Notes for Part 7: SQP methods for equality constrained optimization

Nick Gould, CSED, RAL, Chilton, OX11 0QX, England (n.gould@rl.ac.uk)
January 11, 2006

$7 \quad$ Sketches of proofs for Part 7

7.1 Proof of Theorem 7.1

The SQP search direction s_{k} and its associated Lagrange multiplier estimates y_{k+1} satisfy

$$
\begin{equation*}
B_{k} s_{k}-A_{k}^{T} y_{k+1}=-g_{k} \tag{7.1}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{k} s_{k}=-c_{k} . \tag{7.2}
\end{equation*}
$$

Premultiplying (7.1) by s_{k} and using (7.2) gives that

$$
\begin{equation*}
s_{k}^{T} g_{k}=-s_{k}^{T} B_{k} s_{k}+s_{k}^{T} A_{k}^{T} y_{k+1}=-s_{k}^{T} B_{k} s_{k}-c_{k}^{T} y_{k+1} \tag{7.3}
\end{equation*}
$$

Likewise (7.2) gives

$$
\begin{equation*}
\frac{1}{\mu_{k}} s_{k}^{T} A_{k}^{T} c_{k}=-\frac{\left\|c_{k}\right\|_{2}^{2}}{\mu_{k}} . \tag{7.4}
\end{equation*}
$$

Combining (7.3) and (7.4), and using the positive definiteness of B_{k}, the Cauchy-Schwarz inequality and the fact that $s_{k} \neq 0$ if x_{k} is not critical, yields
$s_{k}^{T} \nabla_{x} \Phi\left(x_{k}\right)=s_{k}^{T}\left(g_{k}+\frac{1}{\mu_{k}} A_{k}^{T} c_{k}\right)=-s_{k}^{T} B_{k} s_{k}-c_{k}^{T} y_{k+1}-\frac{\left\|c_{k}\right\|_{2}^{2}}{\mu_{k}}<-\left\|c_{k}\right\|_{2}\left(\frac{\left\|c_{k}\right\|_{2}}{\mu_{k}}-\left\|y_{k+1}\right\|_{2}\right) \leq 0$ because of the required bound on μ_{k}.

7.2 Proof of Theorem 7.2

The proof is slightly complicated as it uses the calculus of non-differentiable functions. See Theorem 14.3.1 in
R. Fletcher, "Practical Methods of Optimization", Wiley (1987, 2nd edition),
where the converse result that if x_{*} is an isolated local minimizer of $\Phi(x, \rho)$ for which $c\left(x_{*}\right)=0$, then x_{*} solves the given nonlinear program so long as ρ is sufficiently large, is also given. Moreover, Fletcher showns (Theorem 14.3.2) that x_{*} cannot be a local minimizer of $\Phi(x, \rho)$ when $\rho<\left\|y_{*}\right\|_{D}$.

7.3 Proof of Theorem 7.3

For small steps α, Taylor's theorem applied separately to f and c, along with (7.2), gives that

$$
\begin{aligned}
\Phi\left(x_{k}+\alpha s_{k}, \rho_{k}\right)-\Phi\left(x_{k}, \rho_{k}\right) & =\alpha s_{k}^{T} g_{k}+\rho_{k}\left(\left\|c_{k}+\alpha A_{k} s_{k}\right\|-\left\|c_{k}\right\|\right)+O\left(\alpha^{2}\right) \\
& =\alpha s_{k}^{T} g_{k}+\rho_{k}\left(\left\|(1-\alpha) c_{k}\right\|-\left\|c_{k}\right\|\right)+O\left(\alpha^{2}\right) \\
& =\alpha\left(s_{k}^{T} g_{k}-\rho_{k}\left\|c_{k}\right\|\right)+O\left(\alpha^{2}\right)
\end{aligned}
$$

Combining this with (7.3), and once again using the positive definiteness of B_{k}, the Hölder inequality and the fact that $s_{k} \neq 0$ if x_{k} is not critical, yields

$$
\begin{aligned}
\Phi\left(x_{k}+\alpha s_{k}, \rho_{k}\right)-\Phi\left(x_{k}, \rho_{k}\right) & =-\alpha\left(s_{k}^{T} B_{k} s_{k}+c_{k}^{T} y_{k+1}+\rho_{k}\left\|c_{k}\right\|\right)+O\left(\alpha^{2}\right) \\
& <-\alpha\left(-\left\|c_{k}\right\| y_{k+1}\left\|_{D}+\rho_{k}\right\| c_{k} \|\right)+O\left(\alpha^{2}\right) \\
& =-\alpha\left\|c_{k}\right\|\left(\rho_{k}-\left\|y_{k+1}\right\|_{D}\right)+O\left(\alpha^{2}\right)<0
\end{aligned}
$$

because of the required bound on ρ_{k}, for sufficiently small α. Hence sufficiently small steps along s_{k} from non-critical x_{k} reduce $\Phi\left(x, \rho_{k}\right)$.

