A fast analysis-based discrete Hankel transform using asymptotic expansions

Alex Townsend MIT

IMA Leslie Fox Prize Meeting, 22nd June, 2015

Based on: T., "A fast analysis-based discrete Hankel transform using asymptotic expansions", to appear in SINUM.

Introduction The fast Fourier transform

The FFT computes the DFT in $O(N \log N)$ operations:

$$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-2\pi i n k/N}, \qquad 0 \le k \le N-1.$$

John Tukey

Introduction A circularly symmetric 2D Fourier transform

Let f(x, y) be a circularly symmetric function. Then, the finite Hankel transform is

$$H_{0}(\omega) = \frac{1}{2\pi} \iint_{x^{2}+y^{2} \leqslant 1} f(x, y) e^{-i(\omega_{1}x + \omega_{2}y)} dx dy = \int_{0}^{1} f(r) J_{0}(r\omega) r dr, \qquad \omega^{2} = \omega_{1}^{2} + \omega_{2}^{2}$$

Discrete analogue: $H_0(j_{0,k}) \approx \frac{1}{j_{0,N+1}^2} \sum_{n=1}^N \frac{2}{J_1^2(j_{0,n})} f(j_{0,n}/j_{0,N+1}) J_0(j_{0,k}j_{0,n}/j_{0,N+1}).$

$$H_{0}(\omega) = \frac{1}{2\pi} \iint_{x^{2}+y^{2} \leqslant 1} f(x, y) e^{-i(\omega_{1}x + \omega_{2}y)} dx dy = \int_{0}^{1} f(r) J_{0}(r\omega) r dr, \qquad \omega^{2} = \omega_{1}^{2} + \omega_{2}^{2}$$

Discrete analogue:
$$H_0(j_{0,k}) \approx \frac{1}{j_{0,N+1}^2} \sum_{n=1}^N \frac{2}{J_1^2(j_{0,n})} f(j_{0,n}/j_{0,N+1}) J_0(j_{0,k}j_{0,n}/j_{0,N+1}).$$

$$J_0(z) = \begin{cases} 1 & j_{0,k} = \text{Bessel roots} \\ -1 & 40 \\ \text{Bessel function} \end{cases}$$

H. Fisk Johnson

$$H_{0}(\omega) = \frac{1}{2\pi} \iint_{x^{2}+y^{2} \leqslant 1} f(x, y) e^{-i(\omega_{1}x + \omega_{2}y)} dx dy = \int_{0}^{1} f(r) J_{0}(r\omega) r dr, \qquad \omega^{2} = \omega_{1}^{2} + \omega_{2}^{2}$$

Discrete analogue:
$$H_0(j_{0,k}) \approx \frac{1}{j_{0,N+1}^2} \sum_{n=1}^N \frac{2}{J_1^2(j_{0,n})} f(j_{0,n}/j_{0,N+1}) J_0(j_{0,k}j_{0,n}/j_{0,N+1}).$$

The discrete Hankel transform of order 0 (DHT) [Johnson, 86]:

$$X_k = \sum_{n=1}^N x_n J_0(j_{0,k} j_{0,n/j_{0,N+1}}), \qquad 1 \le k \le N.$$

H. Fisk Johnson

$$H_{0}(\omega) = \frac{1}{2\pi} \iint_{x^{2}+y^{2} \leqslant 1} f(x, y) e^{-i(\omega_{1}x+\omega_{2}y)} dx dy = \int_{0}^{1} f(r) J_{0}(r\omega) r dr, \qquad \omega^{2} = \omega_{1}^{2} + \omega_{2}^{2}$$

Discrete analogue:
$$H_0(j_{0,k}) \approx \frac{1}{j_{0,N+1}^2} \sum_{n=1}^N \frac{2}{J_1^2(j_{0,n})} f(j_{0,n}/j_{0,N+1}) J_0(j_{0,k}j_{0,n}/j_{0,N+1}).$$

The discrete Hankel transform of order 0 (DHT) [Johnson, 86]: $\underline{X} = \mathbf{J}_0(\underline{j}_0 \underline{j}_0^{\mathsf{T}} / \underline{j}_{0,N+1}) \underline{X}.$ H. Fisk Johnson

Independently rediscovered by [Yu et al., 89] and [Guizar-Sicairos & Gutiérrez-Vega, 04]

$$H_{0}(\omega) = \frac{1}{2\pi} \iint_{x^{2}+y^{2} \leqslant 1} f(x, y) e^{-i(\omega_{1}x + \omega_{2}y)} dx dy = \int_{0}^{1} f(r) J_{0}(r\omega) r dr, \qquad \omega^{2} = \omega_{1}^{2} + \omega_{2}^{2}$$

Discrete analogue:
$$H_0(j_{0,k}) \approx \frac{1}{j_{0,N+1}^2} \sum_{n=1}^N \frac{2}{J_1^2(j_{0,n})} f(j_{0,n}/j_{0,N+1}) J_0(j_{0,k}j_{0,n}/j_{0,N+1}).$$

The discrete Hankel transform of order 0 (DHT) [Johnson, 86]: $\underline{X} = \mathbf{J}_0(\underline{j}_0 \underline{j}_0^{\mathsf{T}} / \underline{j}_{0,N+1}) \underline{X}.$

H. Fisk Johnson

Independently rediscovered by [Yu et al., 89] and [Guizar-Sicairos & Gutiérrez-Vega, 04].

Introduction Many applications

Optics, electromagnetics, imaging, and the numerical solution of PDEs: [Siegman, 77], [Oppenheim, 78], [Nachamkin & Maggiore, 80], [Candel, 81], [Gopalan & Chen, 83], [Johnson, 86], [Johnson, 87], [Higgins & Munson, 88], [Yu et al., 89], [Vittorio et al., 92], [Sharafeddin et al., 92], [Agnesi et al., 93], [Zhao & Halling, 93], [Cree & Bones, 94], [Barakat, 96], [Ferrari, 99], [Secada, 99], [Wieder, 99], [Knockaert, 00], [Zhang et al., 02], [Markham & Conchello, 03], [Perciante & Ferrari, 04], [Guizar-Sicairos & Gutiérrez-Vega, 04], [Cerjan, 07], [Poularikas, 10]

Compton camera:

- Hankel transform is useful for image reconstruction [Cree & Bones, 94].
- Used in nuclear medical imaging and radioactive waste detection.

Introduction Two existing methods

1. "Direct" approach: Naively computes

 $\underline{X} = \mathbf{J}_0(\underline{j}_0 \underline{j}_0^{\mathsf{T}} / \underline{j}_{0,N+1}) \underline{x}$

in $O(N^2)$ operations [Amos, 86].

2. Butterfly scheme:

Online cost $= O(N \log N)$

Offline cost $= O(N^2)$

[O'Neil, Woolfe, & Rokhlin, 10].

Butterfly scheme (state-of-the-art)

The discrete Hankel transform of order 0 (DHT) [Johnson, 86]:

$$\underline{X} = \mathbf{J}_0(\underline{j}_0 \underline{j}_0^{\mathsf{T}} / \underline{j}_{0,N+1}) \, \underline{x}.$$

1. Kernel. $J_0(z)$ does **not** have constant amplitude.

Frequencies. j_{0,1},..., j_{0,N} are not equispaced.

 Time samples. j_{0,1}/j_{0,N+1},..., j_{0,N}/j_{0,N+1} are not equispaced.

The discrete Hankel transform of order 0 (DHT) [Johnson, 86]:

$$\underline{X} = \mathbf{J}_0(\underline{j}_0 \underline{j}_0^{\mathsf{T}} / \underline{j}_{0,N+1}) \, \underline{x}.$$

1. Kernel. $J_0(z)$ does **not** have constant amplitude.

Frequencies. j_{0,1},..., j_{0,N} are **not** equispaced.

 Time samples. j_{0,1}/j_{0,N+1},..., j_{0,N}/j_{0,N+1} are not equispaced.

The discrete Hankel transform of order 0 (DHT) [Johnson, 86]:

$$\underline{X} = \mathbf{J}_0(\underline{j}_0 \underline{j}_0^{\mathsf{T}} / \underline{j}_{0,N+1}) \, \underline{x}.$$

1. Kernel. $J_0(z)$ does **not** have constant amplitude.

2. Frequencies. $j_{0,1}, \ldots, j_{0,N}$ are **not** equispaced.

 Time samples. j_{0,1}/j_{0,N+1},..., j_{0,N}/j_{0,N+1} are not equispaced.

The discrete Hankel transform of order 0 (DHT) [Johnson, 86]: $\underline{X} = \mathbf{J}_0(\underline{j}_0 \underline{j}_0^{\mathsf{T}} / \underline{j}_{0,N+1}) \underline{X}.$

1. Kernel. $J_0(z)$ does **not** have constant amplitude.

2. Frequencies. $j_{0,1}, \ldots, j_{0,N}$ are **not** equispaced.

3. Time samples. $j_{0,1}/j_{0,N+1}, \ldots, j_{0,N}/j_{0,N+1}$ are **not** equispaced.

The discrete Hankel transform of order 0 (DHT) [Johnson, 86]:

$$\underline{X} = \mathbf{J}_0(\underline{j}_0 \underline{j}_0^{\mathsf{T}} / \underline{j}_{0,N+1}) \, \underline{x}.$$

- 1. Kernel. $J_0(z)$ does **not** have constant amplitude.
- 2. Frequencies. $j_{0,1}, \ldots, j_{0,N}$ are **not** equispaced.

3. Time samples. $j_{0,1}/j_{0,N+1}, \ldots, j_{0,N}/j_{0,N+1}$ are **not** equispaced.

 $\sqrt{z}J_0(z)$

40

The discrete Hankel transform of order 0 (DHT) [Johnson, 86]:

$$\underline{X} = \mathbf{J}_0(\underline{j}_0 \underline{j}_0^{\mathsf{T}} / \underline{j}_{0,N+1}) \, \underline{x}.$$

1. Kernel. $J_0(z)$ does **not** have constant amplitude.

2. Frequencies. $j_{0,1}, \ldots, j_{0,N}$ are **not** equispaced.

3. Time samples. $j_{0,1}/j_{0,N+1}, \ldots, j_{0,N}/j_{0,N+1}$ are **not** equispaced.

The discrete Hankel transform of order 0 (DHT) [Johnson, 86]:

$$\underline{X} = \mathbf{J}_0(\underline{j}_0 \underline{j}_0^{\mathsf{T}} / \underline{j}_{0,N+1}) \, \underline{x}.$$

1. Kernel. $J_0(z)$ does **not** have constant amplitude.

- 2. Frequencies. $j_{0,1}, \ldots, j_{0,N}$ are **not** equispaced.
- 3. Time samples. $j_{0,1}/j_{0,N+1}, \ldots, j_{0,N}/j_{0,N+1}$ are **not** equispaced.

 $\sqrt{z}J_0(z)$

40

Increasingly nonuniform

Goal: FFT-based and analysis-based fast transforms with zero offline cost.

Alex Townsend @ MIT

Increasingly nonuniform

Goal: FFT-based and analysis-based fast transforms with zero offline cost.

Alex Townsend @ MIT

Fast evaluation of Schlömilch expansions

Schlömilch expansion of $f : [0, 1] \rightarrow \mathbb{C}$ is [Schlömilch, 1846]:

$$f(r) = \sum_{n=1}^{N} x_n J_0(n\pi r).$$

Oscar Schlömilch

Aim: A fast algorithm for evaluating f(r) at $r_k = k/N$ for $1 \le k \le N$.

Equivalent to the following matrix-vector product: $\mathbf{J}_{\mathbf{0}}(\underline{r}\,\underline{\omega}^{\mathsf{T}})\underline{\mathbf{x}} = \begin{pmatrix} J_{0}(r_{1}\omega_{1}) & \dots & J_{0}(r_{1}\omega_{N}) \\ \vdots & \ddots & \vdots \\ J_{0}(r_{N}\omega_{1}) & \dots & J_{0}(r_{N}\omega_{N}) \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{N} \end{pmatrix}, \quad r_{k} = k/N, \quad \omega_{n} = n\pi.$

Fast evaluation of Schlömilch expansions Bessel functions are trigonometric-like for large argument

For fixed $M \ge 1$ and real $z \to \infty$:

$$J_0(z) \sim \sqrt{\frac{2}{\pi z}} \left(\cos(z - \frac{\pi}{4}) \sum_{m=0}^{M-1} \frac{(-1)^m a_{2m}}{z^{2m}} - \sin(z - \frac{\pi}{4}) \sum_{m=0}^{M-1} \frac{(-1)^m a_{2m+1}}{z^{2m+1}} \right).$$

 J₀(z)

 Fraunhofer regime

Peter A. Hansen

A 19th century hobby: [Poisson, 1823], [Kummer, 1837], [Jacobi, 1843], [Lipschitz, 1859], [Hamilton, 1907]

Alex Townsend @ MIT

Fast evaluation of Schlömilch expansions Numerical pitfalls of an asymptotic expansionist

Evaluation of a Schlömilch expansion is equivalent to the following matrix-vector product:

$$\mathbf{J}_{\mathbf{0}}(\underline{r}\,\underline{\omega}^{\mathsf{T}})\underline{\mathbf{x}} = \begin{pmatrix} J_{\mathbf{0}}(r_{1}\omega_{1}) & \dots & J_{\mathbf{0}}(r_{1}\omega_{N}) \\ \vdots & \ddots & \vdots \\ J_{\mathbf{0}}(r_{N}\omega_{1}) & \dots & J_{\mathbf{0}}(r_{N}\omega_{N}) \end{pmatrix} \begin{pmatrix} \mathbf{x}_{1} \\ \vdots \\ \mathbf{x}_{N} \end{pmatrix}, \quad \mathbf{r}_{\mathbf{k}} = \mathbf{k}/\mathbf{N}, \quad \boldsymbol{\omega}_{n} = n\pi.$$

Fast evaluation of Schlömilch expansions Asymptotic expansions as a matrix decomposition

The asymptotic expansion gives a matrix decomposition:

$$J_{0}(r_{k}\omega_{n}) = \sqrt{\frac{2}{\pi}} \left(\cos(r_{k}\omega_{n} - \frac{\pi}{4}) \sum_{m=0}^{M-1} \frac{(-1)^{m} a_{2m}}{(r_{k}\omega_{n})^{2m+\frac{1}{2}}} - \sin(r_{k}\omega_{n} - \frac{\pi}{4}) \sum_{m=0}^{M-1} \frac{(-1)^{m} a_{2m+1}}{(r_{k}\omega_{n})^{2m+\frac{3}{2}}} \right) + R_{M}(r_{k}\omega_{n})$$

which is a sum of diagonally scaled DCTs and DSTs when $r_k = \frac{\kappa}{N}$ and $\omega_n = n\pi$:

$$\mathbf{J}_{\mathbf{0}}(\underline{r}\,\underline{\omega}^{T}) = \sum_{m=0}^{M-1} \left(D_{u_{m}^{1}} \mathbf{P}^{T} \mathbf{C}_{N+1} \mathbf{P} D_{u_{m}^{2}} + D_{v_{m}^{1}} \begin{bmatrix} \mathbf{S}_{N-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} D_{v_{m}^{2}} \right) + \mathbf{R}_{M}.$$

Fast evaluation of Schlömilch expansions Asymptotic expansions as a matrix decomposition

The asymptotic expansion gives a matrix decomposition:

$$J_{0}(r_{k}\omega_{n}) = \sqrt{\frac{2}{\pi}} \left(\cos(r_{k}\omega_{n} - \frac{\pi}{4}) \sum_{m=0}^{M-1} \frac{(-1)^{m} a_{2m}}{(r_{k}\omega_{n})^{2m+\frac{1}{2}}} - \sin(r_{k}\omega_{n} - \frac{\pi}{4}) \sum_{m=0}^{M-1} \frac{(-1)^{m} a_{2m+1}}{(r_{k}\omega_{n})^{2m+\frac{3}{2}}} \right) + R_{M}(r_{k}\omega_{n})$$

which is a sum of diagonally scaled DCTs and DSTs when $r_k = \frac{k}{N}$ and $\omega_n = n\pi$:

$$\mathbf{J}_{\mathbf{0}}(\underline{r}\,\underline{\omega}^{T}) = \sum_{m=0}^{M-1} \left(D_{u_{m}^{1}} P^{T} \mathbf{C}_{N+1} P D_{u_{m}^{2}} + D_{v_{m}^{1}} \begin{bmatrix} \mathbf{S}_{N-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} D_{v_{m}^{2}} \right) + \mathbf{R}_{M}.$$

Fast evaluation of Schlömilch expansions Asymptotic expansions as a matrix decomposition

The asymptotic expansion gives a matrix decomposition:

$$J_{0}(r_{k}\omega_{n}) = \sqrt{\frac{2}{\pi}} \left(\cos(r_{k}\omega_{n} - \frac{\pi}{4}) \sum_{m=0}^{M-1} \frac{(-1)^{m} a_{2m}}{(r_{k}\omega_{n})^{2m+\frac{1}{2}}} - \sin(r_{k}\omega_{n} - \frac{\pi}{4}) \sum_{m=0}^{M-1} \frac{(-1)^{m} a_{2m+1}}{(r_{k}\omega_{n})^{2m+\frac{3}{2}}} \right) + R_{M}(r_{k}\omega_{n})$$

which is a sum of diagonally scaled DCTs and DSTs when $r_k = \frac{k}{N}$ and $\omega_n = n\pi$:

$$\mathbf{J}_{\mathbf{0}}(\underline{r}\,\underline{\omega}^{T}) = \sum_{m=0}^{M-1} \left(D_{u_{m}^{1}} P^{T} \mathbf{C}_{N+1} P D_{u_{m}^{2}} + D_{v_{m}^{1}} \begin{bmatrix} \mathbf{S}_{N-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} D_{v_{m}^{2}} \right) + \mathbf{R}_{M}.$$

Fast evaluation of Schlömilch expansions Be careful and stay safe

Error curve: $|R_M(r_k\omega_n)| = \epsilon$

Fix *M*. Where is the asymptotic expansion accurate?

Theorem

The matrix-vector product $\underline{X} = \mathbf{J}_{\mathbf{0}}(\underline{r} \, \underline{\omega}^{\mathsf{T}}) \underline{x}$ can be computed in $O(N(\log N)^2 / \log\log N)$ operations.

Theorem

The matrix-vector product $\underline{X} = \mathbf{J}_{\mathbf{0}}(\underline{r} \, \underline{\omega}^{\mathsf{T}}) \underline{x}$ can be computed in $O(N(\log N)^2 / \log\log N)$ operations.

Theorem

The matrix-vector product $\underline{X} = \mathbf{J}_{\mathbf{0}}(\underline{r} \, \underline{\omega}^{\mathsf{T}}) \underline{x}$ can be computed in $O(N(\log N)^2 / \log\log N)$ operations.

Fast evaluation of Schlömilch expansions Fix *M*. But, what *M* should we pick?

Pick the working tolerance: $\epsilon > 0$:


```
M = \max(\lfloor 0.3 \log(1/\epsilon) \rfloor, 3)
```

Other algorithmic parameters are decided upon by precise error bounds.

Fast evaluation of Schlömilch expansions Analysis-based algorithmic parameters

Fast evaluation of Fourier–Bessel expansions Overview of talk

Increasingly nonuniform

Goal: FFT-based and analysis-based fast transforms with zero offline cost.

Fast evaluation of Fourier–Bessel expansions

Fourier–Bessel expansion of $f : [0, 1] \rightarrow \mathbb{C}$ is:

$$f(r) = \sum_{n=1}^{N} x_n J_0(j_{0,n}r).$$

Aim: A fast algorithm for evaluating f(r) at $r_k = k/N$ for $1 \le k \le N$.

Equivalent to the following matrix-vector product:

$$\mathbf{J}_{\mathbf{0}}(\underline{r}\,\underline{j}_{0}^{\mathsf{T}})\underline{x} = \begin{pmatrix} J_{0}(r_{1}j_{0,1}) & \dots & J_{0}(r_{1}j_{0,N}) \\ \vdots & \ddots & \vdots \\ J_{0}(r_{N}j_{0,1}) & \dots & J_{0}(r_{N}j_{0,N}) \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{N} \end{pmatrix}, \quad r_{k} = k/N, \quad J_{0}(j_{0,n}) = 0.$$

Idea: Bessel roots are nearly equispaced.

Lemma (Theorem 3 in [Hethcote, 70].) Let $j_{0,n}$ denote the nth positive root of $J_0(z)$. Then,

$$\left|j_{0,n}-\left(n-\frac{1}{4}\right)\pi\right| \leq \frac{1}{8(n-\frac{1}{4})\pi}$$

We can write: $j_{0,n} = \underbrace{(n-1/4)\pi}_{0} + b_n, \quad |b_n| \le \frac{1}{8(n-\frac{1}{4})\pi}$

Fast evaluation of Fourier–Bessel expansions A matrix decomposition

Theorem

For integers $K \ge 1$ and $T \ge 1$ we have

$$\mathbf{J}_{\mathbf{0}}(\underline{r}\underline{i}_{\mathbf{0}}^{\mathsf{T}}) = \mathbf{J}_{\mathbf{0}}(\underline{r}\underline{\tilde{\omega}}^{\mathsf{T}} + \underline{r}\underline{b}^{\mathsf{T}}) = \sum_{s=-K+1}^{K-1} \sum_{t=0}^{T-1} \frac{(-1)^{t}2^{-2t+s}}{t!(t-s)!} \underbrace{\mathcal{D}_{\underline{r}}^{2t-s} \mathbf{J}_{\mathbf{s}}(\underline{r}\underline{\tilde{\omega}}^{\mathsf{T}}) \mathcal{D}_{\underline{b}}^{2t-s}}_{\mathbf{b}} + \mathbf{E}_{K,T}.$$

Proof.

Neumann addition formula and Taylor expansion of $J_0(z)$ about z = 0.

Fast evaluation of Fourier–Bessel expansions Numerical results

Rearrange computation: For $\epsilon = 10^{-15}$, *T* and *K* are:

K = 6, T = 3.

Fourier–Bessel expansions:

$$X_k = \sum_{n=1}^N x_n J_0(j_{0,n}k/N), \qquad 1 \leqslant k \leqslant N.$$

The discrete Hankel transform Overview of talk

Increasingly nonuniform

Goal: FFT-based and analysis-based fast transforms with zero offline cost.

Let $j_{0,k}$ denote the *n*th positive root of $J_0(z)$. The ratios are nearly equispaced:

in / in nu

$$\left|\frac{j_{0,k}}{j_{0,N+1}} - \frac{k - \frac{1}{4}}{N + \frac{3}{4}}\right| \leq \frac{1}{8(N + \frac{3}{4})(k - \frac{1}{4})\pi^2}.$$

In a similar manner to the Fourier-Bessel case, we have

The discrete Hankel transform Numerical results

Discrete Hankel transform

The discrete Hankel transform Errors in practice versus theory

Conclusion

Novel features of our algorithm for the DHT:

- 1. Zero offline cost.
- 2. Implementation adapts to individual computer architecture.
- 3. Guaranteed error control (no heuristics).
- 4. No hierarchical data structures.

Thank you

More information in: T., "A fast analysis-based discrete Hankel transform using asymptotic expansions", to appear in SINUM.

Code publicly available from: https://github.com/ajt60gaibb/FastAsyTransforms

References

- M. J. Cree and P. J. Bones, Algorithms to numerically evaluate the Hankel transform, J. Franklin Institute, 1983.
- H. F. Johnson, An improved method for computing a discrete Hankel transform, Computer Physics Communications, 1987.
- N. Hale and A. Townsend, A fast, simple, and stable Chebyshev–Legendre transform using an asymptotic formula, SISC, 2014.
- M. O'Neil, F. Woolfe, and V. Rokhlin, An algorithm for the rapid evaluation of special function transforms, Appl. Comput. Harm. Anal., 2010.
- A. Townsend, The race to compute high-order Gauss quadrature, SIAM News, 2015.
- A. Townsend, A fast analysis-based discrete Hankel transform using asymptotics expansions, to appear in SINUM, 2015.
- M. Tygert, Fast algorithms for spherical harmonic expansions, II, J. Comput. Phys., 2008.

Extra slides Direct approach [Amos, 86]

Trigonometric functions $\cos(\omega x)$, $\sin(\omega x)$

Chebyshev polynomials $T_n(x)$

Legendre polynomials $P_n(x)$

Bessel functions $J_{\nu}(z)$

Airy functions Ai(x)

Trigonometric functions $\cos(\omega x)$, $\sin(\omega x)$

Chebyshev polynomials $T_n(x)$

Legendre polynomials $P_n(x)$

Bessel functions $J_{\nu}(z)$

Airy functions Ai(x)

Trigonometric functions $\cos(\omega x)$, $sin(\omega x)$

Chebyshev polynomials $T_n(\mathbf{x})$

Legendre polynomials $P_n(x)$

Trigonometric functions $\cos(\omega x)$, $\sin(\omega x)$

Chebyshev polynomials $T_n(x)$

Legendre polynomials $P_n(x)$

Bessel functions $J_{\nu}(z)$

Airy functions Ai(x)

Trigonometric functions $\cos(\omega x)$, $\sin(\omega x)$

Chebyshev polynomials $T_n(x)$

Legendre polynomials $P_n(x)$

Bessel functions $J_{\nu}(z)$

Airy functions Ai(x)

Trigonometric functions $\cos(\omega x)$, $\sin(\omega x)$

Chebyshev polynomials $T_n(x)$

Legendre polynomials $P_n(x)$

Bessel functions $J_{\nu}(z)$

Airy functions Ai(x)

