Part 5: Penalty and augmented Lagrangian methods for equality constrained optimization

Nick Gould (RAL)

 $\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \text{ subject to } c(x) = 0$

Part C course on continuoue optimization

CONSTRAINED MINIMIZATION

$$\underset{x \in \mathbb{R}^n}{\text{minimize } f(x) \text{ subject to } c(x) \left\{ \begin{array}{l} \geq \\ = \end{array} \right\} 0$$

where the **objective function** $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ and the **constraints** $c : \mathbb{R}^n \longrightarrow \mathbb{R}^m$

 \odot assume that $f,\ c\in C^1$ (sometimes $C^2)$ and Lipschitz

 $\odot\,$ often in practice this assumption violated, but not necessary

CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:

- \odot minimize the objective function f(x)
- $\odot\,$ satisfy the constraints

Overcome this by minimizing a composite **merit function** $\Phi(x, p)$ for which

- \odot *p* are parameters
- \odot (some) minimizers of $\Phi(x, p)$ wrt x approach those of f(x) subject to the constraints as p approaches some set \mathcal{P}
- \odot only uses **unconstrained** minimization methods

AN EXAMPLE FOR EQUALITY CONSTRAINTS

 $\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x) \text{ subject to } c(x) = 0$

Merit function (quadratic penalty function):

$$\Phi(x,\mu) = f(x) + \frac{1}{2\mu} \|c(x)\|_2^2$$

- \odot required solution as μ approaches {0} from above
- $\odot\,$ may have other useless stationary points

CONTOURS OF THE PENALTY FUNCTION

Quadratic penalty function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$

CONTOURS OF THE PENALTY FUNCTION (cont.)

Quadratic penalty function for min $x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$

BASIC QUADRATIC PENALTY FUNCTION ALGORITHM

Given $\mu_0 > 0$, set k = 0Until "convergence" iterate: Starting from x_k^s , use an unconstrained minimization algorithm to find an "approximate" minimizer x_k of $\Phi(x, \mu_k)$ Compute $\mu_{k+1} > 0$ smaller than μ_k such that $\lim_{k\to\infty} \mu_{k+1} = 0$ and increase k by 1

- \odot often choose $\mu_{k+1} = 0.1 \mu_k$ or even $\mu_{k+1} = \mu_k^2$
- \odot might choose $x_{k+1}^{s} = x_k$

MAIN CONVERGENCE RESULT

Theorem 5.1. Suppose that $f, c \in C^2$, that

$$y_k \stackrel{\text{def}}{=} -\frac{c(x_k)}{\mu_k},$$

that

$$\|\nabla_x \Phi(x_k, \mu_k)\|_2 \le \epsilon_k,$$

where ϵ_k converges to zero as $k \to \infty$, and that x_k converges to x_* for which $A(x_*)$ is full rank. Then x_* satisfies the first-order necessary optimality conditions for the problem

 $\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x) \text{ subject to } c(x) = 0$

and $\{y_k\}$ converge to the associated Lagrange multipliers y_* .

PROOF OF THEOREM 5.1

Generalized inv. $A^+(x) \stackrel{\text{def}}{=} (A(x)A^T(x))^{-1}A(x)$ bounded near x_* . Define

$$y_k \stackrel{\text{def}}{=} -\frac{c(x_k)}{\mu_k} \text{ and } y_* \stackrel{\text{def}}{=} A^+(x_*)g(x_*).$$
 (1)

Inner-iteration termination rule

$$\|g(x_{k}) - A^{T}(x_{k})y_{k}\| \leq \epsilon_{k}$$

$$\implies \|A^{+}(x_{k})g(x_{k}) - y_{k}\|_{2} = \|A^{+}(x_{k})(g(x_{k}) - A^{T}(x_{k})y_{k})\|_{2}$$

$$\leq 2\|A^{+}(x_{*})\|_{2}\epsilon_{k}$$

$$\implies \|y_{k} - y_{*}\|_{2} \leq \|A^{+}(x_{*})g(x_{*}) - A^{+}(x_{k})g(x_{k})\|_{2} + \|A^{+}(x_{k})g(x_{k}) - y_{k}\|_{2}$$

$$\implies \{y_{k}\} \longrightarrow y_{*}. \text{ Continuity of gradients } + (2) \Longrightarrow$$

$$g(x_{*}) - A^{T}(x_{*})y_{*} = 0.$$

$$(2)$$

(1) implies $c(x_k) = -\mu_k y_k$ + continuity of constraints $\implies c(x_*) = 0$. $\implies (x_*, y_*)$ satisfies the first-order optimality conditions.

ALGORITHMS TO MINIMIZE $\Phi(x, \mu)$

Can use

- \odot linesearch methods
 - \diamond might use specialized lines earch to cope with large quadratic term $\|c(x)\|_2^2/2\mu$
- \odot trust-region methods
 - \diamond (ideally) need to "shape" trust region to cope with contours of the $\|c(x)\|_2^2/2\mu$ term

DERIVATIVES OF THE QUADRATIC PENALTY FUNCTION

$$\nabla_x \Phi(x,\mu) = g(x,y(x))$$

$$\nabla_{xx} \Phi(x,\mu) = H(x,y(x)) + \frac{1}{\mu} A^T(x) A(x)$$

where

• Lagrange multiplier estimates:

$$y(x) = -\frac{c(x)}{\mu}$$

 $\circ g(x,y(x)) = g(x) - A^T(x)y(x)$: gradient of the Lagrangian

$$\odot$$
 $H(x, y(x)) = H(x) - \sum_{i=1}^{m} y_i(x)H_i(x)$: Lagrangian Hessian

GENERIC QUADRATIC PENALTY NEWTON SYSTEM

Newton correction s from x for quadratic penalty function is

$$\left(H(x,y(x)) + \frac{1}{\mu}A^T(x)A(x)\right)s = -g(x,y(x))$$

LIMITING DERIVATIVES OF Φ

For small μ : roughly

$$\nabla_x \Phi(x,\mu) = \underbrace{g(x) - A^T(x)y(x)}_{\text{moderate}}$$

$$\nabla_{xx} \Phi(x,\mu) = \underbrace{H(x,y(x))}_{\text{moderate}} + \underbrace{\frac{1}{\mu}A^T(x)A(x)}_{\text{large}} \approx \frac{1}{\mu}A^T(x)A(x)$$

POTENTIAL DIFFICULTY

Ill-conditioning of the Hessian of the penalty function:

roughly speaking (non-degenerate case)

 \odot *m* eigenvalues $\approx \lambda_i \left[A^T(x) A(x) \right] / \mu_k$

 $\circ n - m$ eigenvalues $\approx \lambda_i \left[S^T(x) H(x_*, y_*) S(x) \right]$

where S(x) orthogonal basis for null-space of A(x)

 \implies condition number of $\nabla_{xx} \Phi(x_k, \mu_k) = O(1/\mu_k)$ \implies may not be able to find minimizer easily

THE ILL-CONDITIONING IS BENIGN

Newton system:

$$\left(H(x,y(x)) + \frac{1}{\mu}A^T(x)A(x)\right)s = -\left(g(x) + \frac{1}{\mu}A^T(x)c(x)\right)$$

Define auxiliary variables

$$w = \frac{1}{\mu} \left(A(x)s + c(x) \right)$$

 \implies

$$\begin{pmatrix} H(x, y(x)) & A^{T}(x) \\ A(x) & -\mu I \end{pmatrix} \begin{pmatrix} s \\ w \end{pmatrix} = - \begin{pmatrix} g(x) \\ c(x) \end{pmatrix}$$

 \circ essentially independent of μ for small $\mu \Longrightarrow$ **no** inherent ill-conditioning

 \odot thus can solve Newton equations accurately

 $\odot\,$ more sophisticated analysis $\Longrightarrow\,$ original system OK

PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

 $\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x) \text{ subject to } c(x) = 0$

are:

$$g(x) - A^T(x)y = 0$$
 dual feasibility
 $c(x) = 0$ primal feasibility

Consider the "perturbed" problem

$$g(x) - A^{T}(x)y = 0$$
 dual feasibility

$$c(x) + \mu y = 0$$
 perturbed primal feasibility

where $\mu > 0$

PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of

$$g(x) - A^{T}(x)y = 0$$
 and $c(x) + \mu y = 0$

as $0 < \mu \rightarrow 0$

 \odot nonlinear system \implies use Newton's method

Newton correction (s, v) to (x, y) satisfies

$$\begin{pmatrix} H(x,y) & -A^{T}(x) \\ A(x) & \mu I \end{pmatrix} \begin{pmatrix} s \\ v \end{pmatrix} = -\begin{pmatrix} g(x) - A^{T}(x)y \\ c(x) + \mu y \end{pmatrix}$$

Eliminate $w \Longrightarrow$

$$\left(H(x,y) + \frac{1}{\mu}A^T(x)A(x)\right)s = -\left(g(x) + \frac{1}{\mu}A^T(x)c(x)\right)$$

c.f. Newton method for quadratic penalty function minimization!

PRIMAL VS. PRIMAL-DUAL

Primal:

$$\left(H(x,y(x))+\frac{1}{\mu}A^T(x)A(x)\right)s^{\mathbf{P}}=-g(x,y(x))$$

Primal-dual:

$$\left(H(x,y) + \frac{1}{\mu}A^T(x)A(x)\right)s^{\rm PD} = -g(x,y(x))$$

where

$$y(x) = -\frac{c(x)}{\mu}$$

What is the difference?

 \odot freedom to choose y in H(x, y) for primal-dual ... vital

ANOTHER EXAMPLE FOR EQUALITY CONSTRAINTS

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x) \text{ subject to } c(x) = 0$$

Merit function (augmented Lagrangian function):

$$\Phi(x, u, \mu) = f(x) - u^T c(x) + \frac{1}{2\mu} \|c(x)\|_2^2$$

where u and μ are auxiliary **parameters**

Two interpretations —

- $\odot\,$ shifted quadratic penalty function
- $\odot\,$ convexification of the Lagrangian function

Aim: adjust μ and u to encourage convergence

DERIVATIVES OF THE AUGMENTED LAGRANGIAN FUNCTION

$$\begin{split} & \odot \ \nabla_x \Phi(x,u,\mu) = g(x,y^{\mathrm{F}}(x)) \\ & \odot \ \nabla_{xx} \Phi(x,u,\mu) = H(x,y^{\mathrm{F}}(x)) + \frac{1}{\mu} A^T(x) A(x) \end{split}$$

where

• **First-order** Lagrange multiplier estimates:

$$y^{\mathrm{F}}(x) = u - \frac{c(x)}{\mu}$$

 $\odot~g(x,y^{\scriptscriptstyle \rm F}(x))=g(x)-A^T(x)y^{\scriptscriptstyle \rm F}(x)$: gradient of the Lagrangian

$$\odot$$
 $H(x, y^{\mathsf{F}}(x)) = H(x) - \sum_{i=1}^{m} y_i^{\mathsf{F}}(x) H_i(x)$: Lagrangian Hessian

AUGMENTED LAGRANGIAN CONVERGENCE

Theorem 5.2. Suppose that $f, c \in C^2$, that $y_k \stackrel{\text{def}}{=} u_k - c(x_k)/\mu_k$, for given $\{u_k\}$, that $\|\nabla_x \Phi(x_k, u_k, \mu_k)\|_2 \leq \epsilon_k$, where ϵ_k converges to zero as $k \to \infty$, and that x_k converges to

where e_k converges to zero as $k \to \infty$, and that x_k converges to x_* for which $A(x_*)$ is full rank. Then $\{y_k\}$ converge to some y_* for which $g(x_*) = A^T(x_*)y_*$.

If additionally either μ_k converges to zero for bounded u_k or u_k converges to y_* for bounded μ_k , x_* and y_* satisfy the first-order necessary optimality conditions for the problem

 $\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x) \text{ subject to } c(x) = 0$

PROOF OF THEOREM 5.2

Convergence of y_k to $y_* \stackrel{\text{def}}{=} A^+(x_*)g(x_*)$ for which $g(x_*) = A^T(x_*)y_*$ is exactly as for Theorem 5.1.

Definition of $y_k \Longrightarrow$

$$\|c(x_k)\| = \mu_k \|u_k - y_k\| \le \mu_k \|y_k - y_*\| + \mu_k \|u_k - y_*\|$$

 $\implies c(x_*) = 0$ from assumptions.

 $\implies (x_*, y_*)$ satisfies the first-order optimality conditions.

CONTOURS OF THE AUGMENTED LAGRANGIAN FUNCTION

Augmented Lagrangian function for min $x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$ with fixed $\mu = 1$

CONTOURS OF THE AUGMENTED LAGRANGIAN FUNCTION (cont.)

Augmented Lagrangian function for min $x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$ with fixed $\mu = 1$

CONVERGENCE OF AUGMENTED LAGRANGIAN METHODS

- convergence guaranteed if u_k fixed and $\mu \longrightarrow 0$ $\implies y_k \longrightarrow y_*$ and $c(x_k) \longrightarrow 0$
- check if $||c(x_k)|| \leq \eta_k$ where $\{\eta_k\} \longrightarrow 0$
 - \diamond if so, set $u_{k+1} = y_k$ and $\mu_{k+1} = \mu_k$
 - if not, set $u_{k+1} = u_k$ and $\mu_{k+1} \le \tau \mu_k$ for some $\tau \in (0, 1)$
- \circ reasonable: $\eta_k = \mu_k^{0.1+0.9j}$ where j iterations since μ_k last changed
- \odot under such rules, can ensure μ_k eventually unchanged under modest assumptions and (fast) linear convergence
- need also to ensure μ_k is sufficiently large that $\nabla_{xx} \Phi(x_k, u_k, \mu_k)$ is positive (semi-)definite

BASIC AUGMENTED LAGRANGIAN ALGORITHM

Given $\mu_0 > 0$ and u_0 , set k = 0Until "convergence" iterate: Starting from x_k^s , use an unconstrained minimization algorithm to find an "approximate" minimizer x_k of $\Phi(x, u_k, \mu_k)$ for which $\|\nabla_x \Phi(x_k, u_k, \mu_k)\| \le \epsilon_k$ If $\|c(x_k)\| \le \eta_k$, set $u_{k+1} = y_k$ and $\mu_{k+1} = \mu_k$ Otherwise set $u_{k+1} = u_k$ and $\mu_{k+1} \le \tau \mu_k$ Set suitable ϵ_{k+1} and η_{k+1} and increase k by 1

- \odot often choose $\tau = \min(0.1, \sqrt{\mu_k})$
- \odot might choose $x_{k+1}^{s} = x_k$
- \circ reasonable: $\epsilon_k = \mu_k^{j+1}$ where j iterations since μ_k last changed