
Part 6: Interior-point methods

for inequality constrained optimization

Nick Gould (RAL)

minimize
x∈IRn

f(x) subject to c(x) ≥ 0

Part C course on continuoue optimization

CONSTRAINED MINIMIZATION

minimize
x∈IRn

f(x) subject to c(x) ≥ 0

where the objective function f : IRn −→ IR

and the constraints c : IRn −→ IRm

� assume that f, c ∈ C1 (sometimes C2) and Lipschitz

� often in practice this assumption violated, but not necessary



CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:

� minimize the objective function f(x)

� satisfy the constraints

Recall — overcome this by minimizing a composite merit function

Φ(x, p) for which

� p are parameters

� (some) minimizers of Φ(x, p) wrt x approach those of f(x) subject

to the constraints as p approaches some set P

� only uses unconstrained minimization methods

A MERIT Fn FOR INEQUALITY CONSTRAINTS

minimize
x∈IRn

f(x) subject to c(x) ≥ 0

Merit function (logarithmic barrier function):

Φ(x, µ) = f(x) − µ
m∑

i=1

log ci(x)

� required solution as µ approaches {0} from above

� may have other useless stationary points

� requires a strictly interior point to start

� consequent points are interior



CONTOURS OF THE BARRIER FUNCTION
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CONTOURS OF THE BARRIER FUNCTION (cont.)
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BASIC BARRIER FUNCTION ALGORITHM

Given µ0 > 0, set k = 0

Until “convergence” iterate:

Find xS

k for which c(xS

k) > 0

Starting from xS

k, use an unconstrained

minimization algorithm to find an

“approximate” minimizer xk of Φ(x, µk)

Compute µk+1 > 0 smaller than µk such

that limk→∞ µk+1 = 0 and increase k by 1

� often choose µk+1 = 0.1µk or even µk+1 = µ2
k

� might choose xS

k+1 = xk

MAIN CONVERGENCE RESULT

The active set A(x) = {i | ci(x) = 0}

Theorem 6.1. Suppose that f , c ∈ C2, that (yk)i
def
= µk/ci(xk)

for i = 1, . . . , m, that

‖∇xΦ(xk, µk)‖2 ≤ εk

where εk converges to zero as k → ∞, and that xk converges to x∗

for which {ai(x∗)}i∈A(x∗) are linearly independent. Then x∗ satisfies

the first-order necessary optimality conditions for the problem

minimize
x∈IRn

f(x) subject to c(x) ≥ 0

and {yk} converge to the associated Lagrange multipliers y∗.



PROOF OF THEOREM 6.1

Let M
def
= {1, . . . , m}, A

def
= {i | ci(x∗) = 0} and I

def
= M \ A.

Generalized inv. A+
A(x)

def
=
(
AA(x)AT

A(x)
)−1

AA(x) bounded near x∗.

Define

(yk)i =
µk

ci(xk)
, i ∈ M, (y∗)A = A+

A(x∗)g(x∗) and (y∗)I = 0.

‖(yk)I‖2 ≤ 2µk

√

|I|/ min
i∈I

|ci(x∗)| (1)

(if I 6= ∅) for all sufficiently large k. (1) + inner-it. termination =⇒

‖g(xk) − AT
A(xk)(yk)A‖2 ≤ ‖g(xk) − AT (xk)yk‖2 + ‖AT

I (xk)(yk)I‖2

≤ ε̄k
def
= εk + µk

2
√

|I|‖AI‖2

mini∈I |ci(x∗)|
(2)

=⇒ ‖A+
A(xk)g(xk) − (yk)A‖2 = ‖A+

A(xk)(g(xk) − AT
A(xk)(yk)A)‖2

≤ 2‖A+
A(x∗)‖2ε̄k

=⇒ ‖(yk)A − (y∗)A‖2

≤ ‖A+
A(x∗)g(x∗) − A+

A(xk)g(xk)‖2 + ‖A+
A(xk)g(xk) − (yk)A‖2

+ (1) =⇒ {yk} −→ y∗. Continuity of gradients + (2) =⇒

g(x∗) − AT (x∗)y∗ = 0

c(xk) > 0, defs. of yk and y∗ + ci(xk)(yk)i = µk =⇒

c(x∗) ≥ 0, y∗ ≥ 0 and ci(x∗)(y∗)i = 0.

=⇒ (x∗, y∗) satisfies the first-order optimality conditions.



ALGORITHMS TO MINIMIZE Φ(x, µ)

Can use

� linesearch methods

� should use specialized linesearch to cope with singularity of log

� trust-region methods

� need to reject points for which c(xk + sk) 6> 0

� (ideally) need to “shape” trust region to cope with contours of

the singularity

DERIVATIVES OF THE BARRIER FUNCTION

� ∇xΦ(x, µ) = g(x, y(x))

� ∇xxΦ(x, µ) = H(x, y(x)) + µAT (x)C−2(x)A(x)

= H(x, y) + AT (x)C−1(x)Y (x)A(x)

= H(x, y) + 1
µA

T (x)Y 2(x)A(x)

where

� Lagrange multiplier estimates: y(x) = µC−1(x)e

where e is the vector of ones

� C(x) = diag(c1(x), . . . , cm(x))

� Y (x) = diag(y1(x), . . . , ym(x))

� g(x, y(x)) = g(x) − AT (x)y(x): gradient of the Lagrangian

� H(x, y(x)) = H(x) −
m∑

i=1

yi(x)Hi(x): Lagrangian Hessian



LIMITING DERIVATIVES OF Φ

Let I = inactive set at x∗ = {1, . . . , m} \ A

For small µ: roughly

∇xΦ(x, µ) = g(x) − AT
A(x)Y −1

A (x)e
︸ ︷︷ ︸

moderate

−µAT
I (x)C−1

I (x)e
︸ ︷︷ ︸

small

≈ g(x) − AT
A(x)Y −1

A (x)e

∇xxΦ(x, µ) = H(x, y(x))
︸ ︷︷ ︸

moderate

+ µAT
I (x)C−2

I (x)AI(x)
︸ ︷︷ ︸

small

+
1

µ
AT

A(x)Y 2
A(x)AA(x)

︸ ︷︷ ︸

large

≈
1

µ
AT

A(x)Y 2
A(x)AA(x)

= AT
A(x)C−1

A (x)YA(x)AA(x)

= µAT
A(x)C−2

A (x)AA(x)

GENERIC BARRIER NEWTON SYSTEM

Newton correction s from x for barrier function is
(
H(x, y(x)) + AT (x)C−1(x)Y (x)A(x)

)
s = −g(x, y(x))

LIMITING NEWTON METHOD

For small µ: roughly

µAT
A(x)C−2

A (x)AA(x)s ≈ −
(
g(x) − AT

A(x)Y −1
A (x)e

)



POTENTIAL DIFFICULTIES I

Ill-conditioning of the Hessian of the barrier function:

roughly speaking (non-degenerate case)

� ma eigenvalues ≈ λi

[
AT

AY 2
AAA

]
/µk

� n − ma eigenvalues ≈ λi

[
NT

AH(x∗, y∗)NA

]

where

ma = number of active constraints

A = active set at x∗

Y = diagonal matrix of Lagrange multipliers

NA = orthogonal basis for null-space of AA

=⇒ condition number of ∇xxΦ(xk, µk) = O(1/µk)

=⇒ may not be able to find minimizer easily

POTENTIAL DIFFICULTIES II

Value xS

k+1 = xk is a poor starting point: Suppose

0 ≈ ∇xΦ(xk, µk) = g(xk) − µkA
T (xk)C

−1(xk)e

≈ g(xk) − µkA
T
A(xk)C

−1
A (xk)e

Roughly speaking (non-degenerate case) Newton correction satisfies

µk+1A
T
A(xk)C

−2
A (xk)AA(xk)s ≈ (µk+1 − µk)A

T
A(xk)C

−1
A (xk)e

=⇒ (full rank)

AA(xk)s ≈

(

1 −
µk

µk+1

)

cA(xk)

=⇒ (Taylor expansion)

cA(xk + s) ≈ cA(xk) + AA(xk)s ≈

(

2 −
µk

µk+1

)

cA(xk) < 0

if µk+1 < 1
2µk =⇒ Newton step infeasible =⇒ slow convergence



PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize
x∈IRn

f(x) subject to c(x) ≥ 0

are:
g(x) − AT (x)y = 0 dual feasibility

C(x)y = 0 complementary slackness

c(x) ≥ 0 and y ≥ 0

Consider the “perturbed” problem

g(x) − AT (x)y = 0 dual feasibility

C(x)y = µe perturbed comp. slkns.

c(x) > 0 and y > 0

where µ > 0

CENTRAL PATH TRAJECTORY
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TRAJECTORIES FOR THE NON-CONVEX CASE

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Trajectories x(µ) of perturbed optimality conditions

as µ ranges from infinity down to zero

min−2(x1 − 0.25)2 + 2(x2 − 0.5)2

subject to x1 + x2 ≤ 1

3x1 + x2 ≤ 1.5

(x1, x2) ≥ 0

PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of

g(x) − AT (x)y = 0 and C(x)y − µe = 0

as 0 < µ → 0, while maintaining c(x) > 0 and y > 0

� nonlinear system =⇒ use Newton’s method

Newton correction (s, w) to (x, y) satisfies
(

H(x, y) −AT (x)

Y A(x) C(x)

)(

s

w

)

= −

(

g(x) − AT (x)y

C(x)y − µe

)

Eliminate w =⇒
(
H(x, y) + AT (x)C−1(x)Y A(x)

)
s = −

(
g(x) − µAT (x)C−1(x)e

)

c.f. Newton method for barrier minimization!



PRIMAL VS. PRIMAL-DUAL

Primal:
(
H(x, y(x)) + AT (x)C−1(x)Y (x)A(x)

)
sP = −g(x, y(x))

Primal-dual:
(
H(x, y) + AT (x)C−1(x)Y A(x)

)
sPD = −g(x, y(x))

where

y(x) = µC−1(x)e

What is the difference?

� freedom to choose y in H(x, y) + AT (x)C−1(x)Y A(x) for

primal-dual . . . vital

� Hessian approximation for small µ

H(x, y) + AT (x)C−1(x)Y A(x) ≈ AT
A(x)C−1

A (x)YAAA(x)

POTENTIAL DIFFICULTY II . . . REVISITED

Value xS

k+1 = xk can be a good starting point:

� primal method has to choose y = y(xS

k) = µk+1C
−1(xk)e

� factor µk+1/µk too small for a good Lagrange multiplier estimate

� primal-dual method can choose y = µkC
−1(xk)e → y∗

Advantage: roughly (non-degenerate case) correction sPD satisfies

µkA
T
A(xk)C

−2
A (xk)AA(xk)s

PD ≈ (µk+1 − µk)A
T
A(xk)C

−1
A (xk)e

=⇒ (full rank)

AA(xk)s
PD ≈

(
µk+1

µk
− 1

)

cA(xk)

=⇒ (Taylor expansion)

cA(xk + sPD) ≈ cA(xk) + AA(xk)s
PD ≈

µk+1

µk
cA(xk) > 0

=⇒ Newton step allowed =⇒ fast convergence



PRIMAL-DUAL BARRIER METHODS

Choose a search direction s for Φ(x, µk) by

(approximately) solving the problem

minimize
s∈IRn

g(x, y(x))Ts + 1
2s

T
(
H(x, y) + AT (x)C−1(x)Y A(x)

)
s

possibly subject to a trust-region constraint

� y(x) = µC−1(x)e =⇒ g(x, y(x)) = ∇xΦ(x, µ)

� y = . . .

� y(x) =⇒ primal Newton method

� occasionally (µk−1/µk)y(x) =⇒ good starting point

� yOLD + wOLD =⇒ primal-dual Newton method

� max(yOLD + wOLD, ε(µk)e) for “small” ε(µk) > 0

(e.g., ε(µk) = µ1.5
k ) =⇒ practical primal-dual method

POTENTIAL DIFFICULTY I . . . REVISITED

Ill-conditioning 6=⇒we can’t solve equations accurately:

roughly (non-degenerate case, I = inactive set at x∗)
(

H −AT

Y A C

)(

s

w

)

= −

(

g − ATy

Cy − µe

)

=⇒






H −AT
A −AT

I

YAAA CA 0

YIAI 0 CI











s

wA

wI




 = −






g − AT
AyA − AT

I yI
CAyA − µe

CIyI − µe




 =⇒

(

H + AT
IC−1

I YIAI −AT
A

AA CAY −1
A

)(

s

wA

)

= −

(

g − AT
AyA − µAT

IC−1
I e

cA − µY −1
A e

)

� potentially bad terms C−1
I and Y −1

A bounded

� in the limit becomes well-behaved
(

H −AT
A

AA 0

)(

s

wA

)

= −

(

g − AT
AyA

0

)



PRACTICAL PRIMAL-DUAL METHOD

Given µ0 > 0 and feasible (xS

0, y
S

0), set k = 0

Until “convergence” iterate:

Inner minimization: starting from (xS

k, y
S

k), use an

unconstrained minimization algorithm to find (xk, yk) for which

‖C(xk)yk − µke‖ ≤ µk and ‖g(xk) − AT (xk)yk‖ ≤ µ1.00005
k

Set µk+1 = min(0.1µk, µ
1.9999
k )

Find (xS

k+1, y
S

k+1) using a primal-dual Newton step from (xk, yk)

If (xS

k+1, y
S

k+1) is infeasible, reset (xS

k+1, y
S

k+1) to (xk, yk)

Increase k by 1

FAST ASYMPTOTIC CONVERGENCE

Theorem 6.2. Suppose that f , c ∈ C2, that a subsequence

{(xk, yk)}, k ∈ K, of the practical primal-dual method converges to

(x∗, y∗) satisfying second-order sufficiency conditions, that AA(x∗)

is full-rank, and that (y∗)A > 0. Then the starting point satisfies the

inner-minimization termination test (i.e., (xk, yk) = (xS

k, y
S

k)) and

the whole sequence {(xk, yk)} converges to (x∗, y∗) at a superlinear

rate (Q-factor 1.9998).



OTHER ISSUES

� polynomial algorithms for many convex problems

� linear programming

� quadratic programming

� semi-definite programming . . .

� excellent practical performance

� globally, need to keep away from constraint boundary until near

convergence, otherwise very slow

� initial interior point:

minimize
(x,c)

eTc subject to c(x) + c ≥ 0


