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(HJB) equations.

• PDE Theory: Analysis of HJB equations with Cordes coefficients.

• Numerical methods: High-order discontinuous Galerkin methods for HJB
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Overview

Talk outline

• Introduction: Stochastic optimal control and Hamilton–Jacobi–Bellman
(HJB) equations.

◦ How HJB equations arise from stochastic optimal control problems.
◦ Some example applications.
◦ Examples of a broad class of fully nonlinear equations.

• PDE Theory: Analysis of HJB equations with Cordes coefficients.

• Numerical methods: High-order discontinuous Galerkin methods for HJB
equations with Cordes coefficients.



1. Stochastic optimal control

What is a stochastic optimal control problem?

Find a control function α(·) : t 7→ αt that minimises

J(x , α(·)) = E
[∫ τexit

0

f (Xt , αt) exp

(
−
∫ t

0

c(Xs , αs)ds

)
dt

]
subject to the stochastic differential equation

dXt = b(Xt , αt)dt + σ(Xt , αt)dBt , X0 = x .

Notation: α ∈ Λ the set of controls, x ∈ Ω a domain in Rd ,
dBt a m-dimensional Brownian motion, τexit is the time of first exit of Xt from Ω.

σ(x , α) ∈ Rd×m, b(x , α) ∈ Rd , c(x , α) ∈ R, f (x , α) ∈ R.

→ an optimisation problem over a function space.
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1. Stochastic optimal control: example applications

Engineering Energy Finance

Applications of optimal control theory are covered in a very wide literature.
A couple of examples:

I. Karatzas, J. Lehoczky & S. Shreve, SIAM J. Control Optim. 1987:

Optimal portfolio and consumption decisions for a “small investor” on a finite

horizon.

P. Parpas & M. Webster, Eur. J. Op. Res. 2013:

A stochastic multiscale model for electricity generation capacity expansion.
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1. Stochastic optimal control: dynamic programming principle

How does the HJB equation arise in stochastic control problems?

Bellman’s dynamic programming
principle

1. Define the value function of the
optimal control problem.

2. DPP: the value function is the
solution of an HJB equation.

3. Solving the HJB equation yields
the value function and the optimal
controls.

Full details in many references, e.g.
[Fleming & Soner, 2006].

Richard Bellman (1920–1984)
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1.HJB equation

sup
α∈Λ

[Lαu − f α] = 0 in Ω,

u = 0 on ∂Ω,
(HJB)

where Lαu := aα(x) : D2u + bα(x) · ∇u − cα(x) u, with

aα(x) := 1
2σ(x , α)σ>(x , α) ∈ Rd×d , bα(x) := b(x , α) ∈ Rd ,

cα(x) := c(x , α) ∈ R, f α(x) := f (x , α) ∈ R.

Notation: aα(x) : D2u =
d∑

i,j=1

aαij (x)uxixj , bα(x) · ∇u =
d∑

i=1

bαi (x)uxi .

Remark: the dependence of a function on α ∈ Λ is denoted by a superscript:

a : (x , α)→ aα(x).

4/35



1.HJB equation

sup
α∈Λ

[Lαu − f α] = 0 in Ω,

u = 0 on ∂Ω,
(HJB)

where Lαu := aα(x) : D2u + bα(x) · ∇u − cα(x) u, with

aα(x) := 1
2σ(x , α)σ>(x , α) ∈ Rd×d , bα(x) := b(x , α) ∈ Rd ,

cα(x) := c(x , α) ∈ R, f α(x) := f (x , α) ∈ R.

Notation: aα(x) : D2u =
d∑

i,j=1

aαij (x)uxixj , bα(x) · ∇u =
d∑

i=1

bαi (x)uxi .

Remark: the dependence of a function on α ∈ Λ is denoted by a superscript:

a : (x , α)→ aα(x).

4/35



1. HJB equation: examples

How do HJB equations relate to other partial differential equations?

sup
α∈Λ

[Lαu − f α] = 0

The HJB equation generalises many other equations:

• Linear nondivergence form elliptic equations

a : D2u + b · ∇u − cu = f , (assume that Λ is a singleton set).

• Linear advection–diffusion–reaction equation

div (a∇u) + b · ∇u − cu = f , (assuming a ∈ C 1(Ω)).

• Hamilton–Jacobi: e.g. eikonal equation

sup
α∈Sd

[α · ∇u − 1] = |∇u| − 1 = 0.

• Monge–Ampère equation

detD2u − f = 0 ⇐⇒ inf
α∈Rd×d

sym,+

Trα=1

[
α : D2u − d (f detα)1/d

]
= 0.
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1. HJB equation: examples

sup
α∈Λ

[Lαu − f α] = 0

Approach to numerical methods:

• Different numerical methods are commonly used for different special cases
with specific structures (e.g. eikonal vs advection-diffusion-reaction).

• Our goal is to develop stable and efficient numerical methods for a
subclass of HJB equations with a common structure.

• Previous methods either:

◦ had a convergence theory, but relied on discrete maximum principles and
restricted to low-order schemes.

cf works of Motzkin & Wasow, Kuo & Trudinger, Barles & Souganidis,
Kocan, Camilli & Falcone, Jakobsen & Debrabant, and many others. . .

◦ did not rely on discrete maximum principles, but had no convergence theory.
cf review paper [ Feng et al., SIAM Rev, 2013].
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1.HJB Equation: summary

1. Stochastic optimal control problems lead to HJB equations.

2. HJB equations are a broad class of fully nonlinear partial
differential equations. They generalise many other PDE.

3. The nonlinearity leads to multiple challenges in designing stable
and convergent numerical methods.
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Overview

Talk outline

• Introduction: Stochastic optimal control and Hamilton–Jacobi–Bellman
(HJB) equations.

• PDE Theory: Analysis of HJB equations with Cordes coefficients.

◦ What are Cordes coefficients, where do they come from?
◦ Why are they relevant to HJB equations?
◦ What is the PDE analysis of HJB equations with Cordes coefficients

(existence, uniqueness and regularity of solutions)

• Numerical methods: High-order discontinuous Galerkin methods for HJB
equations with Cordes coefficients.



2. PDE theory: Hamilton–Jacobi–Bellman Equation

We will consider the elliptic HJB equation

sup
α∈Λ

[Lαu − f α] = 0 in Ω,

u = 0 on ∂Ω,
(Elliptic HJB)

where Lαu := aα(x) : D2u + bα(x) · ∇u − cα(x) u.

Assumptions:

• Ω ⊂ Rd is bounded and convex, Λ a compact metric space.

• a, b, c and f are continuous functions in x ∈ Ω, α ∈ Λ.

• aα are symmetric positive definite, uniformly on Ω× Λ, and cα ≥ 0.

• Cordes coefficients: the coefficient functions a, b, c satisfy the Cordes
condition (cf next slide)
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2. PDE theory: Cordes condition

Cordes condition: assume that there exist λ > 0 and ε ∈ (0, 1] s. t.

|aα|2 + |bα|2/2λ+ (cα/λ)2

(Tr aα + cα/λ)2
≤ 1

d + ε
∀α ∈ Λ. (Cordes)

If bα ≡ 0 and cα ≡ 0, then (Cordes) is modified slightly:

|aα|2

(Tr aα)2 ≤
1

d − 1 + ε
∀α ∈ Λ. (Cordes2)

If dimension d = 2, (Cordes2) equivalent to uniform ellipticity =⇒ widely
applicable.

Notation: |aα|2 =
d∑

i,j=1

|aαij |2, Tr aα =
d∑

i=1

aαii , |bα|2 =
d∑

i=1

|bαi |2.
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2. PDE theory: Cordes condition

The Cordes condition: [Cordes, 1956] → PDE theory of nondivergence form
elliptic equations with discontinuous coefficients.

a : D2u = f in Ω, u = 0 on ∂Ω, a ∈ L∞(Ω). (1)

If a ∈ C (Ω) and ∂Ω ∈ C 1,1, then existence and uniqueness holds.
[Gilbarg & Trudinger].

If a ∈ L∞(Ω), a /∈ C (Ω), then uniqueness breaks down:

∆u + ρ

d∑
i,j=1

xixj
|x |2

uxi xj = 0 in B, ρ = −1 +
d − 1

1− θ
, 0 < θ < 1,

where B is the unit ball in Rd . For d > 2(2− θ) > 2, the equation has two
solutions

u1(x) = 0 and u2(x) = |x |θ − 1

in H2(B) ∩ H1
0 (B), whenever d ≥ 3.
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2. PDE theory: Cordes condition

The Cordes condition: [Cordes, 1956] → PDE theory of nondivergence form
elliptic equations with discontinuous coefficients.

a : D2u = f in Ω, u = 0 on ∂Ω, a ∈ L∞(Ω). (1)

Theorem (Cordes, 1956)
If a ∈ L∞(Ω), Ω is convex, and the Cordes condition holds,

|a|2

(Tr a)2 ≤
1

d − 1 + ε

then for any f ∈ L2(Ω) there exists a unique u ∈ H2(Ω) ∩ H1
0 (Ω)

satisfying (1).
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2. PDE theory: overview

Our motivation:

Recall that HJB generalises nondivergence form elliptic equations.

More specifically, nondivergence form elliptic equations with discontinuous
coefficients arise as linearisations of HJB equations.

It is therefore natural to study the subclass of HJB equations that satisfy the

Cordes condition.
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2. PDE theory: well-posedness

Theorem
Let Ω be a bounded convex open subset of Rd , and let Λ be a compact
metric space.

Let the data be continuous on Ω× Λ, and satisfy (Cordes) with uniformly
elliptic aα and cα ≥ 0 for all α ∈ Λ.

Then, there exists a unique u ∈ H2(Ω) ∩ H1
0 (Ω) that solves (HJB) pointwise

a.e. in Ω.

I. S. & E. Süli, SIAM J. Numer. Anal. 2014:

Discontinuous Galerkin finite element approximation of

Hamilton–Jacobi–Bellman equations with Cordes coefficients.
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2. PDE theory: proof of well-posedness

Define

γα :=
Tr aα + cα/λ

|aα|2 + |bα|2/2λ+ (cα/λ)2

Fγ [u] := sup
α∈Λ

[γα(Lαu − f α)]

Because γα > 0, we have

Fγ [u] = 0 ⇐⇒ sup
α∈Λ

[Lαu − f α] = 0. (2)

The problem (HJB) for u ∈ H2(Ω) ∩ H1
0 (Ω) is equivalent to

A(u; v) :=

∫
Ω

Fγ [u] Lλv dx = 0 ∀ v ∈ H2(Ω) ∩ H1
0 (Ω), (3)

where Lλv := ∆v − λv .
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2. PDE theory: proof of well-posedness

Notation: ‖v‖2
H2,λ :=

∫
Ω

|D2u|2 + 2λ|∇u|2 + λ2|u|2dx

Key ingredients

1. The Cordes condition, which implies that

‖Fγ [u]− Fγ [v ]− Lλ(u − v)‖L2 ≤
√

1− ε‖u − v‖H2,λ (4)

2. Miranda–Talenti: for convex Ω, [Maugeri et al., 2000]

‖w‖H2,λ ≤ ‖Lλw‖L2 ∀w ∈ H2(Ω) ∩ H1
0 (Ω) (5)

3. The Browder–Minty theorem, a central result from nonlinear functional
analysis. (next slide)
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2. PDE theory: proof of well-posedness

Browder–Minty Theorem: a general result from nonlinear functional analysis

Let X be a Banach space.

Let A : X × X → R be linear in its second argument (only).

A is hemicontinuous if the mapping [0, 1] 3 t 7→ A (t u + (1− t) v ;w) is
continuous for any u, v ∈ X , uniformly over all w ∈ X .

A is strongly monotone if there exists a positive constant c > 0 such that

1

c
‖u − v‖2

X ≤ A(u; u − v)−A(v ; u − v) ∀ u, v ∈ X . (6)

Theorem (Browder–Minty)
Let X be a separable reflexive Banach space and let A : X × X → R be a
hemicontinuous and strongly monotone. Then, for each ` ∈ X ∗, there exists
a unique u ∈ X such that A(u; v) = `(v) for all v ∈ X .

Browder–Minty theorem is a generalisation of the Lax–Milgram theorem to

nonlinear problems. [Renardy, 2004]
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2. PDE theory: proof of well-posedness

Hemicontinuity is easier to check, so we show here strong monotonicity:

Recall A(u; v) =
∫

Ω
Fγ [u]Lλvdx .

A(u; u − v)−A(v ; u − v) =

∫
Ω

(Fγ [u]− Fγ [v ]) Lλ(u − v)dx .

Addition–subtraction of ‖Lλ(u − v)‖2
L2 gives

A(u; u − v)−A(v ; u − v) = ‖Lλ(u − v)‖2
L2

+

∫
Ω

(Fγ [u]− Fγ [v ]− Lλ(u − v)) Lλ(u − v)dx

≥ (1−
√

1− ε)‖Lλ(u − v)‖2
L2 .

Next: Use the inequalities (Cordes+Miranda–Talenti)

‖Fγ [u]− Fγ [v ]− Lλ(u − v)‖L2 ≤
√

1− ε‖u − v‖H2,λ ≤
√

1− ε‖Lλ(u − v)‖L2
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Use the Miranda–Talenti inequality

‖w‖H2,λ ≤ ‖Lλw‖L2 ∀w ∈ H2(Ω) ∩ H1
0 (Ω)

to obtain strong monotonicity:

‖u − v‖2
H2,λ . A(u; u − v)−A(v ; u − v)

The existence and uniqueness result follows from the

Browder–Minty Theorem.
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2. PDE theory

Approach to numerical analysis:

Since the proof of well-posedness hinges on the structure of

A(u; v) =

∫
Ω
Fγ [u]Lλvdx ,

we will attempt to discretise the operator A.
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2. PDE Theory: summary

1. The Cordes condition originates from the PDE theory of
nondivergence form elliptic equations with discontinuous
coefficients.

2. The Cordes condition allows for a short proof of well-posedness for
fully nonlinear HJB equations.

3. The PDE analysis suggests an approach to discretising the PDE.
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Overview

Talk outline

• Introduction: Stochastic optimal control and Hamilton–Jacobi–Bellman
(HJB) equations.

• PDE Theory: Analysis of HJB equations with Cordes coefficients.

• Numerical methods: High-order discontinuous Galerkin methods for HJB
equations with Cordes coefficients.

◦ Design of a consistent, stable and convergent method.
◦ Error bounds.
◦ Numerical experiments.
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3. Numerics: overview

Our main results: hp-version DGFEM for HJB equations with Cordes
coefficients

• The first provably consistent, stable and high order method for these
problems.

• Error bounds for solutions with minimal regularity as well as high-order
error bounds for more regular solutions.

• First numerical experiments demonstrating exponential convergence rates
under hp-refinement for these problems.

I. S. & E. Süli, SINUM 2013: Discontinuous Galerkin finite element
approximation of nondivergence form elliptic equations with Cordes
coefficients.

I. S. & E. Süli, SINUM 2014: Discontinuous Galerkin finite element
approximation of Hamilton–Jacobi–Bellman equations with Cordes
coefficients.
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3. Numerics: overview

Further results:

• Superlinearly convergent semismooth Newton algorithm for the
discretised nonlinear problem.

• h-version robust preconditioners for linearised systems.

• Extension of above results to parabolic equations as well as elliptic
equations.

I. S. & E. Süli, accepted in Numerische Mathematik: Discontinuous Galerkin
finite element methods for time-dependent Hamilton–Jacobi–Bellman
equations with Cordes coefficients.

I. S., in review (arXiv:1409.4202): Nonoverlapping domain decomposition

preconditioners for discontinuous Galerkin finite element methods in H2-type
norms.
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3. Numerics: design of the method

Let {Th}h a shape-regular sequence of meshes on Ω.

• Shape-regular means no overly stretched elements (precise definition in e.g.
[Brenner & Scott, 2003]).

• Elements composing the mesh can be parallelepipeds, simplices, or more
generally any standard choice elements. Mixing and matching allowed!

• The mesh is not assumed to be quasi-uniform (very useful for hp-refinement).

Example of a shape-regular but non-uniform mesh
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3. Numerics: design of the method

Construction of the discontinuous finite element space

Choose a polynomial degree pK = polynomial degree for each element K of
the mesh Th.

Define the discontinuous finite element space as:

Vh,p := {v ∈ L2(Ω): v |K ∈ PpK (K ) ∀K ∈ Th}.
The set PpK (K ) is either chosen as the space of piecewise polynomials of
either total or partial degree pK on the element K .

Since the method approximates functions in H2-norms, we will use pK ≥ 2
for all elements K .
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3. Numerics: design of the method

Notation of discontinuous Galerkin methods:

F nF
KintKext

Distinguish interior and boundary faces

F i
h interior faces of Th, Fb

h boundary faces of Th,

F i,b
h := F i

h ∪ Fb
h .

Jump operators over faces: if φ is either a piecewise continuous function or vector
field, we define the jump JφK and the average {φ} by:

JφK := τF (φ|Kext)− τF (φ|Kint) , {φ} := 1
2
τF (φ|Kext) + 1

2
τF (φ|Kint) , if F ∈ F i

h,

JφK := τF (φ|Kext) , {φ} := τF (φ|Kext) , if F ∈ Fb
h ,
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3. Numerics: design of the method

Notation of discontinuous Galerkin methods:

F nF
KintKext

Let {ti}d−1
i=1 ⊂ Rd be an orthonormal coordinate system on F . Define the

tangential gradient and divergence

∇T u :=
d−1∑
i=1

ti
∂u

∂ti
, divT v :=

d−1∑
i=1

∂vi
∂ti

. (7)
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3. Numerics: design of the method

The goal is to discretise

A(u; v) =

∫
Ω

Fγ [u] Lλv dx ,

whilst conserving the strong monotonicity bound.

Recall main ingredients:

1. The Cordes condition.

2. Miranda–Talenti inequality: not conserved when replacing
H2(Ω) ∩ H1

0 (Ω) by Vh,p.

3. The Browder–Minty theorem.

Solution:

• Miranda–Talenti inequality was derived from an integration by parts
identity,

• We will weakly enforce this identity in the scheme (next slide)
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3. Numerics: design of the method

Define the nonlinear form Ah : Vh,p × Vh,p → R by

Ah(uh; vh) :=
∑
K∈Th

〈Fγ [uh], Lλvh〉K + Jh(uh, vh)

+
1

2

(
Bh(uh, vh)−

∑
K∈Th

〈Lλuh, Lλvh〉K

)
.

26/35



3. Numerics: design of the method

Define the nonlinear form Ah : Vh,p × Vh,p → R by
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+
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(
Bh(uh, vh)−

∑
K∈Th

〈Lλuh, Lλvh〉K

)
.

〈Fγ [uh], Lλvh〉K :=

∫
K

sup
α∈Λ

[γα(Lαuh − f α)] (∆vh − λvh) dx .
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3. Numerics: design of the method

Define the nonlinear form Ah : Vh,p × Vh,p → R by

Ah(uh; vh) :=
∑
K∈Th

〈Fγ [uh], Lλvh〉K + Jh(uh, vh)

+
1

2

(
Bh(uh, vh)−

∑
K∈Th

〈Lλuh, Lλvh〉K

)
.

Jump penalisation with µF ' p2
K/hK and ηF ' p4

K/h
3
K for F ⊂ ∂K :

Jh(uh, vh) :=
∑

F∈F i,b
h

[
µF 〈J∇T uhK, J∇T vhK〉F + ηF 〈JuhK, JvhK〉F

]
+
∑
F∈F i

h

µF 〈J∇uh · nF K, J∇vh · nF K〉F .
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∫
K

(∆uh − λuh) (∆vh − λvh) dx .
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3. Numerics: design of the method

Define the nonlinear form Ah : Vh,p × Vh,p → R by

Ah(uh; vh) :=
∑
K∈Th

〈Fγ [uh], Lλvh〉K + Jh(uh, vh)

+
1

2

(
Bh(uh, vh)−

∑
K∈Th

〈Lλuh, Lλvh〉K

)
.

Bh(uh, vh) :=
∑
K∈Th

[
〈D2uh,D

2vh〉K + 2λ〈∇uh,∇vh〉K + λ2〈uh, vh〉K
]

+
∑
F∈F i

h

[
〈divT∇T{uh}, J∇vh · nF K〉F + 〈divT∇T{vh}, J∇uh · nF K〉F

]
−
∑

F∈F i,b
h

[
〈∇T{∇uh · nF}, J∇T vhK〉F + 〈∇T{∇vh · nF}, J∇T uhK〉F

]
− λ

∑
F∈F i,b

h

[〈{∇uh · nF}, JvhK〉F + 〈{∇vh · nF}, JuhK〉F ]

− λ
∑
F∈F i

h

[〈{uh}, J∇vh · nF K〉F + 〈{vh}, J∇uh · nF K〉F ]
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3. Numerics: design of the method

Define the nonlinear form Ah : Vh,p × Vh,p → R by

Ah(uh; vh) :=
∑
K∈Th

〈Fγ [uh], Lλvh〉K + Jh(uh, vh)

+
1

2

(
Bh(uh, vh)−

∑
K∈Th

〈Lλuh, Lλvh〉K

)
.

Key consistency result: If u ∈ H2(Ω) ∩ H1
0 (Ω) has well-defined second

derivatives on faces F of the mesh, then

Bh(u, vh) =
∑
K

〈Lλu, Lλvh〉K , Jh(u, vh) = 0 ∀ vh ∈ Vh,p.

Technical point: a sufficient condition is that u ∈ Hs(K) with s > 5/2 for every

K ∈ Th.
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3. Numerics: consistency, stability and error bounds

Numerical scheme: find uh ∈ Vh,p such that

Ah(uh; vh) = 0 ∀ vh ∈ Vh,p. (scheme)

Full theoretical justification given in [S. & Süli, SINUM 2014]:

• Consistency: sufficiently regular solution of (HJB) solves (scheme):

Ah(u; vh) = 0 ∀ vh ∈ Vh,p.

• Stability: the nonlinear form Ah has a similar strong monotonicity bound
as A:

‖uh − vh‖2
h . Ah(uh; uh − vh)− Ah(vh; uh − vh) ∀ uh, vh ∈ Vh,p.

=⇒ existence & uniqueness of numerical solution, continuous
dependence on data.

• Consistency+Stability =⇒ error bounds and convergence.
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3. Numerics: error bounds

‖vh‖2
h :=

∑
K∈Th

[
|vh|2H2(K) + 2λ|vh|2H1(K) + λ2‖vh‖2

L2(K)

]
+ Jh(vh, vh).

Theorem ([S. & Süli, SINUM 2014])
(Under previous assumptions & standard assumptions for DG meshes...)

Assume that u ∈ Hs(Ω; Th), with sK > 5/2 for all K ∈ Th.

‖u − uh‖2
h .

∑
K∈Th

h2tK−4
K

p2sK−5
K

‖u‖2
HsK (K),

where tK = min(pK + 1, sK ) for each K ∈ Th.

Simplified form:

‖u−uh‖ .
hmin(s,p+1)−2

ps−5/2
‖u‖Hs (Ω).

• Quasi-optimal error bound.

• High-order convergence rates.

• Higher efficiency on well-chosen meshes.
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3. Numerics: error bounds

If u has only minimal regularity, then we have the following quasi-optimal
approximation property with respect to the H2-conforming subspace:

Theorem
Under previous assumptions. . .

Let u ∈ H2(Ω) ∩ H1
0 (Ω) be the solution of (HJB). Then

‖u − uh‖h ≤ inf
zh∈Vh,p∩H2(Ω)∩H1

0 (Ω)
‖u − zh‖h.

Interpretation: The DG method is at least as accurate, modulo constants, as

any H2-conforming method using the same mesh and same polynomial

degrees.
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3. Numerics: experiment 1/2

Experiment 1 : Test of high order convergence rates

Example (Control of correlated diffusions)
Prototypical example of stochastic control from [S. & Süli, SINUM 2014]:

dXt = R>
(

1 sin θ
0 cos θ

)
︸ ︷︷ ︸

σ(x,α)

(
dB1

t

dB2
t

)
, α := (θ,R) ∈ [0, π3 ]× SO(2) =: Λ.

Then aα := 1
2σσ

> gives

aα =
1

2
R>
(

1 + sin2 θ sin θ cos θ
sin θ cos θ cos2 θ

)
R

Principal difficulty: aα becomes increasingly anisotropic as θ → π/3.
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3. Numerics: experiment 1/2

Example (Control of correlated diffusions)
Prototypical example of stochastic control from [S. & Süli, SINUM 2014]:

Uniform h-refinement on smooth solution u(x , y) = exp(xy) sin(πx) sin(πy):
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3. Numerics: experiment 2/2

Experiment 2: test of exponential convergence rates

Example (Strong anisotropy + boundary layer)
Let Ω = (0, 1)2, bα ≡ (0, 1), cα ≡ 10 and define

aα := α>
(

20 1
1 0.1

)
α, α ∈ Λ := SO(2), λ =

1

2
.

(Cordes) holds with ε ≈ 0.0024 and λ = 1/2. Choose solution:

u(x , y) = (2x − 1)
(
e1−|2x−1| − 1

)(
y +

1− ey/δ

e1/δ − 1

)
, δ := 0.005 = O(ε)

• Near-degenerate and anisotropic diffusion.

• Sharp boundary layer.

• Non-smooth solution.

32/35



3. Numerics: experiment 2/2

Example (Strong anisotropy + boundary layer)
We use boundary layer adapted meshes with p-refinement: 2 ≤ pK ≤ 10,
from 100 to 1320 DoFs.

Boundary layer adapted
mesh. 5 6 7 8 9 10 11
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Exponential rate: ‖u − uh‖h . exp(−c 3
√
DoF).
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3. Numerics: summary

1. Design of a consistent, stable and high order method for HJB
equations with Cordes coefficients.

2. The central idea of the scheme is a weak enforcement of the
Miranda–Talenti identity.

3. Error bounds for both regular and minimal regularity solutions.

4. Numerical experiments showing high order convergence, even
exponential convergence rates.
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What next?

Analysis:

• All error analysis so far is a priori analysis, i.e. the exact solution enters
the error bounds.

• A posteriori analysis would be beneficial for adaptive algorithms.

Algorithms:

• Current preconditioners are robust with respect to h only.

• p-robust preconditioners for FEM/DGFEM in H2 norms?

Thank you!
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