Part 0: A gentle introduction to nonlinear optimization

Nick Gould (RAL)

 $\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x) \text{ subject to } c_{\mathcal{E}}(x) = 0 \text{ and } c_{\mathcal{I}}(x) \ge 0$

Part C course on continuoue optimization

WHAT IS NONLINEAR PROGRAMMING?

Nonlinear optimization \equiv nonlinear programming

 $\underset{x}{\text{minimize }} f(x) \text{ subject to } c_{\mathcal{E}}(x) = 0 \text{ and } c_{\mathcal{I}}(x) \ge 0$

where

objective function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ constraints $c_{\mathcal{E}} : \mathbb{R}^n \longrightarrow \mathbb{R}^{m_e} \ (m_e \le n)$ and $c_{\mathcal{I}} : \mathbb{R}^n \longrightarrow \mathbb{R}^{m_i}$

 \odot there may also be integrality restrictions

NODE EQUATIONS

PIPE EQUATIONS

$$p_2^2 - p_1^2 + k_1 q_1^{2.8359} = 0$$

where p_i pressures q_i flows k_i constants In general: $A^T p^2 + K q^{2.8359} = 0$ \cdot non-linear \cdot sparse

 \cdot structured

COMPRESSOR CONSTRAINTS

$$q_1 - q_2 + z_1 \cdot c_1(p_1, q_1, p_2, q_2) = 0$$

where p_i **pressures**

 q_i flows

 $z_i \ 0-1 \ \text{variables}$

= 1 if machine is on

 c_i nonlinear functions

In general: $A_2^T q + z \cdot c(p,q) = 0$ \cdot non-linear \cdot sparse \cdot structured $\cdot 0-1$ variables

OTHER CONSTRAINTS

Bounds on pressures and flows

 $p_{\min} \leq p \leq p_{\max}$ $q_{\min} \leq q \leq q_{\max}$

 $\odot\,$ simple bounds on variables

OBJECTIVES

Many possible objectives

- $\odot~$ maximize / minimize sum of pressures
- $\odot\,$ minimize compressor fuel costs
- $\odot\,$ minimize supply
- + combinations of these

STATISTICS

British Gas National Transmission System

- $\odot~199~{\rm nodes}$
- \odot 196 pipes
- $\odot~21$ machines
- Steady state problem ~ 400 variables
- 24-hour variable demand problem with 10 minute discretization ${\sim}58{,}000$ variables

Challenge: Solve this in real time

TYPICAL PROBLEM

This problem is typical of real-world, large-scale applications

- \odot simple bounds
- $\odot~$ linear constraints
- $\odot\,$ nonlinear constraints
- \odot structure
- \odot global solution "required"
- \odot integer variables
- \odot discretization

(SOME) OTHER APPLICATION AREAS

- \odot minimum energy problems
- $\odot\,$ gas production models
- \odot hydro-electric power scheduling
- $\odot\,$ structural design problems
- \odot portfolio selection
- $\odot\,$ parameter determination in financial markets
- \odot production scheduling problems
- \odot computer tomography (image reconstruction)
- $\odot\,$ efficient models of alternative energy sources
- $\odot\,$ traffic equilibrium models

CLASSIFICATION OF OPTIMIZATION PROBLEMS

