Part 5: Penalty and augmented Lagrangian methods for equality constrained optimization

Nick Gould (RAL)
minimize $\quad f(x)$ subject to $c(x)=0$ $x \in \mathbb{R}^{n}$

Part C course on continuoue optimization

CONSTRAINED MINIMIZATION

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)\left\{\begin{array}{l}
\geq \\
=
\end{array}\right\} 0
$$

where the objective function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ and the constraints $c: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$

- assume that $f, c \in C^{1}$ (sometimes C^{2}) and Lipschitz
- often in practice this assumption violated, but not necessary

CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:
\odot minimize the objective function $f(x)$
\odot satisfy the constraints

Overcome this by minimizing a composite merit function $\Phi(x, p)$ for which
$\odot p$ are parameters

- (some) minimizers of $\Phi(x, p)$ wrt x approach those of $f(x)$ subject to the constraints as p approaches some set \mathcal{P}
\odot only uses unconstrained minimization methods

AN EXAMPLE FOR EQUALITY CONSTRAINTS

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)=0
$$

Merit function (quadratic penalty function):

$$
\Phi(x, \mu)=f(x)+\frac{1}{2 \mu}\|c(x)\|_{2}^{2}
$$

- required solution as μ approaches $\{0\}$ from above
- may have other useless stationary points

CONTOURS OF THE PENALTY FUNCTION

Quadratic penalty function for $\min x_{1}^{2}+x_{2}^{2}$ subject to $x_{1}+x_{2}^{2}=1$

CONTOURS OF THE PENALTY FUNCTION (cont.)

Quadratic penalty function for $\min x_{1}^{2}+x_{2}^{2}$ subject to $x_{1}+x_{2}^{2}=1$

BASIC QUADRATIC PENALTY FUNCTION ALGORITHM

Given $\mu_{0}>0$, set $k=0$
Until "convergence" iterate:
Starting from x_{k}^{s}, use an unconstrained minimization algorithm to find an
"approximate" minimizer x_{k} of $\Phi\left(x, \mu_{k}\right)$
Compute $\mu_{k+1}>0$ smaller than μ_{k} such
that $\lim _{k \rightarrow \infty} \mu_{k+1}=0$ and increase k by 1

- often choose $\mu_{k+1}=0.1 \mu_{k}$ or even $\mu_{k+1}=\mu_{k}^{2}$
\odot might choose $x_{k+1}^{\mathrm{S}}=x_{k}$

MAIN CONVERGENCE RESULT

Theorem 5.1. Suppose that $f, c \in \mathcal{C}^{2}$, that

$$
y_{k} \stackrel{\text { def }}{=}-\frac{c\left(x_{k}\right)}{\mu_{k}}
$$

that

$$
\left\|\nabla_{x} \Phi\left(x_{k}, \mu_{k}\right)\right\|_{2} \leq \epsilon_{k},
$$

where ϵ_{k} converges to zero as $k \rightarrow \infty$, and that x_{k} converges to x_{*} for which $A\left(x_{*}\right)$ is full rank. Then x_{*} satisfies the first-order necessary optimality conditions for the problem

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)=0
$$

and $\left\{y_{k}\right\}$ converge to the associated Lagrange multipliers y_{*}.

PROOF OF THEOREM 5.1

Generalized inv. $A^{+}(x) \stackrel{\text { def }}{=}\left(A(x) A^{T}(x)\right)^{-1} A(x)$ bounded near x_{*}.
Define

$$
\begin{equation*}
y_{k} \stackrel{\text { def }}{=}-\frac{c\left(x_{k}\right)}{\mu_{k}} \text { and } y_{*} \stackrel{\text { def }}{=} A^{+}\left(x_{*}\right) g\left(x_{*}\right) . \tag{1}
\end{equation*}
$$

Inner-iteration termination rule

$$
\begin{gathered}
\left\|g\left(x_{k}\right)-A^{T}\left(x_{k}\right) y_{k}\right\| \leq \epsilon_{k} \\
\Longrightarrow\left\|A^{+}\left(x_{k}\right) g\left(x_{k}\right)-y_{k}\right\|_{2}=\left\|A^{+}\left(x_{k}\right)\left(g\left(x_{k}\right)-A^{T}\left(x_{k}\right) y_{k}\right)\right\|_{2} \\
\leq 2\left\|A^{+}\left(x_{*}\right)\right\|_{2} \epsilon_{k} \\
\Longrightarrow\left\|y_{k}-y_{*}\right\|_{2} \leq\left\|A^{+}\left(x_{*}\right) g\left(x_{*}\right)-A^{+}\left(x_{k}\right) g\left(x_{k}\right)\right\|_{2}+ \\
\left\|A^{+}\left(x_{k}\right) g\left(x_{k}\right)-y_{k}\right\|_{2} \\
\Longrightarrow\left\{y_{k}\right\} \longrightarrow y_{*} \text { Continuity of gradients }+(2) \Longrightarrow \\
g\left(x_{*}\right)-A^{T}\left(x_{*}\right) y_{*}=0 .
\end{gathered}
$$

(1) implies $c\left(x_{k}\right)=-\mu_{k} y_{k}+$ continuity of constraints $\Longrightarrow c\left(x_{*}\right)=0$.
$\Longrightarrow\left(x_{*}, y_{*}\right)$ satisfies the first-order optimality conditions.

ALGORITHMS TO MINIMIZE $\Phi(x, \mu)$

Can use

- linesearch methods
- might use specialized linesearch to cope with large quadratic term $\|c(x)\|_{2}^{2} / 2 \mu$
- trust-region methods
- (ideally) need to "shape" trust region to cope with contours of the $\|c(x)\|_{2}^{2} / 2 \mu$ term

DERIVATIVES OF THE QUADRATIC PENALTY FUNCTION

- $\nabla_{x} \Phi(x, \mu)=g(x, y(x))$
$\odot \nabla_{x x} \Phi(x, \mu)=H(x, y(x))+\frac{1}{\mu} A^{T}(x) A(x)$
where
- Lagrange multiplier estimates:

$$
y(x)=-\frac{c(x)}{\mu}
$$

- $g(x, y(x))=g(x)-A^{T}(x) y(x)$: gradient of the Lagrangian
- $H(x, y(x))=H(x)-\sum_{i=1}^{m} y_{i}(x) H_{i}(x)$: Lagrangian Hessian

GENERIC QUADRATIC PENALTY NEWTON SYSTEM

Newton correction s from x for quadratic penalty function is

$$
\left(H(x, y(x))+\frac{1}{\mu} A^{T}(x) A(x)\right) s=-g(x, y(x))
$$

LIMITING DERIVATIVES OF Φ

For small μ : roughly

$$
\begin{aligned}
& \nabla_{x} \Phi(x, \mu)=\underbrace{g(x)-A^{T}(x) y(x)}_{\text {moderate }} \\
& \nabla_{x x} \Phi(x, \mu)=\underbrace{H(x, y(x))}_{\text {moderate }}+\underbrace{\frac{1}{\mu} A^{T}(x) A(x)}_{\text {large }} \approx \frac{1}{\mu} A^{T}(x) A(x)
\end{aligned}
$$

POTENTIAL DIFFICULTY

Ill-conditioning of the Hessian of the penalty function:
roughly speaking (non-degenerate case)

- m eigenvalues $\approx \lambda_{i}\left[A^{T}(x) A(x)\right] / \mu_{k}$
- $n-m$ eigenvalues $\approx \lambda_{i}\left[S^{T}(x) H\left(x_{*}, y_{*}\right) S(x)\right]$
where $S(x)$ orthogonal basis for null-space of $A(x)$
\Longrightarrow condition number of $\nabla_{x x} \Phi\left(x_{k}, \mu_{k}\right)=O\left(1 / \mu_{k}\right)$
\Longrightarrow may not be able to find minimizer easily

THE ILL-CONDITIONING IS BENIGN

Newton system:

$$
\left(H(x, y(x))+\frac{1}{\mu} A^{T}(x) A(x)\right) s=-\left(g(x)+\frac{1}{\mu} A^{T}(x) c(x)\right)
$$

Define auxiliary variables

$$
w=\frac{1}{\mu}(A(x) s+c(x))
$$

\Longrightarrow

$$
\left(\begin{array}{cc}
H(x, y(x)) & A^{T}(x) \\
A(x) & -\mu I
\end{array}\right)\binom{s}{w}=-\binom{g(x)}{c(x)}
$$

\odot essentially independent of μ for small $\mu \Longrightarrow$ no inherent ill-conditioning
\odot thus can solve Newton equations accurately
\odot more sophisticated analysis \Longrightarrow original system OK

PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)=0
$$

are:

$$
\begin{array}{cl}
g(x)-A^{T}(x) y=0 & \text { dual feasibility } \\
c(x)=0 & \text { primal feasibility }
\end{array}
$$

Consider the "perturbed" problem

$$
\begin{array}{cc}
g(x)-A^{T}(x) y=0 & \text { dual feasibility } \\
c(x)+\mu y=0 & \text { perturbed primal feasibility }
\end{array}
$$

where $\mu>0$

PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of

$$
g(x)-A^{T}(x) y=0 \text { and } c(x)+\mu y=0
$$

as $0<\mu \rightarrow 0$
\odot nonlinear system \Longrightarrow use Newton's method
Newton correction (s, v) to (x, y) satisfies

$$
\left(\begin{array}{cc}
H(x, y) & -A^{T}(x) \\
A(x) & \mu I
\end{array}\right)\binom{s}{v}=-\binom{g(x)-A^{T}(x) y}{c(x)+\mu y}
$$

Eliminate $w \Longrightarrow$

$$
\left(H(x, y)+\frac{1}{\mu} A^{T}(x) A(x)\right) s=-\left(g(x)+\frac{1}{\mu} A^{T}(x) c(x)\right)
$$

c.f. Newton method for quadratic penalty function minimization!

PRIMAL VS. PRIMAL-DUAL

Primal:

$$
\left(H(x, y(x))+\frac{1}{\mu} A^{T}(x) A(x)\right) s^{\mathrm{P}}=-g(x, y(x))
$$

Primal-dual:

$$
\left(H(x, y)+\frac{1}{\mu} A^{T}(x) A(x)\right) s^{\mathrm{PD}}=-g(x, y(x))
$$

where

$$
y(x)=-\frac{c(x)}{\mu}
$$

What is the difference?

- freedom to choose y in $H(x, y)$ for primal-dual \ldots vital

ANOTHER EXAMPLE FOR EQUALITY CONSTRAINTS

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)=0
$$

Merit function (augmented Lagrangian function):

$$
\Phi(x, u, \mu)=f(x)-u^{T} c(x)+\frac{1}{2 \mu}\|c(x)\|_{2}^{2}
$$

where u and μ are auxiliary parameters
Two interpretations -

- shifted quadratic penalty function
- convexification of the Lagrangian function

Aim: adjust μ and u to encourage convergence

DERIVATIVES OF THE AUGMENTED LAGRANGIAN FUNCTION

- $\nabla_{x} \Phi(x, u, \mu)=g\left(x, y^{\mathrm{F}}(x)\right)$
$\odot \nabla_{x x} \Phi(x, u, \mu)=H\left(x, y^{\mathrm{F}}(x)\right)+\frac{1}{\mu} A^{T}(x) A(x)$
where
- First-order Lagrange multiplier estimates:

$$
y^{\mathrm{F}}(x)=u-\frac{c(x)}{\mu}
$$

- $g\left(x, y^{\mathrm{F}}(x)\right)=g(x)-A^{T}(x) y^{\mathrm{F}}(x)$: gradient of the Lagrangian
- $H\left(x, y^{\mathrm{F}}(x)\right)=H(x)-\sum_{i=1}^{m} y_{i}^{\mathrm{F}}(x) H_{i}(x)$: Lagrangian Hessian

AUGMENTED LAGRANGIAN CONVERGENCE

Theorem 5.2. Suppose that $f, c \in \mathcal{C}^{2}$, that

$$
y_{k} \stackrel{\text { def }}{=} u_{k}-c\left(x_{k}\right) / \mu_{k},
$$

for given $\left\{u_{k}\right\}$, that

$$
\left\|\nabla_{x} \Phi\left(x_{k}, u_{k}, \mu_{k}\right)\right\|_{2} \leq \epsilon_{k},
$$

where ϵ_{k} converges to zero as $k \rightarrow \infty$, and that x_{k} converges to x_{*} for which $A\left(x_{*}\right)$ is full rank. Then $\left\{y_{k}\right\}$ converge to some y_{*} for which $g\left(x_{*}\right)=A^{T}\left(x_{*}\right) y_{*}$.
If additionally either μ_{k} converges to zero for bounded u_{k} or u_{k} converges to y_{*} for bounded μ_{k}, x_{*} and y_{*} satisfy the first-order necessary optimality conditions for the problem

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)=0
$$

PROOF OF THEOREM 5.2

Convergence of y_{k} to $y_{*} \stackrel{\text { def }}{=} A^{+}\left(x_{*}\right) g\left(x_{*}\right)$ for which $g\left(x_{*}\right)=A^{T}\left(x_{*}\right) y_{*}$ is exactly as for Theorem 5.1.

Definition of $y_{k} \Longrightarrow$

$$
\left\|c\left(x_{k}\right)\right\|=\mu_{k}\left\|u_{k}-y_{k}\right\| \leq \mu_{k}\left\|y_{k}-y_{*}\right\|+\mu_{k}\left\|u_{k}-y_{*}\right\|
$$

$\Longrightarrow c\left(x_{*}\right)=0$ from assumptions.
$\Longrightarrow\left(x_{*}, y_{*}\right)$ satisfies the first-order optimality conditions.

CONTOURS OF THE AUGMENTED LAGRANGIAN FUNCTION

Augmented Lagrangian function for $\min x_{1}^{2}+x_{2}^{2}$ subject to $x_{1}+x_{2}^{2}=1$ with fixed $\mu=1$

CONTOURS OF THE AUGMENTED LAGRANGIAN FUNCTION (cont.)

$u=0.99$

$u=y_{*}=1$

Augmented Lagrangian function for $\min x_{1}^{2}+x_{2}^{2}$ subject to $x_{1}+x_{2}^{2}=1$ with fixed $\mu=1$

CONVERGENCE OF AUGMENTED LAGRANGIAN METHODS

\odot convergence guaranteed if u_{k} fixed and $\mu \longrightarrow 0$
$\Longrightarrow y_{k} \longrightarrow y_{*}$ and $c\left(x_{k}\right) \longrightarrow 0$

- check if $\left\|c\left(x_{k}\right)\right\| \leq \eta_{k}$ where $\left\{\eta_{k}\right\} \longrightarrow 0$
\bullet if so, set $u_{k+1}=y_{k}$ and $\mu_{k+1}=\mu_{k}$
- if not, set $u_{k+1}=u_{k}$ and $\mu_{k+1} \leq \tau \mu_{k}$ for some $\tau \in(0,1)$
\odot reasonable: $\eta_{k}=\mu_{k}^{0.1+0.9 j}$ where j iterations since μ_{k} last changed
- under such rules, can ensure μ_{k} eventually unchanged under modest assumptions and (fast) linear convergence
\odot need also to ensure μ_{k} is sufficiently large that $\nabla_{x x} \Phi\left(x_{k}, u_{k}, \mu_{k}\right)$ is positive (semi-)definite

BASIC AUGMENTED LAGRANGIAN ALGORITHM

Given $\mu_{0}>0$ and u_{0}, set $k=0$
Until "convergence" iterate:
Starting from x_{k}^{s}, use an unconstrained minimization algorithm to find an "approximate" minimizer x_{k} of $\Phi\left(x, u_{k}, \mu_{k}\right)$ for which $\left\|\nabla_{x} \Phi\left(x_{k}, u_{k}, \mu_{k}\right)\right\| \leq \epsilon_{k}$
If $\left\|c\left(x_{k}\right)\right\| \leq \eta_{k}$, set $u_{k+1}=y_{k}$ and $\mu_{k+1}=\mu_{k}$
Otherwise set $u_{k+1}=u_{k}$ and $\mu_{k+1} \leq \tau \mu_{k}$
Set suitable ϵ_{k+1} and η_{k+1} and increase k by 1
\odot often choose $\tau=\min \left(0.1, \sqrt{\mu_{k}}\right)$

- might choose $x_{k+1}^{\mathrm{S}}=x_{k}$
\odot reasonable: $\epsilon_{k}=\mu_{k}^{j+1}$ where j iterations since μ_{k} last changed

