Part 1: Optimality conditions and why they are important

Nick Gould (RAL)

$$c(x) \ge 0$$
, $g(x) + A^{T}(x)y = 0$, $y \ge 0$

Part C course on continuoue optimization

OPTIMIZATION PROBLEMS

Unconstrained minimization:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x)$$

where the **objective function** $f: \mathbb{R}^n \longrightarrow \mathbb{R}$

Equality constrained minimization:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x) \text{ subject to } c(x) = 0$$

where the **constraints** $c: \mathbb{R}^n \longrightarrow \mathbb{R}^m \ (m \leq n)$

Inequality constrained minimization:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x) \ \text{subject to} \ c(x) \ge 0$$

where $c: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ (m may be larger than n)

NOTATION

Use the following throughout the course:

$$g(x) \stackrel{\mathrm{def}}{=} \quad
abla_{xx} f(x)$$
 gradient of f
 $H(x) \stackrel{\mathrm{def}}{=} \quad
abla_{xx} f(x)$ Hessian matrix of f
 $a_i(x) \stackrel{\mathrm{def}}{=} \quad
abla_{x} c_i(x)$ gradient of i th constraint

 $H_i(x) \stackrel{\mathrm{def}}{=} \quad
abla_{xx} c_i(x)$ Hessian of i th constraint

 $A(x) \stackrel{\mathrm{def}}{=} \quad
abla_{xx} c(x) \equiv \begin{pmatrix} a_1^T(x) \\ \cdots \\ a_m^T(x) \end{pmatrix}$ Jacobian matrix of c
 $\ell(x,y) \stackrel{\mathrm{def}}{=} \quad f(x) - y^T c(x)$ Lagrangian function, where g are Lagrange multipliers

 $g(x) \stackrel{\mathrm{def}}{=} \quad
abla_{xx} \ell(x,y) \equiv \quad
abla_{xx} \ell(x,$

$$H(x,y) \stackrel{\text{def}}{=} \nabla_{xx}\ell(x,y) \equiv$$

$$H(x) - \sum_{i=1}^{m} y_i H_i(x)$$

gradient of f

LIPSCHITZ CONTINUITY

- $\odot \mathcal{X}$ and \mathcal{Y} open sets
- $\circ F: \mathcal{X} \to \mathcal{Y}$
- $\circ \|\cdot\|_{\mathcal{X}}$ and $\|\cdot\|_{\mathcal{Y}}$ are norms

Then

 \odot F is Lipschitz continuous at $x \in \mathcal{X}$ if $\exists \gamma(x)$ such that

$$||F(z) - F(x)||_{\mathcal{Y}} \le \gamma(x)||z - x||_{\mathcal{X}}$$

for all $z \in \mathcal{X}$.

 \odot F is Lipschitz continuous throughout/in \mathcal{X} if $\exists \gamma$ such that

$$||F(z) - F(x)||_{\mathcal{Y}} \le \gamma ||z - x||_{\mathcal{X}}$$

for all x and $z \in \mathcal{X}$.

USEFUL TAYLOR APPROXIMATIONS

Theorem 1.1. Let \mathcal{S} be an open subset of \mathbb{R}^n , and suppose $f: \mathcal{S} \to \mathbb{R}$ is continuously differentiable throughout \mathcal{S} . Suppose further that g(x) is Lipschitz continuous at x, with Lipschitz constant $\gamma^L(x)$ in some appropriate vector norm. Then, if the segment $x + \theta s \in \mathcal{S}$ for all $\theta \in [0, 1]$,

$$|f(x+s) - m^{L}(x+s)| \le \frac{1}{2}\gamma^{L}(x)||s||^{2}$$
, where $m^{L}(x+s) = f(x) + g(x)^{T}s$.

If f is twice continuously differentiable throughout S and H(x) is Lipschitz continuous at x, with Lipschitz constant $\gamma^{Q}(x)$,

$$|f(x+s) - m^Q(x+s)| \le \frac{1}{6}\gamma^Q(x)||s||^3$$
, where $m^Q(x+s) = f(x) + g(x)^T s + \frac{1}{2}s^T H(x)s$.

MEAN VALUE THEOREM

Theorem 1.2. Let S be an open subset of \mathbb{R}^n , and suppose f: $S \to \mathbb{R}$ is twice continuously differentiable throughout S. Suppose further that $s \neq 0$, and that the interval $[x, x + s] \in S$. Then

$$f(x+s) = f(x) + g(x)^{T} s + \frac{1}{2} s^{T} H(z) s$$

for some $z \in (x, x + s)$.

ANOTHER USEFUL TAYLOR APPROXIMATION

Theorem 1.3. Let S be an open subset of \mathbb{R}^n , and suppose $F: S \to \mathbb{R}^m$ is continuously differentiable throughout S. Suppose further that $\nabla_x F(x)$ is Lipschitz continuous at x, with Lipschitz constant $\gamma^L(x)$ in some appropriate vector norm and its induced matrix norm. Then, if the segment $x + \theta s \in S$ for all $\theta \in [0, 1]$,

$$||F(x+s) - M^{L}(x+s)|| \le \frac{1}{2}\gamma^{L}(x)||s||^{2},$$

where

$$M^{L}(x+s) = F(x) + \nabla_{x}F(x)s.$$

OPTIMALITY CONDITIONS

Optimality conditions are useful because:

- they provide a means of guaranteeing that a candidate solution is indeed optimal (sufficient conditions), and
- they indicate when a point is not optimal (necessary conditions)

Furthermore they

 ⊙ guide in the design of algorithms, since lack of optimality ← indication of improvement

UNCONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.4. Suppose that $f \in C^1$, and that x_* is a local minimizer of f(x). Then

$$q(x_*) = 0.$$

Second-order necessary optimality:

Theorem 1.5. Suppose that $f \in C^2$, and that x_* is a local minimizer of f(x). Then $g(x_*) = 0$ and $H(x_*)$ is positive semi-definite, that is

$$s^T H(x_*) s \ge 0$$
 for all $s \in \mathbb{R}^n$.

PROOF OF THEOREM 1.4

Suppose otherwise, that $g(x_*) \neq 0$.

Taylor expansion in the direction $-g(x_*)$ gives

$$f(x_* - \alpha g(x_*)) = f(x_*) - \alpha ||g(x_*)||^2 + O(\alpha^2).$$

For sufficiently small α , $\frac{1}{2}\alpha ||g(x_*)||^2 \geq O(\alpha^2)$, and thus

$$f(x_* - \alpha g(x_*)) \le f(x_*) - \frac{1}{2}\alpha ||g(x_*)||^2 < f(x_*).$$

This contradicts the hypothesis that x_* is a local minimizer.

Suppose otherwise that $s^T H(x_*) s < 0$.

Taylor expansion in the direction s gives

$$f(x_* + \alpha s) = f(x_*) + \frac{1}{2}\alpha^2 s^T H(x_*) s + O(\alpha^3),$$

since $g(x_*) = 0$. For sufficiently small α , $-\frac{1}{4}\alpha^2 s^T H(x_*) s \geq O(\alpha^3)$, and thus

$$f(x_* + \alpha s) \le f(x_*) + \frac{1}{4}\alpha^2 s^T H(x_*) s < f(x_*).$$

This contradicts the hypothesis that x_* is a local minimizer.

UNCONSTRAINED MINIMIZATION (cont.)

Second-order sufficient optimality:

Theorem 1.6. Suppose that $f \in C^2$, that x_* satisfies the condition $g(x_*) = 0$, and that additionally $H(x_*)$ is positive definite, that is

$$s^T H(x_*) s > 0$$
 for all $s \neq 0 \in \mathbb{R}^n$.

Then x_* is an isolated local minimizer of f.

Continuity $\Longrightarrow H(x)$ positive definite $\forall x$ in open ball \mathcal{N} around x_* .

 $x_* + s \in \mathcal{N}$ + generalized mean value theorem $\Longrightarrow \exists z$ between x_* and $x_* + s$ for which

$$f(x_* + s) = f(x_*) + g(x_*)^T s + \frac{1}{2} s^T H(z) s$$

= $f(x_*) + \frac{1}{2} s^T H(z) s$
> $f(x_*)$

 $\forall s \neq 0 \Longrightarrow x_*$ is an isolated local minimizer.

EQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.7. Suppose that $f, c \in C^1$, and that x_* is a local minimizer of f(x) subject to c(x) = 0. Then, so long as a first-order constraint qualification holds, there exist a vector of Lagrange multipliers y_* such that

$$c(x_*)=0$$
 (primal feasibility) and $g(x_*)-A^T(x_*)y_*=0$ (dual feasibility).

Constraint qualification $\Longrightarrow \exists$ vector valued C^2 (C^3 for Theorem 1.8) function $x(\alpha)$ of the scalar α for which

$$x(0) = x_*$$
 and $c(x(\alpha)) = 0$

and

$$x(\alpha) = x_* + \alpha s + \frac{1}{2}\alpha^2 p + O(\alpha^3)$$

+ Taylor's theorem \Longrightarrow

$$0 = c_i(x(\alpha)) = c(x_* + \alpha s + \frac{1}{2}\alpha^2 p + O(\alpha^3))$$

= $c_i(x_*) + a_i^T(x_*) \left(\alpha s + \frac{1}{2}\alpha^2 p\right) + \frac{1}{2}\alpha^2 s^T H_i(x_*) s + O(\alpha^3)$
= $\alpha a_i^T(x_*) s + \frac{1}{2}\alpha^2 \left(a_i^T(x_*) p + s^T H_i(x_*) s\right) + O(\alpha^3)$

Matching similar asymptotic terms ⇒

$$A(x_*)s = 0 (1)$$

and

$$a_i^T(x_*)p + s^T H_i(x_*)s = 0 \quad \forall i = 1, \dots, m$$
 (2)

Now consider objective function

$$f(x(\alpha)) = f(x_* + \alpha s + \frac{1}{2}\alpha^2 p + O(\alpha^3))$$

$$= f(x_*) + g(x_*)^T \left(\alpha s + \frac{1}{2}\alpha^2 p\right) + \frac{1}{2}\alpha^2 s^T H(x_*) s + O(\alpha^3)$$

$$= f(x_*) + \alpha g(x_*)^T s + \frac{1}{2}\alpha^2 \left(g(x_*)^T p + s^T H(x_*) s\right) + O(\alpha^3)$$
(3)

f(x) unconstrained along $x(\alpha) \Longrightarrow$

$$s^T g(x_*)^T = 0$$
 for all s such that $A(x_*)s = 0$. (4)

Let S be a basis for null space of $A(x_*) \Longrightarrow$

$$g(x_*) = A^T(x_*)y_* + Sz_* (5)$$

for some y_* and z_* . (4) $\Longrightarrow g^T(x_*)S = 0 + A(x_*)S = 0 \Longrightarrow$

$$0 = S^{T}g(x_{*}) = S^{T}A^{T}(x_{*})y_{*} + S^{T}Sz_{*} = S^{T}Sz_{*}.$$

$$\implies S^T S z_* = 0 + S \text{ full rank} \implies z_* = 0 + (5) \implies$$

$$g(x_*) - A^T(x_*)y_* = 0.$$

EQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

Theorem 1.8. Suppose that $f, c \in C^2$, and that x_* is a local minimizer of f(x) subject to c(x) = 0. Then, provided that first-and second-order constraint qualifications hold, there exist a vector of Lagrange multipliers y_* such that

$$s^T H(x_*, y_*) s \ge 0$$
 for all $s \in \mathcal{N}$

where

$$\mathcal{N} = \{ s \in \mathbb{R}^n \mid A(x_*)s = 0 \}.$$

PROOF OF THEOREM 1.8

$$g(x_*) - A^T(x_*)y_* = 0. (6)$$

while $(3) \Longrightarrow$

$$f(x(\alpha)) = f(x_*) + \frac{1}{2}\alpha^2 \left(p^T g(x_*) + s^T H(x_*) s \right) + O(\alpha^3)$$
 (7)

for all s and p satisfying $A(x_*)s = 0$ and

$$a_i^T(x_*)p + s^T H_i(x_*)s = 0 \quad \forall i = 1, \dots, m.$$
 (8)

Hence, necessarily,
$$p^T g(x_*) + s^T H(x_*) s \ge 0$$
 (9)

But (6) + (8)
$$\Longrightarrow p^T g(x_*) = \sum_{i=1}^m (y_*)_i p^T a_i(x_*) = -\sum_{i=1}^m (y_*)_i s^T H_i(x_*) s$$

 \implies (9) is equivalent to

$$s^{T} \left(H(x_{*}) - \sum_{i=1}^{m} (y_{*})_{i} H_{i}(x_{*}) \right) s \equiv s^{T} H(x_{*}, y_{*}) s \geq 0$$

for all s satisfying $A(x_*)s = 0$.

LINEAR INEQUALITIES — FARKAS' LEMMA

Fundamental theorem of linear inequalities

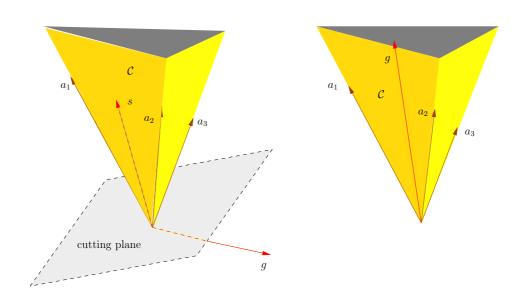
Farkas' lemma. Given any vectors g and a_i , $i \in \mathcal{A}$, the set

$$S = \{ s \mid g^T s < 0 \text{ and } a_i^T s \ge 0 \text{ for } i \in A \}$$

is empty if and only if

$$g \in C = \left\{ \sum_{i \in \mathcal{A}} y_i a_i \mid y_i \ge 0 \text{ for all } i \in \mathcal{A} \right\}.$$

FARKAS' LEMMA (cont.)



Left: $g \notin \mathcal{C} \Longrightarrow$ separated from $\{a_i\}_{i\in\mathcal{A}}$ by the hyperplane $s^T v = 0$

Right: $g \in \mathcal{C}$

PROOF OF FARKAS' LEMMA

- trivial if C = 0.
- otherwise, if $g \in \mathcal{C} \& s^T a_i \ge 0$ for $i \in \mathcal{A}$ $\implies s^T g = \sum_{i \in \mathcal{A}} y_i s^T a_i \ge 0 \Longrightarrow \mathcal{S} = \emptyset$
- otherwise, $g \notin \mathcal{C}$. Consider any $\bar{c} \in \mathcal{C}$ and

$$\min_{c \in \mathcal{C}} \|g - c\|_2 = \min_{c \in \bar{\mathcal{C}}} \|g - c\|_2,$$

where

$$\bar{\mathcal{C}} = \mathcal{C} \bigcap \{c \mid \|g - c\|_2 \le \|g - \bar{c}\|_2\}.$$

 \mathcal{C} closed (obvious but non-trivial!) & $\{c \mid \|g - c\|_2 \leq \|g - \bar{c}\|_2\}$ compact $\Longrightarrow \bar{C}$ non-empty and compact \Longrightarrow (Weierstrass) \exists

$$c_* = \arg\min_{c \in \mathcal{C}} \|g - c\|_2$$

 $0, c_* \in \text{convex } \mathcal{C} \Longrightarrow \alpha c_* \in \mathcal{C} \ \forall \ \alpha \geq 0 \Longrightarrow \phi(\alpha) = \|g - \alpha c_*\|_2^2$ minimized at $\alpha = 1 \Longrightarrow \phi'(1) = 0 \Longrightarrow$

$$c_*^T(c_* - g) = 0. (10)$$

 $c \in \text{convex } \mathcal{C} \Longrightarrow c_* \& c_* + \theta(c - c_*) \in \mathcal{C} \ \forall \ \theta \in [0, 1].$ Optimality of c_*

$$||g - c_*||_2^2 \le ||g - c_* + \theta(c_* - c)||_2^2$$

Expanding and taking the limit as $\theta \to 0 \& (10) \Longrightarrow$

$$0 \le (g - c_*)^T (c_* - c) = (c_* - g)^T c.$$

Defining $s = c_* - g \Longrightarrow s^T c \ge 0 \ \forall \ c \in \mathcal{C} \Longrightarrow$

$$s^T a_i > 0 \ \forall \ i \in \mathcal{A}.$$

Also $c_* \in \mathcal{C} \& g \notin \mathcal{C} \Longrightarrow s \neq 0 \& (10) \Longrightarrow$

$$s^T g = -s^T s < 0$$

$$\implies s \in \mathcal{S}$$
.

INEQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.9. Suppose that $f, c \in C^1$, and that x_* is a local minimizer of f(x) subject to $c(x) \geq 0$. Then, provided that a first-order constraint qualification holds, there exist a vector of Lagrange multipliers y_* such that

$$c(x_*) \geq 0$$
 (primal feasibility), $g(x_*) - A^T(x_*)y_* = 0$ and $y_* \geq 0$ (dual feasibility) and $c_i(x_*)[y_*]_i = 0$ (complementary slackness).

Often known as the **Karush-Kuhn-Tucker** (**KKT**) conditions

PROOF OF THEOREM 1.9

Consider feasible perturbations about x_* . $c_i(x_*) > 0 \Longrightarrow c_i(x) > 0$ for small perturbations \Longrightarrow need only consider perturbations that are constrained by $c_i(x) \geq 0$ for $i \in \mathcal{A} \stackrel{\text{def}}{=} \{i : c_i(x_*) = 0\}$.

Consider $x(\alpha)$: $x(0) = x_*$, $c_i(x(\alpha)) \ge 0$ for $i \in \mathcal{A}$ and

$$x(\alpha) = x_* + \alpha s + \frac{1}{2}\alpha^2 p + O(\alpha^3)$$

$$\Longrightarrow$$

$$0 \leq c_{i}(x(\alpha)) = c(x_{*} + \alpha s + \frac{1}{2}\alpha^{2}p + O(\alpha^{3}))$$

$$= c_{i}(x_{*}) + a_{i}(x_{*})^{T}\alpha s + \frac{1}{2}\alpha^{2}p + \frac{1}{2}\alpha^{2}s^{T}H_{i}(x_{*})s + O(\alpha^{3})$$

$$= \alpha a_{i}(x_{*})^{T}s + \frac{1}{2}\alpha^{2}\left(a_{i}(x_{*})^{T}p + s^{T}H_{i}(x_{*})s\right) + O(\alpha^{3})$$

$$\forall i \in \mathcal{A} \Longrightarrow$$

$$s^T a_i(x_*) \ge 0 \ \forall i \in \mathcal{A}$$
 (11)

and

$$p^{T}a_{i}(x_{*}) + s^{T}H_{i}(x_{*})s \ge 0 \text{ when } s^{T}a_{i}(x_{*}) = 0 \forall i \in \mathcal{A}$$
 (12)

Expansion (3) of $f(x(\alpha))$

$$f(x(\alpha)) = f(x_*) + \alpha g(x_*)^T s + \frac{1}{2}\alpha^2 \left(g(x_*)^T p + s^T H(x_*) s \right) + O(\alpha^3)$$

 $\implies x_*$ can only be a local minimizer if

$$\mathcal{S} = \{ s \mid s^T g(x_*) < 0 \text{ and } s^T a_i(x_*) \ge 0 \text{ for } i \in \mathcal{A} \} = \emptyset.$$

Result then follows directly from Farkas' lemma.

INEQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

Theorem 1.10. Suppose that $f, c \in C^2$, and that x_* is a local minimizer of f(x) subject to $c(x) \geq 0$. Then, provided that first-and second-order constraint qualifications hold, there exist a vector of Lagrange multipliers y_* for which primal/dual feasibility and complementary slackness requirements hold as well as

$$s^T H(x_*, y_*) s \ge 0$$
 for all $s \in \mathcal{N}_+$

where

$$\mathcal{N}_{+} = \left\{ s \in \mathbb{R}^{n} \mid s^{T} a_{i}(x_{*}) = 0 \text{ if } c_{i}(x_{*}) = 0 \& [y_{*}]_{i} > 0 \& \\ s^{T} a_{i}(x_{*}) \geq 0 \text{ if } c_{i}(x_{*}) = 0 \& [y_{*}]_{i} = 0 \right\}.$$

Expansion

$$f(x(\alpha)) = f(x_*) + \alpha g(x_*)^T s + \frac{1}{2}\alpha^2 \left(g(x_*)^T p + s^T H(x_*) s \right) + O(\alpha^3)$$

for change in objective function dominated by $\alpha s^T g(x_*)$ for feasible perturbations unless $s^T g(x_*) = 0$, in which case the expansion

$$f(x(\alpha)) = f(x_*) + \frac{1}{2}\alpha^2 (p^T g(x_*) + s^T H(x_*)s) + O(\alpha^3)$$

is relevant \Longrightarrow

$$p^{T}g(x_{*}) + s^{T}H(x_{*})s \ge 0 (13)$$

holds for all feasible s for which $s^T g(x_*) = 0 \Longrightarrow$

$$0 = s^T g(x_*) = \sum_{i \in \mathcal{A}} (y_*)_i s^T a_i(x_*) \Longrightarrow \text{ either } (y_*)_i = 0 \text{ or } a_i(x_*)^T s = 0.$$

 \implies second-order feasible perturbations characterised by $s \in \mathcal{N}_+$.

Focus on *subset* of all feasible arcs that ensure $c_i(x(\alpha)) = 0$ if $(y_*)_i > 0$ and $c_i(x(\alpha)) \ge 0$ if $(y_*)_i = 0$ for $i \in \mathcal{A} \Longrightarrow s \in \mathcal{N}_+$. When $c_i(x(\alpha)) = 0 \Longrightarrow$

$$a_i^T(x_*)p + s^T H_i(x_*)s = 0$$

$$p^{T}g(x_{*}) = \sum_{i \in \mathcal{A}} (y_{*})_{i}p^{T}a_{i}(x_{*}) = \sum_{\substack{i \in \mathcal{A} \\ (y_{*})_{i} > 0}} (y_{*})_{i}p^{T}a_{i}(x_{*})$$

$$= -\sum_{\substack{i \in \mathcal{A} \\ (y_{*})_{i} > 0}} (y_{*})_{i}s^{T}H_{i}(x_{*})s = -\sum_{\substack{i \in \mathcal{A} \\ (y_{*})_{i} > 0}} (y_{*})_{i}s^{T}H_{i}(x_{*})s$$

+ (13)
$$\implies s^T H(x_*, y_*) s \equiv s^T \left(H(x_*) - \sum_{i=1}^m (y_*)_i H_i(x_*) \right) s$$

= $p^T g(x_*) + s^T H(x_*) s \ge 0$.

for all $s \in \mathcal{N}_+$

INEQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order sufficient optimality:

Theorem 1.11. Suppose that $f, c \in \mathbb{C}^2$, that x_* and a vector of Lagrange multipliers y_* satisfy

$$c(x_*) \ge 0, g(x_*) - A^T(x_*)y_* = 0, y_* \ge 0, \text{ and } c_i(x_*)[y_*]_i = 0$$

and that

$$s^T H(x_*, y_*) s > 0$$

for all s in the set

$$\mathcal{N}_{+} = \left\{ s \in \mathbb{R}^{n} \mid \begin{array}{l} s^{T} a_{i}(x_{*}) = 0 \text{ if } c_{i}(x_{*}) = 0 \& [y_{*}]_{i} > 0 \& \\ s^{T} a_{i}(x_{*}) \geq 0 \text{ if } c_{i}(x_{*}) = 0 \& [y_{*}]_{i} = 0. \end{array} \right\}.$$

Then x_* is an isolated local minimizer of f(x) subject to $c(x) \geq 0$.

PROOF OF THEOREM 1.11

Consider any feasible arc $x(\alpha)$. Already shown

$$s^T a_i(x_*) \ge 0 \ \forall i \in \mathcal{A}$$
 (14)

and

$$p^T a_i(x_*) + s^T H_i(x_*) s \ge 0 \text{ when } s^T a_i(x_*) = 0 \quad \forall i \in \mathcal{A}$$
 (15)

and that second-order feasible perturbations are characterized by
$$\mathcal{N}_+$$
.
(15) $\Longrightarrow p^T g(x_*) = \sum_{i \in \mathcal{A}} (y_*)_i p^T a_i(x_*) = \sum_{\substack{i \in \mathcal{A} \\ s^T a_i(x_*) = 0}} (y_*)_i p^T a_i(x_*)$

$$\geq -\sum_{\substack{i \in \mathcal{A} \\ s^T a_i(x_*) = 0}} (y_*)_i s^T H_i(x_*) s = -\sum_{\substack{i \in \mathcal{A} \\ s^T a_i(x_*) = 0}} (y_*)_i s^T H_i(x_*) s,$$

and hence by assumption that
$$p^T g(x_*) + s^T H(x_*) s \ge s^T \left(H(x_*) - \sum_{i=1}^m (y_*)_i H_i(x_*) \right) s$$

$$\equiv s^T H(x_*, y_*) s > 0$$

 $\forall s \in \mathcal{N}_+ + (3) + (14) \Longrightarrow f(x(\alpha)) > f(x_*) \ \forall \text{ sufficiently small } \alpha.$