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7 Sketches of proofs for Part 7

7.1 Proof of Theorem 7.1

The SQP search direction sk and its associated Lagrange multiplier estimates yk+1 satisfy

Bksk − AT

k yk+1 = −gk (7.1)

and

Aksk = −ck. (7.2)

Premultiplying (7.1) by sk and using (7.2) gives that
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Likewise (7.2) gives
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Combining (7.3) and (7.4), and using the positive definiteness of Bk, the Cauchy-Schwarz in-

equality and the fact that sk 6= 0 if xk is not critical, yields
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because of the required bound on µk.

7.2 Proof of Theorem 7.2

The proof is slightly complicated as it uses the calculus of non-differentiable functions. See

Theorem 14.3.1 in

R. Fletcher, “Practical Methods of Optimization”, Wiley (1987, 2nd edition),

where the converse result that if x∗ is an isolated local minimizer of Φ(x, ρ) for which c(x∗) = 0,

then x∗ solves the given nonlinear program so long as ρ is sufficiently large, is also given. Moreover,

Fletcher showns (Theorem 14.3.2) that x∗ cannot be a local minimizer of Φ(x, ρ) when ρ < ‖y∗‖D.
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7.3 Proof of Theorem 7.3

For small steps α, Taylor’s theorem applied separately to f and c, along with (7.2), gives that

Φ(x
k

+ αs
k
, ρ

k
) − Φ(x

k
, ρ

k
) = αsT

k
g
k

+ ρ
k

(

‖c
k

+ αA
k
s
k
‖ − ‖c

k
‖
)

+ O(α2)

= αsT

k
g
k

+ ρ
k

(

‖(1 − α)c
k
‖ − ‖c

k
‖
)

+ O(α2)

= α
(

sT

k
g
k
− ρ

k
‖c

k
‖
)

+ O
(

α2
)

Combining this with (7.3), and once again using the positive definiteness of Bk, the Hölder

inequality and the fact that sk 6= 0 if xk is not critical, yields
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because of the required bound on ρk, for sufficiently small α. Hence sufficiently small steps along

sk from non-critical xk reduce Φ(x, ρ
k
).
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