
Part 5: Penalty and augmented Lagrangian

methods for equality constrained optimization

Nick Gould (RAL)

minimize
x∈IRn

f(x) subject to c(x) = 0

Part C course on continuoue optimization

CONSTRAINED MINIMIZATION

minimize
x∈IRn

f(x) subject to c(x)

{

≥
=

}

0

where the objective function f : IRn −→ IR

and the constraints c : IRn −→ IRm

� assume that f, c ∈ C1 (sometimes C2) and Lipschitz

� often in practice this assumption violated, but not necessary



CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:

� minimize the objective function f(x)

� satisfy the constraints

Overcome this by minimizing a composite merit function Φ(x, p)

for which

� p are parameters

� (some) minimizers of Φ(x, p) wrt x approach those of f(x) subject

to the constraints as p approaches some set P
� only uses unconstrained minimization methods

AN EXAMPLE FOR EQUALITY CONSTRAINTS

minimize
x∈IRn

f(x) subject to c(x) = 0

Merit function (quadratic penalty function):

Φ(x, µ) = f(x) +
1

2µ
‖c(x)‖2

2

� required solution as µ approaches {0} from above

� may have other useless stationary points



CONTOURS OF THE PENALTY FUNCTION
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Quadratic penalty function for min x2
1 + x2

2 subject to x1 + x2
2 = 1

CONTOURS OF THE PENALTY FUNCTION (cont.)
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BASIC QUADRATIC PENALTY FUNCTION

ALGORITHM

Given µ0 > 0, set k = 0

Until “convergence” iterate:

Starting from xS

k, use an unconstrained

minimization algorithm to find an

“approximate” minimizer xk of Φ(x, µk)

Compute µk+1 > 0 smaller than µk such

that limk→∞ µk+1 = 0 and increase k by 1

� often choose µk+1 = 0.1µk or even µk+1 = µ2
k

� might choose xS

k+1 = xk

MAIN CONVERGENCE RESULT

Theorem 5.1. Suppose that f , c ∈ C2, that

yk
def
= −c(xk)

µk
,

that

‖∇xΦ(xk, µk)‖2 ≤ εk,

where εk converges to zero as k → ∞, and that xk converges to

x∗ for which A(x∗) is full rank. Then x∗ satisfies the first-order

necessary optimality conditions for the problem

minimize
x∈IRn

f(x) subject to c(x) = 0

and {yk} converge to the associated Lagrange multipliers y∗.



PROOF OF THEOREM 5.1

Generalized inv. A+(x)
def
=
(
A(x)AT (x)

)−1
A(x) bounded near x∗.

Define

yk
def
= −c(xk)

µk
and y∗

def
= A+(x∗)g(x∗). (1)

Inner-iteration termination rule

‖g(xk) − AT (xk)yk‖ ≤ εk (2)

=⇒ ‖A+(xk)g(xk) − yk‖2 =
∥
∥A+(xk)

(
g(xk) − AT (xk)yk

)∥
∥

2

≤ 2‖A+(x∗)‖2εk

=⇒ ‖yk − y∗‖2 ≤ ‖A+(x∗)g(x∗) − A+(xk)g(xk)‖2 +

‖A+(xk)g(xk) − yk‖2

=⇒ {yk} −→ y∗. Continuity of gradients + (2) =⇒
g(x∗) − AT (x∗)y∗ = 0.

(1) implies c(xk) = −µkyk + continuity of constraints =⇒ c(x∗) = 0.

=⇒ (x∗, y∗) satisfies the first-order optimality conditions.

ALGORITHMS TO MINIMIZE Φ(x, µ)

Can use

� linesearch methods

� might use specialized linesearch to cope with large quadratic

term ‖c(x)‖2
2/2µ

� trust-region methods

� (ideally) need to “shape” trust region to cope with contours of

the ‖c(x)‖2
2/2µ term



DERIVATIVES OF THE QUADRATIC PENALTY

FUNCTION

� ∇xΦ(x, µ) = g(x, y(x))

� ∇xxΦ(x, µ) = H(x, y(x)) +
1

µ
AT (x)A(x)

where

� Lagrange multiplier estimates:

y(x) = −c(x)

µ

� g(x, y(x)) = g(x) − AT (x)y(x): gradient of the Lagrangian

� H(x, y(x)) = H(x) −
m∑

i=1

yi(x)Hi(x): Lagrangian Hessian

GENERIC QUADRATIC PENALTY NEWTON SYSTEM

Newton correction s from x for quadratic penalty function is
(

H(x, y(x)) +
1

µ
AT (x)A(x)

)

s = −g(x, y(x))

LIMITING DERIVATIVES OF Φ

For small µ: roughly

∇xΦ(x, µ) = g(x) − AT (x)y(x)
︸ ︷︷ ︸

moderate

∇xxΦ(x, µ) = H(x, y(x))
︸ ︷︷ ︸

moderate

+
1

µ
AT (x)A(x)
︸ ︷︷ ︸

large

≈ 1

µ
AT (x)A(x)



POTENTIAL DIFFICULTY

Ill-conditioning of the Hessian of the penalty function:

roughly speaking (non-degenerate case)

� m eigenvalues ≈ λi

[
AT (x)A(x)

]
/µk

� n − m eigenvalues ≈ λi

[
ST (x)H(x∗, y∗)S(x)

]

where S(x) orthogonal basis for null-space of A(x)

=⇒ condition number of ∇xxΦ(xk, µk) = O(1/µk)

=⇒ may not be able to find minimizer easily

THE ILL-CONDITIONING IS BENIGN

Newton system:
(

H(x, y(x)) +
1

µ
AT (x)A(x)

)

s = −
(

g(x) +
1

µ
AT (x)c(x)

)

Define auxiliary variables

w =
1

µ
(A(x)s + c(x))

=⇒
(

H(x, y(x)) AT (x)

A(x) −µI

)(

s

w

)

= −
(

g(x)

c(x)

)

� essentially independent of µ for small µ =⇒ no inherent ill-conditioning

� thus can solve Newton equations accurately

� more sophisticated analysis =⇒ original system OK



PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize
x∈IRn

f(x) subject to c(x) = 0

are:
g(x) − AT (x)y = 0 dual feasibility

c(x) = 0 primal feasibility

Consider the “perturbed” problem

g(x) − AT (x)y = 0 dual feasibility

c(x) + µy = 0 perturbed primal feasibility

where µ > 0

PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of

g(x) − AT (x)y = 0 and c(x) + µy = 0

as 0 < µ → 0

� nonlinear system =⇒ use Newton’s method

Newton correction (s, v) to (x, y) satisfies
(

H(x, y) −AT (x)

A(x) µI

)(

s

v

)

= −
(

g(x) − AT (x)y

c(x) + µy

)

Eliminate w =⇒
(

H(x, y) +
1

µ
AT (x)A(x)

)

s = −
(

g(x) +
1

µ
AT (x)c(x)

)

c.f. Newton method for quadratic penalty function minimization!



PRIMAL VS. PRIMAL-DUAL

Primal:
(

H(x, y(x)) +
1

µ
AT (x)A(x)

)

sP = −g(x, y(x))

Primal-dual:
(

H(x, y) +
1

µ
AT (x)A(x)

)

sPD = −g(x, y(x))

where

y(x) = −c(x)

µ

What is the difference?

� freedom to choose y in H(x, y) for primal-dual . . . vital

ANOTHER EXAMPLE FOR EQUALITY CONSTRAINTS

minimize
x∈IRn

f(x) subject to c(x) = 0

Merit function (augmented Lagrangian function):

Φ(x, u, µ) = f(x) − uTc(x) +
1

2µ
‖c(x)‖2

2

where u and µ are auxiliary parameters

Two interpretations —

� shifted quadratic penalty function

� convexification of the Lagrangian function

Aim: adjust µ and u to encourage convergence



DERIVATIVES OF THE AUGMENTED LAGRANGIAN

FUNCTION

� ∇xΦ(x, u, µ) = g(x, yF(x))

� ∇xxΦ(x, u, µ) = H(x, yF(x)) +
1

µ
AT (x)A(x)

where

� First-order Lagrange multiplier estimates:

yF(x) = u − c(x)

µ

� g(x, yF(x)) = g(x) − AT (x)yF(x): gradient of the Lagrangian

� H(x, yF(x)) = H(x) −
m∑

i=1

yF

i (x)Hi(x): Lagrangian Hessian

AUGMENTED LAGRANGIAN CONVERGENCE

Theorem 5.2. Suppose that f , c ∈ C2, that

yk
def
= uk − c(xk)/µk,

for given {uk}, that

‖∇xΦ(xk, uk, µk)‖2 ≤ εk,

where εk converges to zero as k → ∞, and that xk converges to

x∗ for which A(x∗) is full rank. Then {yk} converge to some y∗ for

which g(x∗) = AT (x∗)y∗.

If additionally either µk converges to zero for bounded uk or uk

converges to y∗ for bounded µk, x∗ and y∗ satisfy the first-order

necessary optimality conditions for the problem

minimize
x∈IRn

f(x) subject to c(x) = 0



PROOF OF THEOREM 5.2

Convergence of yk to y∗
def
= A+(x∗)g(x∗) for which g(x∗) = AT (x∗)y∗

is exactly as for Theorem 5.1.

Definition of yk =⇒

‖c(xk)‖ = µk‖uk − yk‖ ≤ µk‖yk − y∗‖ + µk‖uk − y∗‖

=⇒ c(x∗) = 0 from assumptions.

=⇒ (x∗, y∗) satisfies the first-order optimality conditions.

CONTOURS OF THE AUGMENTED LAGRANGIAN

FUNCTION
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CONTOURS OF THE AUGMENTED LAGRANGIAN

FUNCTION (cont.)
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CONVERGENCE OF AUGMENTED LAGRANGIAN

METHODS

� convergence guaranteed if uk fixed and µ −→ 0

=⇒ yk −→ y∗ and c(xk) −→ 0

� check if ‖c(xk)‖ ≤ ηk where {ηk} −→ 0

� if so, set uk+1 = yk and µk+1 = µk

� if not, set uk+1 = uk and µk+1 ≤ τµk for some τ ∈ (0, 1)

� reasonable: ηk = µ0.1+0.9j
k where j iterations since µk last changed

� under such rules, can ensure µk eventually unchanged under

modest assumptions and (fast) linear convergence

� need also to ensure µk is sufficiently large that ∇xxΦ(xk, uk, µk) is

positive (semi-)definite



BASIC AUGMENTED LAGRANGIAN ALGORITHM

Given µ0 > 0 and u0, set k = 0

Until “convergence” iterate:

Starting from xS

k, use an unconstrained minimization

algorithm to find an “approximate” minimizer xk of

Φ(x, uk, µk) for which ‖∇xΦ(xk, uk, µk)‖ ≤ εk

If ‖c(xk)‖ ≤ ηk, set uk+1 = yk and µk+1 = µk

Otherwise set uk+1 = uk and µk+1 ≤ τµk

Set suitable εk+1 and ηk+1 and increase k by 1

� often choose τ = min(0.1,
√

µk)

� might choose xS

k+1 = xk

� reasonable: εk = µj+1
k where j iterations since µk last changed


