise the operator \mathcal{A}.

1. The Cordes condition originates from the PDE theory of nondivergence form elliptic equations with discontinuous coefficients.
2. The Cordes condition allows for a short proof of well-posedness for fully nonlinear HJB equations.
3. The PDE analysis suggests an approach to discretising the PDE.

Talk outline

- Introduction: Stochastic optimal control and Hamilton-Jacobi-Bellman (HJB) equations.
- PDE Theory: Analysis of HJB equations with Cordes coefficients.
- Numerical methods: High-order discontinuous Galerkin methods for HJB equations with Cordes coefficients.
- Design of a consistent, stable and convergent method.
- Error bounds.
- Numerical experiments.

3. Numerics: overview

Our main results: $h p$-version DGFEM for HJB equations with Cordes coefficients

- The first provably consistent, stable and high order method for these problems.
- Error bounds for solutions with minimal regularity as well as high-order error bounds for more regular solutions.
- First numerical experiments demonstrating exponential convergence rates under hp-refinement for these problems.

I. S. \& E. Süli, SINUM 2013: Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordes coefficients.
\Rightarrow
I. S. \& E. Süli, SINUM 2014: Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients.

3. Numerics: overview

Our main results: $h p$-version DGFEM for HJB equations with Cordes coefficients

- The first provably consistent, stable and high order method for these problems.
- Error bounds for solutions with minimal regularity as well as high-order error bounds for more regular solutions.
- First numerical experiments demonstrating exponential convergence rates under $h p$-refinement for these problems.
I. S. \& E. Süli, SINUM 2013: Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordes coefficients.
I. S. \& E. Süli, SINUM 2014: Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients.

3. Numerics: overview

Our main results: $h p$-version DGFEM for HJB equations with Cordes coefficients

- The first provably consistent, stable and high order method for these problems.
- Error bounds for solutions with minimal regularity as well as high-order error bounds for more regular solutions.
- First numerical experiments demonstrating exponential convergence rates under $h p$-refinement for these problems.
I. S. \& E. Süli, SINUM 2013: Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordes coefficients.
国
I. S. \& E. Süli, SINUM 2014: Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients.

3. Numerics: overview

Further results:

- Superlinearly convergent semismooth Newton algorithm for the discretised nonlinear problem.
- h-version robust preconditioners for linearised systems.
- Extension of above results to parabolic equations as well as elliptic equations.
I. S. \& E. Süli, accepted in Numerische Mathematik: Discontinuous Galerkin finite element methods for time-dependent Hamilton-Jacobi-Bellman equations with Cordes coefficients.

围
I. S., in review (arxiv:1409.4202): Nonoverlapping domain decomposition preconditioners for discontinuous Galerkin finite element methods in H^{2}-type norms.

3. Numerics: design of the method

Let $\left\{\mathcal{T}_{h}\right\}_{h}$ a shape-regular sequence of meshes on Ω.

- Shape-regular means no overly stretched elements (precise definition in e.g. [Brenner \& Scott, 2003]).
- Elements composing the mesh can be parallelepipeds, simplices, or more generally any standard choice elements. Mixing and matching allowed!
- The mesh is not assumed to be quasi-uniform (very useful for hp-refinement).

Example of a shape-regular but non-uniform mesh

3. Numerics: design of the method

Construction of the discontinuous finite element space
Choose a polynomial degree $p_{K}=$ polynomial degree for each element K of the mesh \mathcal{T}_{h}.

Define the discontinuous finite element space as:

$$
V_{h, \mathbf{p}}:=\left\{v \in L^{2}(\Omega):\left.v\right|_{K} \in \mathcal{P}_{p_{K}}(K) \forall K \in \mathcal{T}_{h}\right\} .
$$

The set $\mathcal{P}_{p_{K}}(K)$ is either chosen as the space of piecewise polynomials of either total or partial degree p_{K} on the element K.
Since the method approximates functions in H^{2}-norms, we will use $p_{K} \geq 2$ for all elements K.

3. Numerics: design of the method

Notation of discontinuous Galerkin methods:

Distinguish interior and boundary faces

$$
\begin{gathered}
\mathcal{F}_{h}^{i} \text { interior faces of } \mathcal{T}_{h}, \quad \mathcal{F}_{h}^{b} \text { boundary faces of } \mathcal{T}_{h}, \\
\mathcal{F}_{h}^{i, b}:=\mathcal{F}_{h}^{i} \cup \mathcal{F}_{h}^{b} .
\end{gathered}
$$

Jump operators over faces: if ϕ is either a piecewise continuous function or vector field, we define the jump $\llbracket \phi \rrbracket$ and the average $\{\phi\}$ by:

$$
\begin{array}{lll}
\llbracket \phi \rrbracket:=\tau_{F}\left(\left.\phi\right|_{k_{\mathrm{ext}}}\right)-\tau_{F}\left(\left.\phi\right|_{\kappa_{\mathrm{int}}}\right), & \{\phi\}:=\frac{1}{2} \tau_{F}\left(\left.\phi\right|_{k_{\mathrm{ext}}}\right)+\frac{1}{2} \tau_{F}\left(\left.\phi\right|_{k_{\mathrm{int}}}\right), & \text { if } F \in \mathcal{F}_{h}^{i}, \\
\llbracket \phi \rrbracket:=\tau_{F}\left(\left.\phi\right|_{k_{\mathrm{ext}}}\right), & \{\phi\}:=\tau_{F}\left(\left.\phi\right|_{k_{\mathrm{ext}}}\right), & \text { if } F \in \mathcal{F}_{h}^{b},
\end{array}
$$

3. Numerics: design of the method

Notation of discontinuous Galerkin methods:

Let $\left\{t_{i}\right\}_{i=1}^{d-1} \subset \mathbb{R}^{d}$ be an orthonormal coordinate system on F. Define the tangential gradient and divergence

$$
\begin{equation*}
\nabla_{\mathrm{T}} u:=\sum_{i=1}^{d-1} t_{i} \frac{\partial u}{\partial t_{i}}, \quad \operatorname{div}_{\mathrm{T}} \mathbf{v}:=\sum_{i=1}^{d-1} \frac{\partial \mathbf{v}_{i}}{\partial t_{i}} . \tag{7}
\end{equation*}
$$

3. Numerics: design of the method

The goal is to discretise

$$
\mathcal{A}(u ; v)=\int_{\Omega} F_{\gamma}[u] L_{\lambda} v \mathrm{~d} x,
$$

whilst conserving the strong monotonicity bound.
Recall main ingredients:

1. The Cordes condition.
2. Miranda-Talenti inequality: not conserved when replacing $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ by $V_{h, \mathbf{p}}$.
3. The Browder-Minty theorem.

Solution:

- Miranda-Talenti inequality was derived from an integration by parts identity,
- We will weakly enforce this identity in the scheme (next slide)

3. Numerics: design of the method

Define the nonlinear form $A_{h}: V_{h, \mathbf{p}} \times V_{h, \mathbf{p}} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
A_{h}\left(u_{h} ; v_{h}\right):=\sum_{K \in \mathcal{T}_{h}}\left\langle F_{\gamma}\left[u_{h}\right], L_{\lambda} v_{h}\right\rangle_{K} & +J_{h}\left(u_{h}, v_{h}\right) \\
& +\frac{1}{2}\left(B_{h}\left(u_{h}, v_{h}\right)-\sum_{K \in \mathcal{T}_{h}}\left\langle L_{\lambda} u_{h}, L_{\lambda} v_{h}\right\rangle_{K}\right) .
\end{aligned}
$$

3. Numerics: design of the method

Define the nonlinear form $A_{h}: V_{h, \mathbf{p}} \times V_{h, \mathbf{p}} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& A_{h}\left(u_{h} ; v_{h}\right):= \sum_{K \in \mathcal{T}_{h}}\left\langle F_{\gamma}\left[u_{h}\right], L_{\lambda} v_{h}\right\rangle_{K}+J_{h}\left(u_{h}, v_{h}\right) \\
& \quad+\frac{1}{2}\left(B_{h}\left(u_{h}, v_{h}\right)-\sum_{K \in \mathcal{T}_{h}}\left\langle L_{\lambda} u_{h}, L_{\lambda} v_{h}\right\rangle_{K}\right) . \\
&\left\langle F_{\gamma}\left[u_{h}\right], L_{\lambda} v_{h}\right\rangle_{K}:=\int_{K} \sup _{\alpha \in \Lambda}\left[\gamma^{\alpha}\left(L^{\alpha} u_{h}-f^{\alpha}\right)\right]\left(\Delta v_{h}-\lambda v_{h}\right) \mathrm{d} x .
\end{aligned}
$$

3. Numerics: design of the method

Define the nonlinear form $A_{h}: V_{h, \mathbf{p}} \times V_{h, \mathbf{p}} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& A_{h}\left(u_{h} ; v_{h}\right):=\sum_{K \in \mathcal{T}_{h}}\left\langle F_{\gamma}\left[u_{h}\right], L_{\lambda} v_{h}\right\rangle_{K}+J_{h}\left(u_{h}, v_{h}\right) \\
&+\frac{1}{2}\left(B_{h}\left(u_{h}, v_{h}\right)-\sum_{K \in \mathcal{T}_{h}}\left\langle L_{\lambda} u_{h}, L_{\lambda} v_{h}\right\rangle_{K}\right) .
\end{aligned}
$$

Jump penalisation with $\mu_{F} \simeq p_{K}^{2} / h_{K}$ and $\eta_{F} \simeq p_{K}^{4} / h_{K}^{3}$ for $F \subset \partial K$:

$$
\begin{aligned}
J_{h}\left(u_{h}, v_{h}\right):= & \sum_{F \in \mathcal{F}_{h}^{i, b}}\left[\mu_{F}\left\langle\llbracket \nabla_{\mathrm{T}} u_{h} \rrbracket, \llbracket \nabla_{\mathrm{T}} v_{h} \rrbracket\right\rangle_{F}+\eta_{F}\left\langle\llbracket u_{h} \rrbracket, \llbracket v_{h} \rrbracket\right\rangle_{F}\right] \\
& +\sum_{F \in \mathcal{F}_{h}^{i}} \mu_{F}\left\langle\llbracket \nabla u_{h} \cdot n_{F} \rrbracket, \llbracket \nabla v_{h} \cdot n_{F} \rrbracket\right\rangle_{F} .
\end{aligned}
$$

3. Numerics: design of the method

Define the nonlinear form $A_{h}: V_{h, \mathbf{p}} \times V_{h, \mathbf{p}} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
A_{h}\left(u_{h} ; v_{h}\right):= & \sum_{K \in \mathcal{T}_{h}}\left\langle F_{\gamma}\left[u_{h}\right], L_{\lambda} v_{h}\right\rangle_{K}+J_{h}\left(u_{h}, v_{h}\right) \\
& +\frac{1}{2}\left(B_{h}\left(u_{h}, v_{h}\right)-\sum_{K \in \mathcal{T}_{h}}\left\langle L_{\lambda} u_{h}, L_{\lambda} v_{h}\right\rangle_{K}\right) . \\
& \left\langle L_{\lambda} u_{h}, L_{\lambda} v_{h}\right\rangle_{K}:=\int_{K}\left(\Delta u_{h}-\lambda u_{h}\right)\left(\Delta v_{h}-\lambda v_{h}\right) \mathrm{d} x .
\end{aligned}
$$

3. Numerics: design of the method

Define the nonlinear form $A_{h}: V_{h, \mathbf{p}} \times V_{h, \mathbf{p}} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& A_{h}\left(u_{h} ; v_{h}\right):=\sum_{K \in \mathcal{T}_{h}}\left\langle F_{\gamma}\left[u_{h}\right], L_{\lambda} v_{h}\right\rangle_{K}+J_{h}\left(u_{h}, v_{h}\right) \\
&+\frac{1}{2}\left(B_{h}\left(u_{h}, v_{h}\right)-\sum_{K \in \mathcal{T}_{h}}\left\langle L_{\lambda} u_{h}, L_{\lambda} v_{h}\right\rangle_{K}\right) . \\
& B_{h}\left(u_{h}, v_{h}\right):= \sum_{K \in \mathcal{T}_{h}}\left[\left\langle D^{2} u_{h}, D^{2} v_{h}\right\rangle_{K}+2 \lambda\left\langle\nabla u_{h}, \nabla v_{h}\right\rangle_{K}+\lambda^{2}\left\langle u_{h}, v_{h}\right\rangle_{K}\right] \\
&+\sum_{F \in \mathcal{F}_{h}^{i}}\left[\left\langle\operatorname{div}_{\mathrm{T}} \nabla_{\mathrm{T}}\left\{u_{h}\right\}, \llbracket \nabla v_{h} \cdot n_{F} \rrbracket\right\rangle_{F}+\left\langle\operatorname{div}_{\mathrm{T}} \nabla_{\mathrm{T}}\left\{v_{h}\right\}, \llbracket \nabla u_{h} \cdot n_{F} \rrbracket\right\rangle_{F}\right] \\
&-\sum_{F \in \mathcal{F}_{h}^{i, b}}\left[\left\langle\nabla_{\mathrm{T}}\left\{\nabla u_{h} \cdot n_{F}\right\}, \llbracket \nabla_{\mathrm{T}} v_{h} \rrbracket\right\rangle_{F}+\left\langle\nabla_{\mathrm{T}}\left\{\nabla v_{h} \cdot n_{F}\right\}, \llbracket \nabla_{\mathrm{T}} u_{h} \rrbracket\right\rangle_{F}\right] \\
&\left.\quad-\lambda \sum_{F \in \mathcal{F}_{h}^{i, b}}\left[\left\langle\nabla u_{h} \cdot n_{F}\right\}, \llbracket v_{h} \rrbracket\right\rangle_{F}+\left\langle\left\{\nabla v_{h} \cdot n_{F}\right\}, \llbracket u_{h} \rrbracket\right\rangle_{F}\right] \\
& \quad-\lambda \sum_{F \in \mathcal{F}_{h}^{i}}\left[\left\langle\left\langle u_{h}\right\}, \llbracket \nabla v_{h} \cdot n_{F} \rrbracket\right\rangle_{F}+\left\langle\left\{v_{h}\right\}, \llbracket \nabla u_{h} \cdot n_{F} \rrbracket\right\rangle_{F}\right]
\end{aligned}
$$

3. Numerics: design of the method

Define the nonlinear form $A_{h}: V_{h, \mathbf{p}} \times V_{h, \mathbf{p}} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
A_{h}\left(u_{h} ; v_{h}\right):=\sum_{K \in \mathcal{T}_{h}}\left\langle F_{\gamma}\left[u_{h}\right], L_{\lambda} v_{h}\right\rangle_{K} & +J_{h}\left(u_{h}, v_{h}\right) \\
& +\frac{1}{2}\left(B_{h}\left(u_{h}, v_{h}\right)-\sum_{K \in \mathcal{T}_{h}}\left\langle L_{\lambda} u_{h}, L_{\lambda} v_{h}\right\rangle_{K}\right) .
\end{aligned}
$$

Key consistency result: If $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ has well-defined second derivatives on faces F of the mesh, then

$$
B_{h}\left(u, v_{h}\right)=\sum_{K}\left\langle L_{\lambda} u, L_{\lambda} v_{h}\right\rangle_{K}, \quad J_{h}\left(u, v_{h}\right)=0 \quad \forall v_{h} \in V_{h, \mathbf{p}} .
$$

Technical point: a sufficient condition is that $u \in H^{s}(K)$ with $s>5 / 2$ for every $K \in \mathcal{T}_{h}$.

3. Numerics: consistency, stability and error bounds

Numerical scheme: find $u_{h} \in V_{h, \mathbf{p}}$ such that

$$
\begin{equation*}
A_{h}\left(u_{h} ; v_{h}\right)=0 \quad \forall v_{h} \in V_{h, \mathbf{p}} . \tag{scheme}
\end{equation*}
$$

Full theoretical justification given in [S. \& Süli, SINUM 2014]:

- Consistency: sufficiently regular solution of (HJB) solves (scheme):

$$
A_{h}\left(u ; v_{h}\right)=0 \quad \forall v_{h} \in V_{h, \mathbf{p}} .
$$

- Stability: the nonlinear form A_{h} has a similar strong monotonicity bound as \mathcal{A} :

$$
\left\|u_{h}-v_{h}\right\|_{h}^{2} \lesssim A_{h}\left(u_{h} ; u_{h}-v_{h}\right)-A_{h}\left(v_{h} ; u_{h}-v_{h}\right) \quad \forall u_{h}, v_{h} \in V_{h, \mathbf{p}} .
$$

\Longrightarrow existence \& uniqueness of numerical solution, continuous dependence on data.

- Consistency+Stability \Longrightarrow error bounds and convergence.

3. Numerics: error bounds

$$
\left\|v_{h}\right\|_{h}^{2}:=\sum_{K \in \mathcal{T}_{h}}\left[\left|v_{h}\right|_{H^{2}(K)}^{2}+2 \lambda\left|v_{h}\right|_{H^{1}(K)}^{2}+\lambda^{2}\left\|v_{h}\right\|_{L^{2}(K)}^{2}\right]+J_{h}\left(v_{h}, v_{h}\right) .
$$

Theorem ([S. \& Süli, SINUM 2014])

(Under previous assumptions \& standard assumptions for DG meshes...) Assume that $u \in H^{\mathrm{s}}\left(\Omega ; \mathcal{T}_{h}\right)$, with $s_{K}>5 / 2$ for all $K \in \mathcal{T}_{h}$.

$$
\left\|u-u_{h}\right\|_{h}^{2} \lesssim \sum_{K \in \mathcal{T}_{h}} \frac{h_{K}^{2 t_{K}-4}}{p_{K}^{2 s_{K}-5}}\|u\|_{H^{s_{K}(K)}}^{2}
$$

where $t_{K}=\min \left(p_{K}+1, s_{K}\right)$ for each $K \in \mathcal{T}_{h}$.

Simplified form:

- Quasi-optimal error bound.
$\left\|u-u_{h}\right\| \lesssim \frac{h^{\min (s, p+1)-2}}{p^{s-5 / 2}}\|u\|_{H^{s}(\Omega)}$.
- High-order convergence rates.
- Higher efficiency on well-chosen meshes.

3. Numerics: error bounds

If u has only minimal regularity, then we have the following quasi-optimal approximation property with respect to the H^{2}-conforming subspace:

Theorem

Under previous assumptions. . .
Let $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ be the solution of (HJB). Then

$$
\left\|u-u_{h}\right\|_{h} \leq \inf _{z_{h} \in V_{h, \mathrm{p}} \cap H^{2}(\Omega) \cap H_{0}^{1}(\Omega)}\left\|u-z_{h}\right\|_{h}
$$

Interpretation: The DG method is at least as accurate, modulo constants, as any H^{2}-conforming method using the same mesh and same polynomial degrees.
3. Numerics: experiment $1 / 2$

Experiment 1: Test of high order convergence rates

Example (Control of correlated diffusions)

Prototypical example of stochastic control from [S. \& Süli, SINUM 2014]:

$$
\mathrm{d} X_{t}=\underbrace{R^{\top}\left(\begin{array}{cc}
1 & \sin \theta \\
0 & \cos \theta
\end{array}\right)}_{\sigma(x, \alpha)}\binom{\mathrm{d} B_{t}^{1}}{\mathrm{~d} B_{t}^{2}}, \quad \alpha:=(\theta, R) \in\left[0, \frac{\pi}{3}\right] \times \mathrm{SO}(2)=: \Lambda .
$$

Then $a^{\alpha}:=\frac{1}{2} \sigma \sigma^{\top}$ gives

$$
a^{\alpha}=\frac{1}{2} R^{\top}\left(\begin{array}{cc}
1+\sin ^{2} \theta & \sin \theta \cos \theta \\
\sin \theta \cos \theta & \cos ^{2} \theta
\end{array}\right) R
$$

Principal difficulty: a^{α} becomes increasingly anisotropic as $\theta \rightarrow \pi / 3$.
3. Numerics: experiment $1 / 2$

Example (Control of correlated diffusions)

Prototypical example of stochastic control from [S. \& Süli, SINUM 2014]: Uniform h-refinement on smooth solution $u(x, y)=\exp (x y) \sin (\pi x) \sin (\pi y)$:

3. Numerics: experiment $2 / 2$

Experiment 2: test of exponential convergence rates

Example (Strong anisotropy + boundary layer)

Let $\Omega=(0,1)^{2}, b^{\alpha} \equiv(0,1), c^{\alpha} \equiv 10$ and define

$$
a^{\alpha}:=\alpha^{\top}\left(\begin{array}{cc}
20 & 1 \\
1 & 0.1
\end{array}\right) \alpha, \quad \alpha \in \Lambda:=\mathrm{SO}(2), \quad \lambda=\frac{1}{2} .
$$

(Cordes) holds with $\varepsilon \approx 0.0024$ and $\lambda=1 / 2$. Choose solution:

$$
u(x, y)=(2 x-1)\left(\mathrm{e}^{1-|2 x-1|}-1\right)\left(y+\frac{1-\mathrm{e}^{y / \delta}}{\mathrm{e}^{1 / \delta}-1}\right), \quad \delta:=0.005=\mathrm{O}(\varepsilon)
$$

- Near-degenerate and anisotropic diffusion.
- Sharp boundary layer.
- Non-smooth solution.

3. Numerics: experiment $2 / 2$

Example (Strong anisotropy + boundary layer)

We use boundary layer adapted meshes with p-refinement: $2 \leq p_{K} \leq 10$, from 100 to 1320 DoFs.

Boundary layer adapted mesh.

Exponential rate: $\left\|u-u_{h}\right\|_{h} \lesssim \exp (-c \sqrt[3]{\operatorname{DoF}})$.
3. Numerics: summary

1. Design of a consistent, stable and high order method for HJB equations with Cordes coefficients.
2. The central idea of the scheme is a weak enforcement of the Miranda-Talenti identity.
3. Error bounds for both regular and minimal regularity solutions.
4. Numerical experiments showing high order convergence, even exponential convergence rates.

What next?

Analysis:

- All error analysis so far is a priori analysis, i.e. the exact solution enters the error bounds.
- A posteriori analysis would be beneficial for adaptive algorithms.

Algorithms:

- Current preconditioners are robust with respect to h only.
- p-robust preconditioners for FEM/DGFEM in H^{2} norms?

Thank you!

