Part 4: Active-set methods for linearly constrained optimization

Nick Gould (RAL)

 $\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \text{ subject to } Ax \ge b$

Part C course on continuoue optimization

LINEARLY CONSTRAINED MINIMIZATION

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x) \text{ subject to } Ax \left\{ \begin{array}{l} \geq \\ = \end{array} \right\} b$$

where the **objective function** $f : \mathbb{R}^n \longrightarrow \mathbb{R}$

- \circ assume that $f \in C^1$ (sometimes C^2) and Lipschitz
- $\odot\,$ often in practice this assumption violated, but not necessary
- $\odot\,$ important special cases:
 - linear programming: $f(x) = g^T x$
 - quadratic programming: $f(x) = g^T x + \frac{1}{2}x^T H x$

Concentrate here on quadratic programming

QUADRATIC PROGRAMMING

QP: minimize $q(x) = g^T x + \frac{1}{2} x^T H x$ subject to $Ax \ge b$ $x \in \mathbb{R}^n$

 \circ *H* is *n* by *n*, real symmetric, $g \in \mathbb{R}^n$

$$\circ A = \begin{pmatrix} a_1^T \\ \vdots \\ a_m^T \end{pmatrix} \text{ is } m \text{ by } n \text{ real, } b = \begin{pmatrix} [b]_1 \\ \vdots \\ [b]_m \end{pmatrix}$$

 \odot in general, constraints may

- \diamond have upper bounds: $b^l \leq Ax \leq b^u$
- \diamond include equalities: $A^e x = b^e$
- \diamond involve simple bounds: $x^l \leq x \leq x^u$
- $\diamond\,$ include network constraints . . .

PROBLEM TYPES

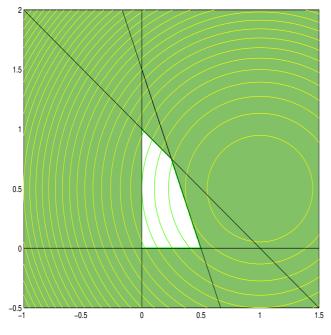
Convex problems

- H is positive semi-definite $(x^T H x \ge 0 \text{ for all } x)$
- \odot any local minimizer is global
- \odot important special case: $H = 0 \iff$ linear programming

Strictly convex problems

- \odot H is positive definite $(x^T H x > 0 \text{ for all } x \neq 0)$
- \odot unique minimizer (if any)

CONVEX EXAMPLE



Contours of objective function

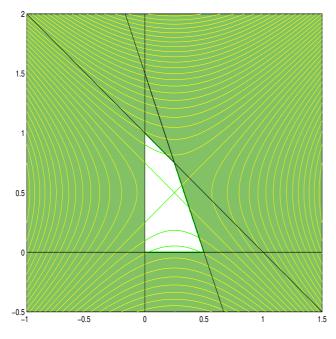
 $\min(x_1 - 1)^2 + (x_2 - 0.5)^2$ subject to $x_1 + x_2 \le 1$ $3x_1 + x_2 \le 1.5$ $(x_1, x_2) \ge 0$

PROBLEM TYPES (II)

General (non-convex) problems

- H may be indefinite $(x^T H x < 0 \text{ for some } x)$
- $\odot\,$ may be many local minimizers
- $\odot\,$ may have to be content with a local minimizer
- $\odot\,$ problem may be unbounded from below

NON-CONVEX EXAMPLE



Contours of objective function

 $\begin{aligned} \min & -2(x_1 - 0.25)^2 + 2(x_2 - 0.5)^2 \\ \text{subject to } & x_1 + x_2 \leq 1 \\ & 3x_1 + x_2 \leq 1.5 \\ & (x_1, x_2) \geq 0 \end{aligned}$

PROBLEM TYPES (III)

Small

- \odot values/structure of matrix data H and A irrelevant
- \odot currently min $(m, n) = O(10^2)$

Large

- \odot values/structure of matrix data H and A important
- \odot currently min $(m, n) \ge O(10^3)$

Huge

- \odot factorizations involving H and A are unrealistic
- \odot currently min $(m, n) \ge O(10^5)$

WHY IS QP SO IMPORTANT?

- \odot many **applications**
 - portfolio analysis, structural analysis, VLSI design, discrete-time stabilization, optimal and fuzzy control, finite impulse response design, optimal power flow, economic dispatch ...
 - $\diamond~\sim$ 500 application papers
- \odot **prototypical** nonlinear programming problem
- **basic subproblem** in constrained optimization:

 $\begin{array}{rcl} \underset{x \in \mathbb{R}^n}{\mininize} & f(x) & \mininize & f + g^T x + \frac{1}{2} x^T H x \\ \text{subject to } c(x) \ge 0 & \text{subject to } Ax + c \ge 0 \\ \implies & \text{SQP methods} (\Longrightarrow & \text{Course Part 7}) \end{array}$

OPTIMALITY CONDITIONS

Recall: the importance of optimality conditions is:

- \odot to be able to recognise a solution if found by accident or design
- \odot to guide the development of algorithms

FIRST-ORDER OPTIMALITY

QP: minimize $q(x) = g^T x + \frac{1}{2} x^T H x$ subject to $Ax \ge b$ $x \in \mathbb{R}^n$

Any point x_* that satisfies the conditions

 $\begin{aligned} Ax_* &\geq b & (\textbf{primal feasibility}) \\ Hx_* + g - A^T y_* &= 0 \text{ and } y_* \geq 0 & (\textbf{dual feasibility}) \\ [Ax_* - b]_i \cdot [y_*]_i &= 0 \text{ for all } i & (\textbf{complementary slackness}) \end{aligned}$

for some vector of **Lagrange multipliers** y_* is a **first-order critical** (or Karush-Kuhn-Tucker) point

If $[Ax_* - b]_i = 0 \iff [y_*]_i > 0$ for all $i \implies$ the solution is **strictly complementary**

SECOND-ORDER OPTIMALITY

QP: minimize
$$q(x) = g^T x + \frac{1}{2} x^T H x$$
 subject to $Ax \ge b$
 $x \in \mathbb{R}^n$

Let

$$\mathcal{N}_{+} = \left\{ s \mid \begin{array}{l} a_{i}^{T}s = 0 \text{ for all } i \text{ such that } a_{i}^{T}x_{*} = [b]_{i} \text{ and } [y_{*}]_{i} > 0 \text{ and} \\ a_{i}^{T}s \ge 0 \text{ for all } i \text{ such that } a_{i}^{T}x_{*} = [b]_{i} \text{ and } [y_{*}]_{i} = 0 \end{array} \right\}$$

Any first-order critical point x_* for which additionally

$$s^T H s \ge 0 \pmod{(\text{resp.} > 0)}$$
 for all $s \in \mathcal{N}_+$

is a **second-order** (resp. **strong second-order**) critical point

Theorem 4.1: x_* is a (an isolated) local minimizer of QP $\iff x_*$ is (strong) second-order critical

WEAK SECOND-ORDER OPTIMALITY

QP: minimize $q(x) = g^T x + \frac{1}{2} x^T H x$ subject to $Ax \ge b$ $x \in \mathbb{R}^n$

Let

$$\mathcal{N} = \left\{ s \mid a_i^T s = 0 \text{ for all } i \text{ such that } a_i^T x_* = [b]_i \right\}$$

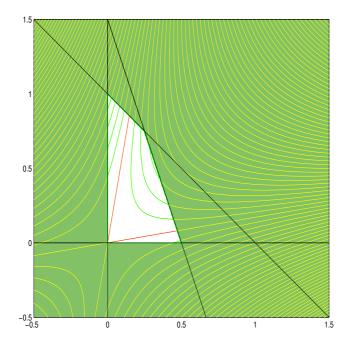
Any first-order critical point x_* for which additionally

$$s^T H s \ge 0$$
 for all $s \in \mathcal{N}$

is a **weak** second-order critical point

Note that

- \odot a weak second-order critical point may be a maximizer!
- \odot checking for weak second-order criticality is easy (strong is hard)



NON-CONVEX EXAMPLE

 $\min x_1^2 + x_2^2 - 6x_1x_2$ subject to $x_1 + x_2 \le 1$ $3x_1 + x_2 \le 1.5$ $(x_1, x_2) \ge 0$

Contours of objective function: note that escaping from the origin may be difficult!

[DUALITY

QP: minimize $q(x) = g^T x + \frac{1}{2} x^T H x$ subject to $Ax \ge b$ $x \in \mathbb{R}^n$

If QP is convex, any first-order critical point is a global minimizer

If H is strictly convex, the problem

 $\begin{array}{ll} \underset{y \in \mathbb{R}^m, \, y \geq 0}{\text{maximize}} & -\frac{1}{2}g^T H^{-1}g + (AH^{-1}g + b)^T y - \frac{1}{2}y^T AH^{-1}A^T y \end{array}$

is known as the \mathbf{dual} of QP

- \odot QP is the **primal**
- $\odot\,$ primal and dual have same KKT conditions
- \odot if primal is feasible, optimal value of primal = optimal value dual

1

 $\odot\,$ can be generalized for simply convex case

ALGORITHMS

Essentially two classes of methods (slight simplification)

active set methods :

- **primal** active set methods aim for dual feasibility while maintaining primal feasibility and complementary slackness
- **dual** active set methods aim for primal feasibility while maintaining dual feasibility and complementary slackness
- interior-point methods : aim for complementary slackness while maintaining primal and dual feasibility (\implies Course Part 6)

EQUALITY CONSTRAINED QP

The basic subproblem in all of the methods we will consider is

EQP: minimize $g^T x + \frac{1}{2} x^T H x$ subject to $Ax = 0 \longleftarrow \mathbb{N}.B$.

Assume A is m by n, full-rank (preprocess if necessary)

 \odot First-order optimality (Lagrange multipliers y)

$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} -g \\ 0 \end{pmatrix}$$

- Second-order necessary optimality: $s^T H s \ge 0$ for all s for which As = 0
- Second-order sufficient optimality: $s^T H s > 0$ for all $s \neq 0$ for which As = 0

EQUALITY CONSTRAINED QP (II)

EQP: minimize $q(x) = g^T x + \frac{1}{2} x^T H x$ subject to Ax = 0 $x \in \mathbb{R}^n$

Four possibilities:

(i)
$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} -g \\ 0 \end{pmatrix}$$
(*)

and H is second-order sufficient \implies **unique** minimizer x

- (ii) (*) holds, H is second-order necessary, but $\exists s$ such that Hs = 0and $As = 0 \Longrightarrow$ family of **weak** minimizers $x + \alpha s$ for any $\alpha \in \mathbb{R}$
- (iii) $\exists s \text{ for which } As = 0, Hs = 0 \text{ and } g^T s < 0 \Longrightarrow$ $q(\cdot)$ unbounded along **direction of linear infinite descent** s
- (iv) $\exists s \text{ for which } As = 0 \text{ and } s^T Hs < 0 \Longrightarrow$ $q(\cdot)$ unbounded along **direction of negative curvature** s

CLASSIFICATION OF EQP METHODS

Aim to solve

$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} -g \\ 0 \end{pmatrix}$$

Three basic approaches:

full-space approach
range-space approach
null-space approach
For each of these can use
direct (factorization) method
iterative (conjugate-gradient) method

FULL-SPACE/KKT/AUGMENTED SYSTEM APPROACH

$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} -g \\ 0 \end{pmatrix}$$

• KKT matrix

$$K = \left(\begin{array}{cc} H & A^T \\ A & 0 \end{array} \right)$$

is symmetric, indefinite \Longrightarrow use Bunch-Parlett type factorization

- $\diamond \ K = P L B L^T P^T$
- $\diamond~P$ permutation, L unit lower-triangular
- $\diamond~B$ block diagonal with 1x1 and 2x2 blocks
- $\odot\,$ LAPACK for small problems, MA27/MA57 for large ones
- **Theorem 4.2**: *H* is second-order sufficient \iff *K* non-singular and has precisely *m* negative eigenvalues

RANGE-SPACE APPROACH

$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} -g \\ 0 \end{pmatrix} \qquad (*)$$

For **non-singular** H

 \odot eliminate x using first block of (*) \Longrightarrow

$$AH^{-1}A^Ty = AH^{-1}g$$
 followed by $Hx = -g + A^Ty$

- \odot strictly convex case $\implies H$ and $AH^{-1}A^T$ positive definite \implies Cholesky factorization
- **Theorem 4.3**: *H* is second-order sufficient \iff *H* and $AH^{-1}A^T$ have same number of negative eigenvalues
- $\circ AH^{-1}A^T$ usually dense \implies factorization only for small m

NULL-SPACE APPROACH

$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} -g \\ 0 \end{pmatrix} \qquad (*)$$

- \circ let *n* by n m S be a **basis** for null-space of $A \implies AS = 0$
- \odot second block (*) $\implies x = Sx_N$
- \circ premultiply first block (*) by $S^T \Longrightarrow$

$$S^T H S x_S = -S^T g$$

- **Theorem 4.4**: *H* is second-order sufficient \iff S^THS is positive definite \implies Cholesky factorization
- $\circ S^T HS$ usually dense \implies factorization only for small n m

NULL-SPACE BASIS

Require *n* by n - m null-space basis *S* for $A \Longrightarrow AS = 0$ Non-orthogonal basis: let $A = (A_1 \ A_2)P$

 \circ *P* permutation, A_1 non-singular

$$\implies S = P^T \left(\begin{array}{c} -A_1^{-1} A_2 \\ I \end{array} \right)$$

 \circ generally suitable for large problems. Best A_1 ?

Orthogonal basis: let $A = (L \ 0)Q$

○ L non-singular (e.g., triangular), $Q = \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix}$ orthonormal $\implies S = Q_2^T$

 \odot more stable but ... generally unsuitable for large problems

[ITERATIVE METHODS FOR SYMMETRIC LINEAR SYSTEMS

Bx = b

Best methods are based on finding solutions from the **Krylov space**

$$\mathcal{K} = \{r^0, Br^0, B(Br^0), \ldots\}$$
 $(r^0 = b - Bx^0)$

B **indefinite**: use MINRES method

- *B* **positive definite:** use conjugate gradient method
- $\odot\,$ usually satisfactory to find approximation rather than exact solution
- usually try to **precondition** system, i.e., solve

$$C^{-1}Bx = C^{-1}b$$

where $C^{-1}B \approx I$

[ITERATIVE RANGE-SPACE APPROACH

 $AH^{-1}A^Ty = AH^{-1}g$ followed by $Hx = -g + A^Ty$

For strictly convex case $\implies H$ and $AH^{-1}A^T$ positive definite

- H^{-1} available: (directly or via factors), use conjugate gradients to solve $AH^{-1}A^Ty = AH^{-1}g$
 - matrix vector product $AH^{-1}A^Tv = (A(H^{-1}(A^Tv)))$
 - \odot preconditioning? Need to approximate (likely dense) $AH^{-1}A^T$
- H^{-1} not available: use composite conjugate gradient method (Urzawa's method) iterating both on solutions to

$$AH^{-1}A^Ty = AH^{-1}g$$
 and $Hx = -g + A^Ty$

1

1

at the same time (may not converge)

[ITERATIVE NULL-SPACE APPROACH

$$S^T H S x_N = -S^T g$$
 followed by $x = S x_N$

- \odot use conjugate gradient method
 - matrix vector product $S^T H S v_N = (S^T (H(S v_N)))$
 - \diamond preconditioning? Need to approximate (likely dense) S^THS
 - if we encounter s_N such that $s_N^T(S^THS)s_N < 0 \implies s = Ns_N$ is a direction of negative curvature since As = 0 and $s^THs < 0$

$$\diamond \text{ Advantage: } Ax^{\text{approx}} = 0$$

[ITERATIVE FULL-SPACE APPROACH

$$\begin{pmatrix} H & A^T \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} -g \\ 0 \end{pmatrix}$$

 \odot use MINRES with the preconditioner

$$\left(\begin{array}{cc} M & 0 \\ 0 & AN^{-1}A^T \end{array}\right)$$

where M and $N \approx H$.

 $\diamond \text{$ **Disadvantage** $: } Ax^{\text{approx}} \neq 0$

 $\odot\,$ use conjugate gradients with the preconditioner

$$\left(\begin{array}{cc} M & A^T \\ A & 0 \end{array}\right)$$

where $M \approx H$.

 $\diamond \text{ Advantage: } Ax^{\text{approx}} = 0$

ACTIVE SET ALGORITHMS

QP: minimize $q(x) = g^T x + \frac{1}{2} x^T H x$ subject to $Ax \ge b$ $x \in \mathbb{R}^n$

The **active set** $\mathcal{A}(x)$ at x is

$$\mathcal{A}(x) = \{i \mid a_i^T x = [b]_i\}$$

If x_* solves QP, we have

arg min
$$q(x)$$
 subject to $Ax \ge b$
 $\equiv \arg \min q(x)$ subject to $a_i^T x = [b]_i$ for all $i \in \mathcal{A}(x_*)$

A working set $\mathcal{W}(x)$ at x is a subset of the active set for which the vectors $\{a_i\}, i \in \mathcal{W}(x)$ are linearly independent

]

BASICS OF ACTIVE SET ALGORITHMS

Basic idea: Pick a subset \mathcal{W}_k of $\{1, \ldots, m\}$ and find

 $x_{k+1} = \arg\min q(x)$ subject to $a_i^T x = [b]_i$ for all $i \in \mathcal{W}_k$

If x_{k+1} does not solve QP, adjust \mathcal{W}_k to form \mathcal{W}_{k+1} and repeat

Important issues are:

- \circ how do we know if x_{k+1} solves QP ?
- if x_{k+1} does not solve QP, how do we pick the next working set \mathcal{W}_{k+1} ?

Notation: rows of A_k are those of A indexed by \mathcal{W}_k components of b_k are those of b indexed by \mathcal{W}_k

PRIMAL ACTIVE SET ALGORITHMS

Important feature: ensure all iterates are feasible, i.e., $Ax_k \ge b$

If $\mathcal{W}_k \subseteq \mathcal{A}(x_k)$ $\implies A_k x_k = b_k \text{ and } A_k x_{k+1} = b_k$ $\implies x_{k+1} = x_k + s_k, \text{ where}$ $s_k = \arg\min \mathrm{EQP}_k$ $= \arg \min q(x_k + s) \text{ subject to } A_k s = 0$ equality constrained problem

Need an initial feasible point x_0

PRIMAL ACTIVE SET ALGORITHMS — ADDING CONSTRAINTS

 $s_k = \arg \min q(x_k + s)$ subject to $A_k s = 0$

What if $x_k + s_k$ is not feasible?

- a currently inactive constraint *j* must become active at $x_k + α_k s_k$ for some $α_k < 1$ — pick the smallest such $α_k$
- \odot move instead to $x_{k+1} = x_k + \alpha_k s_k$ and set $\mathcal{W}_{k+1} = \mathcal{W}_k + \{j\}$

PRIMAL ACTIVE SET ALGORITHMS — DELETING CONSTRAINTS

What if $x_{k+1} = x_k + s_k$ is feasible ? \Longrightarrow

 $x_{k+1} = \arg\min q(x)$ subject to $a_i^T x = [b]_i$ for all $i \in \mathcal{W}_k$

 \implies \exists Lagrange multipliers y_{k+1} such that

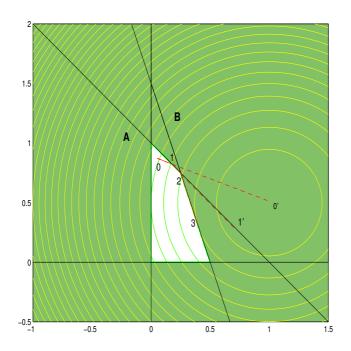
$$\begin{pmatrix} H & A_k^T \\ A_k & 0 \end{pmatrix} \begin{pmatrix} x_{k+1} \\ -y_{k+1} \end{pmatrix} = \begin{pmatrix} -g \\ b_k \end{pmatrix}$$

Three possibilities:

 $\circ q(x_{k+1}) = -\infty$ (not strictly-convex case only)

- $\therefore y_{k+1} \ge 0 \implies x_{k+1}$ is a first-order critical point of QP
- $[y_{k+1}]_i < 0$ for some $i \implies q(x)$ may be improved by considering $\mathcal{W}_{k+1} = \mathcal{W}_k \setminus \{j\}$, where j is the *i*-th member of \mathcal{W}_k

ACTIVE-SET APPROACH



- 0. Starting point
- 0'. Unconstrained minimizer
- 1. Encounter constraint A
- 1'. Minimizer on constraint A
- 2. Encounter constraint B, move off constraint A
- Minimizer on constraint B
 required solution

LINEAR ALGEBRA

Need to solve a sequence of $\mathrm{EQP}_k\mathbf{s}$ in which

either
$$\mathcal{W}_{k+1} = \mathcal{W}_k + \{j\} \implies A_{k+1} = \begin{pmatrix} A_k \\ a_j^T \end{pmatrix}$$

or $\mathcal{W}_{k+1} = \mathcal{W}_k \setminus \{j\} \implies A_k = \begin{pmatrix} A_{k+1} \\ a_j^T \end{pmatrix}$

Since working sets change gradually, aim to **update** factorizations rather than compute afresh

RANGE-SPACE APPROACH — MATRIX UPDATES

Need factors $\boldsymbol{L}_{k+1}\boldsymbol{L}_{k+1}^T = \boldsymbol{A}_{k+1}\boldsymbol{H}^{-1}\boldsymbol{A}_{k+1}^T$ given $\boldsymbol{L}_k\boldsymbol{L}_k^T = \boldsymbol{A}_k\boldsymbol{H}^{-1}\boldsymbol{A}_k^T$ When $A_{k+1} = \begin{pmatrix} A_k \\ a_i^T \end{pmatrix} \Longrightarrow$ $A_{k+1}H^{-1}A_{k+1}^{T} = \begin{pmatrix} A_{k}H^{-1}A_{k}^{T} & A_{k}H^{-1}a_{j} \\ a_{j}^{T}H^{-1}A_{k}^{T} & a_{j}^{T}H^{-1}a_{j} \end{pmatrix}$ \implies $L_{k+1} = \left(\begin{array}{cc} L_k & 0\\ l^T & \lambda \end{array}\right)$ where

$$L_k l = A_k H^{-1} a_j$$
 and $\lambda = \sqrt{a_j^T H^{-1} a_j - l^T l}$

Essentially reverse this to remove a constraint

NULL-SPACE APPROACH — MATRIX UPDATES

Need factors $A_{k+1} = (L_{k+1} \ 0)Q_{k+1}$ given

$$A_k = (L_k \quad 0)Q_k = (L_k \quad 0) \left(\begin{array}{c} Q_{1\,k} \\ Q_{2\,k} \end{array}\right)$$

To add a constraint (to remove is similar)

$$A_{k+1} = \begin{pmatrix} A_k \\ a_j^T \end{pmatrix} = \begin{pmatrix} L_k & 0 \\ a_j^T Q_{1k}^T & a_j^T Q_{2k}^T \end{pmatrix} Q_k$$
$$= \begin{pmatrix} L_k & 0 \\ a_j^T Q_{1k}^T & a_j^T Q_{2k}^T \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & U^T \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & U \end{pmatrix} Q_k$$
$$= \underbrace{\left[\begin{pmatrix} L_k & 0 \\ a_j^T Q_{1k}^T & \sigma e_1^T \end{pmatrix} \right]}_{(L_{k+1} & 0)} \underbrace{\left[\begin{pmatrix} I & 0 \\ 0 & U \end{pmatrix} Q_k \right]}_{Q_{k+1}}$$
where the Householder matrix U reduces $Q_{2k}a_j$ to $\sigma e_1 = \begin{pmatrix} \sigma \\ 0 \end{pmatrix}$

 $\begin{bmatrix} \mathbf{FULL} \cdot \mathbf{SPACE} \ \mathbf{APPROACH} \longrightarrow \mathbf{MATRIX} \ \mathbf{UPDATES} \\ \mathcal{W}_k \text{ becomes } \mathcal{W}_\ell \Longrightarrow A_k = \begin{pmatrix} A_C \\ A_D \end{pmatrix} \text{ becomes } A_\ell = \begin{pmatrix} A_C \\ A_A \end{pmatrix} \\ \text{Solving} \\ \begin{pmatrix} H & A_\ell^T \\ A_\ell & 0 \end{pmatrix} \begin{pmatrix} s_\ell \\ -y_\ell \end{pmatrix} = \begin{pmatrix} g_\ell \\ 0 \end{pmatrix} \Longrightarrow \\ \begin{pmatrix} H & A_k^T \\ A_k & 0 \end{pmatrix} \longleftrightarrow \begin{pmatrix} H & A_C^T & A_D^T \\ A_C & 0 & 0 \\ A_D & 0 & 0 \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} s_\ell \\ -y_C \\ -y_D \\ -y_A \\ u_\ell \end{pmatrix} = \begin{pmatrix} g_\ell \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}; \\ y_\ell = \begin{pmatrix} y_C \\ y_A \end{pmatrix} \\ \cdots$

[FULL-SPACE APPROACH — MATRIX UPDATES (CONT.)

$$\begin{array}{c} \dots \text{ can solve} \\ \begin{pmatrix} H & A_k^T \\ A_k & 0 \end{pmatrix} \longleftarrow \left(\begin{array}{cccc} H & A_C^T & A_D^T \\ A_C & 0 & 0 \\ A_D & 0 & 0 \\ \end{array} \right) \begin{array}{c} A_A^T & 0 \\ A_D & 0 & 0 \\ \end{array} \right) \begin{array}{c} A_A^T & 0 \\ -y_C \\ -y_D \\ -y_A \\ u_\ell \end{array} \right) = \begin{pmatrix} g_\ell \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix}$$

using the factors of

. . .

$$K_k = \left(\begin{array}{cc} H & A_k^T \\ A_k & 0 \end{array}\right)$$

and the **Schur complement**

$$S_{\ell} = -\begin{pmatrix} A_A & 0 & 0 \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} H & A_k^T \\ A_k & 0 \end{pmatrix}^{-1} \begin{pmatrix} A_A^T & 0 \\ 0 & 0 \\ 0 & I \end{pmatrix}$$

]

[SCHUR COMPLEMENT UPDATING

• Major iteration starts with factorization of

$$K_k = \begin{pmatrix} H & A_k^T \\ A_k & 0 \end{pmatrix}$$

• As \mathcal{W}_k changes to \mathcal{W}_ℓ , factorization of

$$S_{\ell} = -\begin{pmatrix} A_A & 0 & 0\\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} H & A_k^T\\ A_k & 0 \end{pmatrix}^{-1} \begin{pmatrix} A_A^T & 0\\ 0 & 0\\ 0 & I \end{pmatrix}$$

1

is **updated** not recomputed

• Once dim S_{ℓ} exceeds a given threshold, or it is cheaper to factorize/use K_{ℓ} than maintain/use K_k and S_{ℓ} , start the next major iteration

PHASE-1

To find an initial feasible point x_0 such that $Ax_0 \ge b$

- \odot use traditional (simplex) phase-1, or
- let $r = \min(b Ax_{\text{guess}}, 0)$, and solve $[(x_0, \xi_0) = (x_{\text{guess}}, 1)]$ minimize ξ subject to $Ax + \xi r \ge b$ and $\xi \ge 0$ $x \in \mathbb{R}^n, \xi \in \mathbb{R}$

Alternatively, use a single-phase method

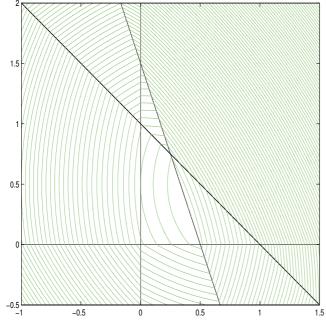
 \odot Big-*M*: for some sufficiently large *M*

 $\begin{array}{ll} \mbox{minimize} & q(x) + M\xi \ \mbox{subject to} \ Ax + \xi r \geq b \ \mbox{and} \ \ \xi \geq 0 \\ x \in \mathbb{R}^n, \, \xi \in \mathbb{R} \end{array}$

 $\circ \ell_1 QP \ (\rho > 0)$ — may be reformulated as a QP

$$\underset{x \in \mathbb{R}^{n}}{\text{minimize}} q(x) + \rho \| \max(b - Ax, 0) \|$$

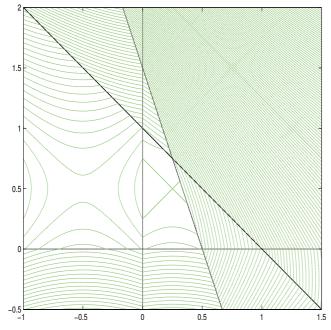
CONVEX EXAMPLE



 $\begin{aligned} \min(x_1 - 1)^2 + (x_2 - 0.5)^2 \\ \text{subject to } x_1 + x_2 &\leq 1 \\ 3x_1 + x_2 &\leq 1.5 \\ (x_1, x_2) &\geq 0 \end{aligned}$

Contours of penalty function $q(x) + \rho \| \max(b - Ax, 0) \|$ (with $\rho = 2$)

NON-CONVEX EXAMPLE



 $\min -2(x_1 - 0.25)^2 + 2(x_2 - 0.5)^2$ subject to $x_1 + x_2 \le 1$ $3x_1 + x_2 \le 1.5$ $(x_1, x_2) \ge 0$

Contours of penalty function $q(x) + \rho \| \max(b - Ax, 0) \|$ (with $\rho = 3$)

TERMINATION, DEGENERACY & ANTI-CYCLING

So long as $\alpha_k > 0$, these methods are finite:

- $\odot\,$ finite number of steps to find an EQP with a feasible solution
- $\odot\,$ finite number of EQP with feasible solutions

If x_k is degenerate (active constraints are dependent) it is possible that $\alpha_k = 0$. If this happens infinitely often

 \odot may make no progress (a cycle) \implies algorithm may stall

Various anti-cycling rules

- $\odot\,$ Wolfe's and lexicographic perturbations
- $\odot~{\rm least-index} \longrightarrow {\rm Bland's}$ rule
- $\odot\,$ Fletcher's robust method

NON-CONVEXITY

- $\odot\,$ causes little extra difficulty so long as suitable factorizations are possible
- **Inertia-controlling** methods tolerate at most one negative eigenvalue in the reduced Hessian. Idea is
 - 1. start from working set on which problem is strictly convex (e.g., a vertex)
 - 2. if a negative eigenvalue appears, do not drop any further constraints until 1. is restored
 - 3. a direction of negative curvature is easy to obtain in 2.
- \odot latest methods are not inertia controlling \implies more flexible

COMPLEXITY

- When the problem is convex, there are algorithms that will solve QP in a polynomial number of iterations
 - some interior-point algorithms are polynomial
 - $\diamond\,$ no known polynomial active-set algorithm
- $\odot\,$ When the problem is non-convex, it is unlikely that there are polynomial algorithms
 - $\diamond\,$ problem is NP complete
 - $\diamond\,$ even verifying that a proposed solution is locally optimal is NP hard

NON-QUADRATIC OBJECTIVE

When f(x) is **non quadratic**

- \odot $H = H_k$ changes
- $\odot~$ active-set subproblem

 $x_{k+1} \approx \arg\min f(x)$ subject to $a_i^T x = [b]_i$ for all $i \in \mathcal{W}_k$

- ◇ iteration now required but each step satisfies $A_k s = 0$ ⇒ linear algebra as before
- $\diamond\,$ usually solve subproblem inaccurately
 - \triangleright when to stop?
 - ▷ which Lagrange multipliers in this case?
 - ▷ need to avoid zig-zagging in which working sets repeat