Part 3: Trust-region methods for unconstrained optimization

Nick Gould (RAL)

 $\begin{array}{ll}
\text{minimize} & f(x) \\
x \in \mathbb{R}^n
\end{array}$

Part C course on continuoue optimization

UNCONSTRAINED MINIMIZATION

 $\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x)$

where the **objective function** $f: \mathbb{R}^n \longrightarrow \mathbb{R}$

- \circ assume that $f \in C^1$ (sometimes C^2) and Lipschitz
- $\odot\,$ often in practice this assumption violated, but not necessary

LINESEARCH VS TRUST-REGION METHODS

Linesearch methods

- \diamond pick descent direction p_k
- \diamond pick stepsize α_k to "reduce" $f(x_k + \alpha p_k)$
- $\diamond x_{k+1} = x_k + \alpha_k p_k$

• Trust-region methods

- \diamond pick step s_k to reduce "model" of $f(x_k + s)$
- \diamond accept $x_{k+1} = x_k + s_k$ if decrease in model inherited by $f(x_k + s_k)$
- \diamond otherwise set $x_{k+1} = x_k$, "refine" model

TRUST-REGION MODEL PROBLEM

Model $f(x_k + s)$ by:

• linear model

$$m_k^L(s) = f_k + s^T g_k$$

 \odot quadratic model — symmetric B_k

$$m_k^Q(s) = f_k + s^T g_k + \frac{1}{2} s^T B_k s$$

Major difficulties:

- \circ models may not resemble $f(x_k + s)$ if s is large
- $\odot\,$ models may be unbounded from below
 - \diamond linear model always unless $g_k = 0$
 - \diamond quadratic model always if B_k is indefinite, possibly if B_k is only positive semi-definite

THE TRUST REGION

Prevent model $m_k(s)$ from unboundedness by imposing a **trust-region** constraint

$$||s|| \le \Delta_k$$

for some "suitable" scalar **radius** $\Delta_k > 0$

\implies trust-region subproblem

approx minimize $m_k(s)$ subject to $||s|| \le \Delta_k$

- \odot in theory does not depend on norm $\|\cdot\|$
- o in practice it might!

OUR MODEL

For simplicity, concentrate on the second-order (Newton-like) model

$$m_k(s) = m_k^Q(s) = f_k + s^T g_k + \frac{1}{2} s^T B_k s$$

and the ℓ_2 -trust region norm $\|\cdot\| = \|\cdot\|_2$

Note:

- \circ $B_k = H_k$ is allowed
- \odot analysis for other trust-region norms simply adds extra constants in following results

BASIC TRUST-REGION METHOD

Given k = 0, $\Delta_0 > 0$ and x_0 , until "convergence" do: Build the second-order model m(s) of $f(x_k + s)$. "Solve" the trust-region subproblem to find s_k for which $m(s_k)$ "<" f_k and $||s_k|| \leq \Delta_k$, and define

$$\rho_k = \frac{f_k - f(x_k + s_k)}{f_k - m_k(s_k)}.$$

If
$$\rho_k \geq \eta_v$$
 [very successful] $0 < \eta_v < 1$
set $x_{k+1} = x_k + s_k$ and $\Delta_{k+1} = \gamma_i \Delta_k$ $\gamma_i \geq 1$
Otherwise if $\rho_k \geq \eta_s$ then [successful] $0 < \eta_s \leq \eta_v < 1$
set $x_{k+1} = x_k + s_k$ and $\Delta_{k+1} = \Delta_k$
Otherwise [unsuccessful]
set $x_{k+1} = x_k$ and $\Delta_{k+1} = \gamma_d \Delta_k$ $0 < \gamma_d < 1$
Increase k by 1

"SOLVE" THE TRUST REGION SUBPROBLEM?

At the very least

- \odot aim to achieve as much reduction in the model as would an iteration of steepest descent
- $\begin{array}{ll} \odot \ \, \textbf{Cauchy point} \colon s_k^{\text{\tiny C}} = -\alpha_k^{\text{\tiny C}} g_k \ \, \text{where} \\ \\ \alpha_k^{\text{\tiny C}} = \ \, \arg\min_{\alpha>0} m_k(-\alpha g_k) \ \, \text{subject to} \ \, \alpha \|g_k\| \leq \Delta_k \\ \\ = \ \, \arg\min_{0<\alpha\leq\Delta_k/\|g_k\|} m_k(-\alpha g_k) \\ \\ 0<\alpha\leq\Delta_k/\|g_k\| \end{array}$
 - \diamond minimize quadratic on line segment \Longrightarrow very easy!
- \circ require that

$$m_k(s_k) \le m_k(s_k^{\text{C}})$$
 and $||s_k|| \le \Delta_k$

 \odot in practice, hope to do far better than this

ACHIEVABLE MODEL DECREASE

Theorem 3.1. If $m_k(s)$ is the second-order model and s_k^{c} is its Cauchy point within the trust-region $||s|| \leq \Delta_k$,

$$f_k - m_k(s_k^{\scriptscriptstyle ext{C}}) \ge \frac{1}{2} \|g_k\| \min \left[\frac{\|g_k\|}{1 + \|B_k\|}, \Delta_k \right].$$

PROOF OF THEOREM 3.1

$$m_k(-\alpha g_k) = f_k - \alpha ||g_k||^2 + \frac{1}{2}\alpha^2 g_k^T B_k g_k.$$

Result immediate if $g_k = 0$.

Otherwise, 3 possibilities

- (i) curvature $g_k^T B_k g_k \leq 0 \Longrightarrow m_k(-\alpha g_k)$ unbounded from below as α increases \Longrightarrow Cauchy point occurs on the trust-region boundary.
- (ii) curvature $g_k^T B_k g_k > 0$ & minimizer $m_k(-\alpha g_k)$ occurs at or beyond the trust-region boundary \Longrightarrow Cauchy point occurs on the trust-region boundary.
- (iii) the curvature $g_k^T B_k g_k > 0$ & minimizer $m_k(-\alpha g_k)$, and hence Cauchy point, occurs before trust-region is reached.

Consider each case in turn;

Case (i)

$$g_k^T B_k g_k \le 0 \& \alpha \ge 0 \Longrightarrow$$

$$m_k(-\alpha g_k) = f_k - \alpha \|g_k\|^2 + \frac{1}{2}\alpha^2 g_k^T B_k g_k \le f_k - \alpha \|g_k\|^2$$
 (1)

Cauchy point lies on boundary of the trust region \Longrightarrow

$$\alpha_k^{\rm C} = \frac{\Delta_k}{\|g_k\|}.\tag{2}$$

$$(1) + (2) \Longrightarrow$$

$$|f_k - m_k(s_k^c)| \ge ||g_k||^2 \frac{\Delta_k}{||g_k||} = ||g_k|| \Delta_k \ge \frac{1}{2} ||g_k|| \Delta_k.$$

Case (ii)

$$\alpha_k^* \stackrel{\text{def}}{=} \arg \min \ m_k(-\alpha g_k) \equiv f_k - \alpha \|g_k\|^2 + \frac{1}{2}\alpha^2 g_k^T B_k g_k$$
 (3)

$$\Longrightarrow$$

$$\alpha_k^* = \frac{\|g_k\|^2}{q_k^T B_k q_k} \ge \alpha_k^{\text{C}} = \frac{\Delta_k}{\|g_k\|} \tag{4}$$

$$\Longrightarrow$$

$$\alpha_k^{\mathsf{C}} g_k^T B_k g_k \le \|g_k\|^2. \tag{5}$$

$$(3) + (4) + (5) \Longrightarrow$$

$$\begin{split} f_k - m_k(s_k^{\text{\tiny C}}) &= \alpha_k^{\text{\tiny C}} \|g_k\|^2 - \frac{1}{2} [\alpha_k^{\text{\tiny C}}]^2 g_k^T B_k g_k \geq \frac{1}{2} \alpha_k^{\text{\tiny C}} \|g_k\|^2 \\ &= \frac{1}{2} \|g_k\|^2 \frac{\Delta_k}{\|g_k\|} = \frac{1}{2} \|g_k\| \Delta_k. \end{split}$$

Case (iii)

$$\alpha_{k}^{\text{C}} = \alpha_{k}^{*} = \frac{\|g_{k}\|^{2}}{g_{k}^{T}B_{k}g_{k}}$$

$$\Rightarrow f_{k} - m_{k}(s_{k}^{\text{C}}) = \alpha_{k}^{*}\|g_{k}\|^{2} + \frac{1}{2}(\alpha_{k}^{*})^{2}g_{k}^{T}B_{k}g_{k}$$

$$= \frac{\|g_{k}\|^{4}}{g_{k}^{T}B_{k}g_{k}} - \frac{1}{2}\frac{\|g_{k}\|^{4}}{g_{k}^{T}B_{k}g_{k}}$$

$$= \frac{1}{2}\frac{\|g_{k}\|^{4}}{g_{k}^{T}B_{k}g_{k}}$$

$$\geq \frac{1}{2}\frac{\|g_{k}\|^{2}}{1 + \|B_{k}\|},$$

where

$$|g_k^T B_k g_k| \le ||g_k||^2 ||B_k|| \le ||g_k||^2 (1 + ||B_k||)$$

because of the Cauchy-Schwarz inequality.

Corollary 3.2. If $m_k(s)$ is the second-order model, and s_k is an improvement on the Cauchy point within the trust-region $||s|| \le \Delta_k$,

$$f_k - m_k(s_k) \ge \frac{1}{2} ||g_k|| \min \left[\frac{||g_k||}{1 + ||B_k||}, \Delta_k \right].$$

DIFFERENCE BETWEEN MODEL AND FUNCTION

Lemma 3.3. Suppose that $f \in C^2$, and that the true and model Hessians satisfy the bounds $||H(x)|| \le \kappa_h$ for all x and $||B_k|| \le \kappa_b$ for all k and some $\kappa_h \ge 1$ and $\kappa_b \ge 0$. Then

$$|f(x_k + s_k) - m_k(s_k)| \le \kappa_d \Delta_k^2,$$

where $\kappa_d = \frac{1}{2}(\kappa_h + \kappa_b)$, for all k.

PROOF OF LEMMA 3.3

Mean value theorem \Longrightarrow

$$f(x_k + s_k) = f(x_k) + s_k^T \nabla_x f(x_k) + \frac{1}{2} s_k^T \nabla_{xx} f(\xi_k) s_k$$

for some $\xi_k \in [x_k, x_k + s_k]$. Thus

$$|f(x_k + s_k) - m_k(s_k)| = \frac{1}{2} |s_k^T H(\xi_k) s_k - s_k^T B_k s_k| \le \frac{1}{2} |s_k^T H(\xi_k) s_k| + \frac{1}{2} |s_k^T B_k s_k| \le \frac{1}{2} (\kappa_h + \kappa_b) ||s_k||^2 \le \kappa_d \Delta_k^2$$

using the triangle and Cauchy-Schwarz inequalities.

ULTIMATE PROGRESS AT NON-OPTIMAL POINTS

Lemma 3.4. Suppose that $f \in C^2$, that the true and model Hessians satisfy the bounds $||H_k|| \le \kappa_h$ and $||B_k|| \le \kappa_b$ for all k and some $\kappa_h \ge 1$ and $\kappa_b \ge 0$, and that $\kappa_d = \frac{1}{2}(\kappa_h + \kappa_b)$. Suppose furthermore that $g_k \ne 0$ and that

$$\Delta_k \le \|g_k\| \min\left(\frac{1}{\kappa_h + \kappa_b}, \frac{(1 - \eta_v)}{2\kappa_d}\right).$$

Then iteration k is very successful and

$$\Delta_{k+1} \geq \Delta_k$$
.

PROOF OF LEMMA 3.4

By definition,

$$1 + \|B_k\| \le \kappa_h + \kappa_b$$

+ first bound on $\Delta_k \Longrightarrow$

$$\Delta_k \le \frac{\|g_k\|}{\kappa_h + \kappa_b} \le \frac{\|g_k\|}{1 + \|B_k\|}.$$

Corollary $3.2 \Longrightarrow$

$$f_k - m_k(s_k) \ge \frac{1}{2} ||g_k|| \min \left[\frac{||g_k||}{1 + ||B_k||}, \Delta_k \right] = \frac{1}{2} ||g_k|| \Delta_k.$$

+ Lemma 3.3 + second bound on $\Delta_k \Longrightarrow$

$$|\rho_k - 1| = \left| \frac{f(x_k + s_k) - m_k(s_k)}{f_k - m_k(s_k)} \right| \le 2 \frac{\kappa_d \Delta_k^2}{\|g_k\| \Delta_k} = 2 \frac{\kappa_d \Delta_k}{\|g_k\|} \le 1 - \eta_v.$$

 $\implies \rho_k \ge \eta_v \implies$ iteration is very successful.

RADIUS WON'T SHRINK TO ZERO AT NON-OPTIMAL POINTS

Lemma 3.5. Suppose that $f \in C^2$, that the true and model Hessians satisfy the bounds $||H_k|| \le \kappa_h$ and $||B_k|| \le \kappa_b$ for all k and some $\kappa_h \ge 1$ and $\kappa_b \ge 0$, and that $\kappa_d = \frac{1}{2}(\kappa_h + \kappa_b)$. Suppose furthermore that there exists a constant $\epsilon > 0$ such that $||g_k|| \ge \epsilon$ for all k. Then

$$\Delta_k \ge \kappa_\epsilon \stackrel{\text{def}}{=} \epsilon \gamma_d \min\left(\frac{1}{\kappa_h + \kappa_b}, \frac{(1 - \eta_v)}{2\kappa_d}\right)$$

for all k.

PROOF OF LEMMA 3.5

Suppose otherwise that iteration k is first for which

$$\Delta_{k+1} \leq \kappa_{\epsilon}$$
.

 $\Delta_k > \Delta_{k+1} \Longrightarrow \text{ iteration } k \text{ unsuccessful} \Longrightarrow \gamma_d \Delta_k \leq \Delta_{k+1}. \text{ Hence}$

$$\Delta_k \leq \epsilon \min \left(\frac{1}{\kappa_h + \kappa_b}, \frac{(1 - \eta_v)}{2\kappa_d} \right)$$

$$\leq \|g_k\| \min \left(\frac{1}{\kappa_h + \kappa_b}, \frac{(1 - \eta_v)}{2\kappa_d} \right)$$

But this contradicts assertion of Lemma 3.4 that iteration k must be very successful.

POSSIBLE FINITE TERMINATION

Lemma 3.6. Suppose that $f \in C^2$, and that both the true and model Hessians remain bounded for all k. Suppose furthermore that there are only finitely many successful iterations. Then $x_k = x_*$ for all sufficiently large k and $g(x_*) = 0$.

PROOF OF LEMMA 3.6

$$x_{k_0+j} = x_{k_0+1} = x_*$$

for all j > 0, where k_0 is index of last successful iterate.

All iterations are unsuccessful for sufficiently large $k \Longrightarrow \{\Delta_k\} \longrightarrow 0$

+ Lemma 3.4 then implies that if $||g_{k_0+1}|| > 0$ there must be a successful iteration of index larger than k_0 , which is impossible $\Longrightarrow ||g_{k_0+1}|| = 0$.

GLOBAL CONVERGENCE OF ONE SEQUENCE

Theorem 3.7. Suppose that $f \in C^2$, and that both the true and model Hessians remain bounded for all k. Then either

$$g_l = 0$$
 for some $l \ge 0$

or

$$\lim_{k\to\infty} f_k = -\infty$$

or

$$\liminf_{k\to\infty} \|g_k\| = 0.$$

PROOF OF THEOREM 3.7

Let \mathcal{S} be the index set of successful iterations. Lemma 3.6 \Longrightarrow true Theorem 3.7 when $|\mathcal{S}|$ finite.

So consider $|\mathcal{S}| = \infty$, and suppose f_k bounded below and

$$||g_k|| \ge \epsilon \tag{6}$$

for some $\epsilon > 0$ and all k, and consider some $k \in \mathcal{S}$.

+ Corollary 3.2, Lemma 3.5, and the assumption $(6) \Longrightarrow$

$$f_k - f_{k+1} \ge \eta_s[f_k - m_k(s_k)] \ge \delta_\epsilon \stackrel{\text{def}}{=} \frac{1}{2} \eta_s \epsilon \min\left[\frac{\epsilon}{1 + \kappa_b}, \kappa_\epsilon\right].$$

 \Longrightarrow

$$f_0 - f_{k+1} = \sum_{\substack{j=0 \ j \in \mathcal{S}}}^k [f_j - f_{j+1}] \ge \sigma_k \delta_{\epsilon},$$

where σ_k is the number of successful iterations up to iteration k. But

$$\lim_{k\to\infty}\sigma_k=+\infty.$$

 $\implies f_k$ unbounded below \implies a subsequence of the $||g_k|| \longrightarrow 0$

GLOBAL CONVERGENCE

Theorem 3.8. Suppose that $f \in C^2$, and that both the true and model Hessians remain bounded for all k. Then either

$$g_l = 0$$
 for some $l \ge 0$

or

$$\lim_{k \to \infty} f_k = -\infty$$

or

$$\lim_{k\to\infty}g_k=0.$$

PROOF OF THEOREM 3.8

Suppose otherwise that f_k is bounded from below, and that there is a subsequence $\{t_i\} \subseteq \mathcal{S}$, such that

$$||g_{t_i}|| \ge 2\epsilon > 0 \tag{7}$$

for some $\epsilon > 0$ and for all i. Theorem $3.7 \Longrightarrow \exists \{\ell_i\} \subseteq \mathcal{S}$ such that

$$||g_k|| \ge \epsilon \text{ for } t_i \le k < \ell_i \text{ and } ||g_{\ell_i}|| < \epsilon.$$
 (8)

Now restrict attention to indices in

$$\mathcal{K} \stackrel{\text{def}}{=} \{ k \in \mathcal{S} \mid t_i \le k < \ell_i \}.$$

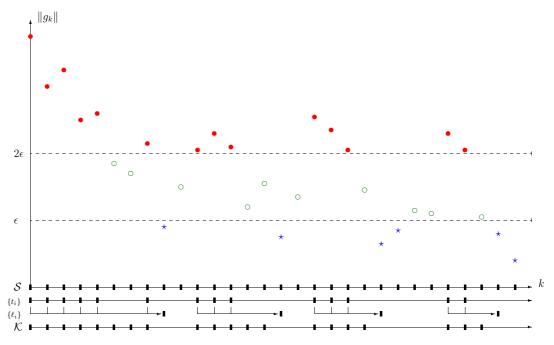


Figure 3.1: The subsequences of the proof of Theorem 3.8

As in proof of Theorem 3.7, $(8) \Longrightarrow$

$$f_k - f_{k+1} \ge \eta_s[f_k - m_k(s_k)] \ge \frac{1}{2}\eta_s\epsilon \min\left[\frac{\epsilon}{1 + \kappa_b}, \Delta_k\right]$$
 (9)

for all $k \in \mathcal{K} \Longrightarrow LHS \text{ of } (9) \longrightarrow 0 \text{ as } k \longrightarrow \infty \Longrightarrow$

$$\lim_{\substack{k \to \infty \\ k \in \mathcal{K}}} \Delta_k = 0$$

 \Longrightarrow

$$\Delta_k \le \frac{2}{\epsilon \eta_s} [f_k - f_{k+1}].$$

for $k \in \mathcal{K}$ sufficiently large \Longrightarrow

$$||x_{t_i} - x_{\ell_i}|| \le \sum_{\substack{j=t_i \ j \in \mathcal{K}}}^{\ell_i - 1} ||x_j - x_{j+1}|| \le \sum_{\substack{j=t_i \ j \in \mathcal{K}}}^{\ell_i - 1} \Delta_j \le \frac{2}{\epsilon \eta_s} [f_{t_i} - f_{\ell_i}].$$
 (10)

for i sufficiently large.

But RHS of (10) $\longrightarrow 0 \Longrightarrow ||x_{t_i} - x_{\ell_i}|| \longrightarrow 0$ as i tends to infinity + continuity $\Longrightarrow ||g_{t_i} - g_{\ell_i}|| \longrightarrow 0$.

Impossible as $||g_{t_i} - g_{\ell_i}|| \ge \epsilon$ by definition of $\{t_i\}$ and $\{\ell_i\} \Longrightarrow$ no subsequence satisfying (7) can exist.

II: SOLVING THE TRUST-REGION SUBPROBLEM

(approximately) minimize $q(s) \equiv s^T g + \frac{1}{2} s^T B s$ subject to $||s|| \leq \Delta$

AIM: find s_* so that

$$q(s_*) \le q(s^{\scriptscriptstyle C})$$
 and $||s_*|| \le \Delta$

Might solve

- \odot exactly \Longrightarrow Newton-like method
- approximately ⇒ steepest descent/conjugate gradients

THE ℓ_2 -NORM TRUST-REGION SUBPROBLEM

minimize $q(s) \equiv s^T g + \frac{1}{2} s^T B s$ subject to $||s||_2 \leq \Delta$

Solution characterisation result:

Theorem 3.9. Any *global* minimizer s_* of q(s) subject to $||s||_2 \le \Delta$ satisfies the equation

$$(B + \lambda_* I)s_* = -g,$$

where $B + \lambda_* I$ is positive semi-definite, $\lambda_* \geq 0$ and $\lambda_* (\|s_*\|_2 - \Delta) = 0$. If $B + \lambda_* I$ is positive definite, s_* is unique.

PROOF OF THEOREM 3.9

Problem equivalent to minimizing q(s) subject to $\frac{1}{2}\Delta^2 - \frac{1}{2}s^Ts \ge 0$. Theorem 1.9 \Longrightarrow

$$g + Bs_* = -\lambda_* s_* \tag{11}$$

for some Lagrange multiplier $\lambda_* \geq 0$ for which either $\lambda_* = 0$ or $||s_*||_2 = \Delta$ (or both). It remains to show $B + \lambda_* I$ is positive semi-definite.

If s_* lies in the interior of the trust-region, $\lambda_* = 0$, and Theorem 1.10 $\implies B + \lambda_* I = B$ is positive semi-definite.

If $||s_*||_2 = \Delta$ and $\lambda_* = 0$, Theorem 1.10 $\Longrightarrow v^T B v \geq 0$ for all $v \in \mathcal{N}_+ = \{v | s_*^T v \geq 0\}$. If $v \notin \mathcal{N}_+ \Longrightarrow -v \in \mathcal{N}_+ \Longrightarrow v^T B v \geq 0$ for all v.

Only remaining case is where $||s_*||_2 = \Delta$ and $\lambda_* > 0$. Theorem 1.10 $\implies v^T(B + \lambda_* I)v \ge 0$ for all $v \in \mathcal{N}_+ = \{v | s_*^T v = 0\} \implies$ remains to consider $v^T B v$ when $s_*^T v \ne 0$.

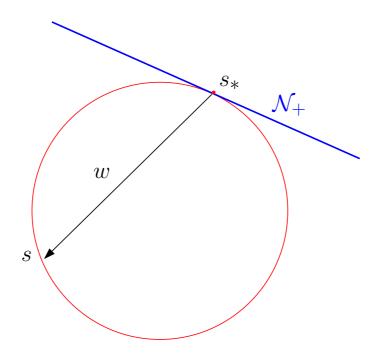


Figure 3.2: Construction of "missing" directions of positive curvature.

Let s be any point on the boundary δR of the trust-region R, and let $w = s - s_*$. Then

$$-w^T s_* = (s_* - s)^T s_* = \frac{1}{2} (s_* - s)^T (s_* - s) = \frac{1}{2} w^T w$$
 (12)

since $||s||_2 = \Delta = ||s_*||_2$. (11) + (12) \Longrightarrow

$$q(s) - q(s_*) = w^T (g + Bs_*) + \frac{1}{2} w^T B w = -\lambda_* w^T s_* + \frac{1}{2} w^T B w = \frac{1}{2} w^T (B + \lambda_* I) w,$$
(13)

 $\implies w^T(B + \lambda_* I)w \ge 0$ since s_* is a global minimizer. But

$$s = s_* - 2\frac{s_*^T v}{v^T v} v \in \delta R$$

 \implies (for this s) $w||v \implies v^T(B + \lambda_*I)v \ge 0$.

When $B + \lambda_* I$ is positive definite, $s_* = -(B + \lambda_* I)^{-1} g$. If $s_* \in \delta R$ and $s \in R$, (12) and (13) become $-w^T s_* \ge \frac{1}{2} w^T w$ and $q(s) \ge q(s_*) + \frac{1}{2} w^T (B + \lambda_* I) w$ respectively. Hence, $q(s) > q(s_*)$ for any $s \ne s_*$. If s_* is interior, $\lambda_* = 0$, B is positive definite, and thus s_* is the unique unconstrained minimizer of q(s).

ALGORITHMS FOR THE ℓ_2 -NORM SUBPROBLEM

Two cases:

- \odot B positive-semi definite and Bs=-g satisfies $\|s\|_2 \leq \Delta \Longrightarrow s_*=s$
- B indefinite or Bs = -g satisfies $||s||_2 > \Delta$ In this case
 - $\diamond \ (B + \lambda_* I) s_* = -g \text{ and } s_*^T s_* = \Delta^2$
 - \diamond nonlinear (quadratic) system in s and λ
 - ⋄ concentrate on this

EQUALITY CONSTRAINED ℓ_2 -NORM SUBPROBLEM

Suppose B has spectral decomposition

$$B = U^T \Lambda U$$

- \circ U eigenvectors
- \circ Λ diagonal eigenvalues: $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$

Require $B + \lambda I$ positive semi-definite $\Longrightarrow \lambda \ge -\lambda_1$

Define

$$s(\lambda) = -(B + \lambda I)^{-1}g$$

Require

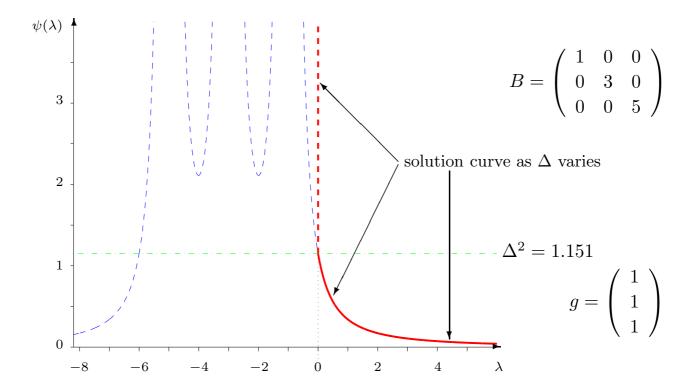
$$\psi(\lambda) \stackrel{\text{def}}{=} ||s(\lambda)||_2^2 = \Delta^2$$

Note

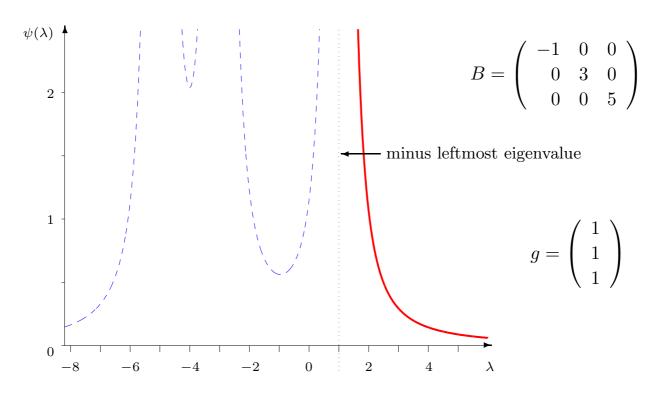
$$(\gamma_i = e_i^T U g)$$

$$\psi(\lambda) = \|U^T(\Lambda + \lambda I)^{-1} Ug\|_2^2 = \sum_{i=1}^n \frac{\gamma_i^2}{(\lambda_i + \lambda)^2}$$

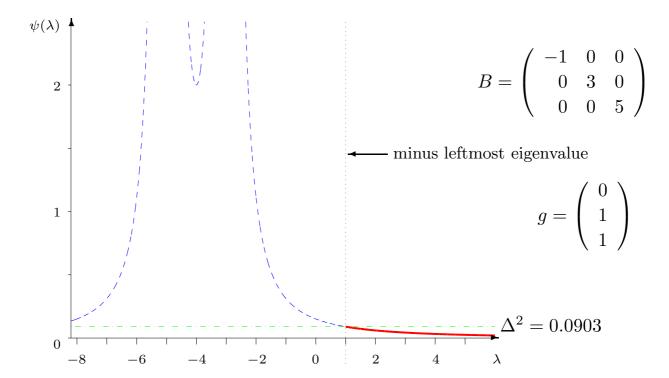
CONVEX EXAMPLE



NONCONVEX EXAMPLE



THE "HARD" CASE



SUMMARY

For indefinite B,

Hard case occurs when g orthogonal to eigenvector u_1 for most negative eigenvalue λ_1

- OK if radius is radius small enough
- ⊙ No "obvious" solution to equations . . . but solution is actually of the form

$$s_{\lim} + \sigma u_1$$

where

$$s_{\lim} = \lim_{\lambda \to -\lambda_1} s(\lambda)$$

$$||s_{\lim} + \sigma u_1||_2 = \Delta$$

$$\diamond \|s_{\lim} + \sigma u_1\|_2 = \Delta$$

HOW TO SOLVE $\|\mathbf{s}(\lambda)\|_2 = \Delta$

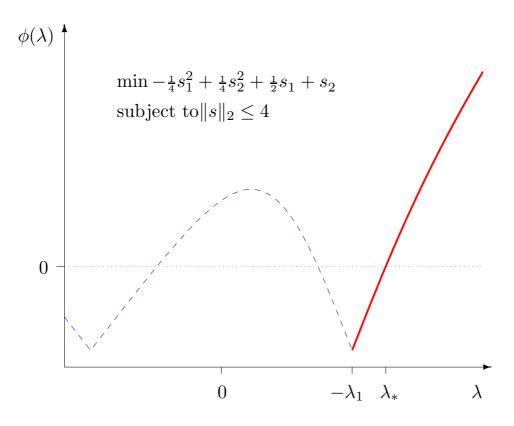
DON'T!!

Solve instead the **secular equation**

$$\phi(\lambda) \stackrel{\text{def}}{=} \frac{1}{\|s(\lambda)\|_2} - \frac{1}{\Delta} = 0$$

- o no poles
- ⊙ smallest at eigenvalues (except in hard case!)
- \circ analytic function \Longrightarrow ideal for Newton
- ⊙ global convergent (ultimately quadratic rate except in hard case)
- \odot need to safeguard to protect Newton from the hard & interior solution cases

THE SECULAR EQUATION



NEWTON'S METHOD FOR SECULAR EQUATION

Newton correction at λ is $-\phi(\lambda)/\phi'(\lambda)$. Differentiating

$$\phi(\lambda) = \frac{1}{\|s(\lambda)\|_2} - \frac{1}{\Delta} = \frac{1}{(s^T(\lambda)s(\lambda))^{\frac{1}{2}}} - \frac{1}{\Delta} \Longrightarrow$$
$$\phi'(\lambda) = -\frac{s^T(\lambda)\nabla_{\lambda}s(\lambda)}{(s^T(\lambda)s(\lambda))^{\frac{3}{2}}} = -\frac{s^T(\lambda)\nabla_{\lambda}s(\lambda)}{\|s(\lambda)\|_2^3}.$$

Differentiating the defining equation

$$(B + \lambda I)s(\lambda) = -g \implies (B + \lambda I)\nabla_{\lambda}s(\lambda) + s(\lambda) = 0.$$

Notice that, rather than $\nabla_{\lambda} s(\lambda)$, merely

$$s^{T}(\lambda)\nabla_{\lambda}s(\lambda) = -s^{T}(\lambda)(B + \lambda I)(\lambda)^{-1}s(\lambda)$$

required for $\phi'(\lambda)$. Given the factorization $B + \lambda I = L(\lambda)L^T(\lambda) \Longrightarrow$

$$s^{T}(\lambda)(B + \lambda I)^{-1}s(\lambda) = s^{T}(\lambda)L^{-T}(\lambda)L^{-1}(\lambda)s(\lambda) = (L^{-1}(\lambda)s(\lambda))^{T}(L^{-1}(\lambda)s(\lambda)) = ||w(\lambda)||_{2}^{2}$$

where $L(\lambda)w(\lambda) = s(\lambda)$.

NEWTON'S METHOD & THE SECULAR EQUATION

Let $\lambda > -\lambda_1$ and $\Delta > 0$ be given

Until "convergence" do:

Factorize $B + \lambda I = LL^T$

Solve $LL^Ts = -g$

Solve Lw = s

Replace λ by

$$\lambda + \left(\frac{\|s\|_2 - \Delta}{\Delta}\right) \left(\frac{\|s\|_2^2}{\|w\|_2^2}\right)$$

SOLVING THE LARGE-SCALE PROBLEM

- \circ when n is large, factorization may be impossible
- may instead try to use an iterative method to approximate
 - Steepest descent leads to the Cauchy point
 - obvious generalization: conjugate gradients ... but
 - ▶ what about the trust region?
 - ▶ what about negative curvature?

CONJUGATE GRADIENTS TO "MINIMIZE" q(s)

Given
$$s^0 = 0$$
, set $g^0 = g$, $d^0 = -g$ and $i = 0$
Until g^i "small" or breakdown, iterate
$$\alpha^i = \|g^i\|_2^2/d^{i\,T}Bd^i$$

$$s^{i+1} = s^i + \alpha^i d^i$$

$$g^{i+1} = g^i + \alpha^i Bd^i$$

$$\beta^i = \|g^{i+1}\|_2^2/\|g^i\|_2^2$$

$$d^{i+1} = -g^{i+1} + \beta^i d^i$$
and increase i by 1

Important features

$$\odot \ g^j = B s^j + g \text{ for all } j = 0, \dots, i$$

$$o d^{jT}g^{i+1} = 0 \text{ for all } j = 0, \dots, i$$

$$g^{jT}g^{i+1} = 0 \text{ for all } j = 0, \dots, i$$

CRUCIAL PROPERTY OF CONJUGATE GRADIENTS

Theorem 3.10. Suppose that the conjugate gradient method is applied to minimize q(s) starting from $s^0 = 0$, and that $d^{iT}Bd^i > 0$ for $0 \le i \le k$. Then the iterates s^j satisfy the inequalities

$$||s^j||_2 < ||s^{j+1}||_2$$

for $0 \le j \le k - 1$.

PROOF OF THEOREM 3.10

First show that

$$d^{iT}d^{j} = \frac{\|g^{i}\|_{2}^{2}}{\|g^{j}\|_{2}^{2}} \|d^{j}\|_{2}^{2} > 0$$
(14)

for all $0 \le j \le i \le k$. For any i, (14) is trivially true for j = i. Suppose it is also true for all $i \le l$. Then, the update for d^{l+1} gives

$$d^{l+1} = -g^{l+1} + \frac{\|g^{l+1}\|_2^2}{\|g^l\|_2^2} d^l.$$

Forming the inner product with d^{j} , and using the fact that $d^{j} T g^{l+1} = 0$ for all j = 0, ..., l, and (14) when j = l, reveals

$$\begin{split} d^{l+1\,T}d^j &= \; -g^{l+1\,T}d^j + \frac{\|g^{l+1}\|_2^2}{\|g^l\|_2^2}d^{l\,T}d^j \\ &= \; \frac{\|g^{l+1}\|_2^2}{\|g^l\|_2^2}\frac{\|g^l\|_2^2}{\|g^j\|_2^2}\|d^j\|_2^2 = \frac{\|g^{l+1}\|_2^2}{\|g^j\|_2^2}\|d^j\|_2^2 > 0. \end{split}$$

Thus (14) is true for $i \leq l+1$, and hence for all $0 \leq j \leq i \leq k$.

Now have from the algorithm that

$$s^{i} = s^{0} + \sum_{j=0}^{i-1} \alpha^{j} d^{j} = \sum_{j=0}^{i-1} \alpha^{j} d^{j}$$

as, by assumption, $s^0 = 0$. Hence

$$s^{iT}d^{i} = \sum_{j=0}^{i-1} \alpha^{j} d^{jT}d^{i} = \sum_{j=0}^{i-1} \alpha^{j} d^{jT}d^{i} > 0$$
 (15)

as each $\alpha^j > 0$, which follows from the definition of α^j , since $d^{jT}Hd^j > 0$, and from relationship (14). Hence

$$||s^{i+1}||_{2}^{2} = s^{i+1} {}^{T} s^{i+1} = (s^{i} + \alpha^{i} d^{i})^{T} (s^{i} + \alpha^{i} d^{i})$$
$$= s^{i} {}^{T} s^{i} + 2\alpha^{i} s^{i} {}^{T} d^{i} + \alpha^{i} {}^{2} d^{i} {}^{T} d^{i} > s^{i} {}^{T} s^{i} = ||s^{i}||_{2}^{2}$$

follows directly from (15) and $\alpha^i > 0$ which is the required result.

TRUNCATED CONJUGATE GRADIENTS

Apply the conjugate gradient method, but terminate at iteration i if

- 1. $d^{iT}Bd^{i} \leq 0 \Longrightarrow$ problem unbounded along d^{i}
- 2. $||s^i + \alpha^i d^i||_2 > \Delta \Longrightarrow$ solution on trust-region boundary

In both cases, stop with $s_* = s^i + \alpha^{\scriptscriptstyle B} d^i$, where $\alpha^{\scriptscriptstyle B}$ chosen as positive root of

$$||s^i + \alpha^{\mathrm{B}} d^i||_2 = \Delta$$

Crucially

$$q(s_*) \le q(s^{\scriptscriptstyle C})$$
 and $||s_*||_2 \le \Delta$

 \Longrightarrow TR algorithm converges to a first-order critical point

HOW GOOD IS TRUNCATED C.G.?

In the convex case ... very good

Theorem 3.11. Suppose that the truncated conjugate gradient method is applied to minimize q(s) and that B is positive definite. Then the computed and actual solutions to the problem, s_* and s_*^{M} , satisfy the bound

$$q(s_*) \leq \frac{1}{2}q(s_*^{\scriptscriptstyle{\mathrm{M}}})$$

In the non-convex case ... maybe poor

 \circ e.g., if g = 0 and B is indefinite $\Longrightarrow q(s_*) = 0$

WHAT CAN WE DO IN THE NON-CONVEX CASE?

Solve the problem over a subspace

- \odot instead of the *B*-conjugate subspace for CG, use the equivalent Lanczos orthogonal basis
 - \diamond Gram-Schmidt applied to CG (Krylov) basis \mathcal{D}^i
 - \diamond Subspace $Q^i = \{s \mid s = Q^i s_q \text{ for some } s_q \in \mathbb{R}^i\}$
 - $\diamond Q^i$ is such that

$$Q^{i T} Q^i = I$$
 and $Q^{i T} B Q^i = T^i$

where T^i is tridiagonal and $Q^{i T} g = ||g||_2 e_1$

 $\diamond~Q^i$ trivial to generate from CG \mathcal{D}^i

GENERALIZED LANCZOS TRUST-REGION METHOD

$$s^i = \arg\min_{s \in \mathcal{Q}^i} q(s) \text{ subject to } ||s||_2 \le \Delta$$

$$\implies s^i = Q^i s^i_q, \text{ where}$$

$$s_q^i = \underset{s_q \in \mathbb{R}^i}{\arg\min} \|g\|_2 \, e_1^T s_q + \tfrac{1}{2} s_q^T T^i s_q \text{ subject to } \|s_q\|_2 \leq \Delta$$

- \odot advantage T^i has very sparse factors \Longrightarrow can solve the problem using the earlier secular equation approach
- \odot can exploit all the structure here \Longrightarrow use solution for one problem to initialize next
- o until the trust-region boundary is reached, it is conjugate gradients
 ⇒ switch when we get there