Part 6: Interior-point methods
for inequality constrained optimization

Nick Gould (RAL)

minimize  f(x) subject to ¢(x) >0
zeR"

Part C course on continuoue optimization

CONSTRAINED MINIMIZATION

minimize f(x) subject to c¢(x) >0
z€R”

where the objective function f : IR" — IR
and the constraints ¢ : IR" — IR™

© assume that f, ¢ € C! (sometimes C?) and Lipschitz

© often in practice this assumption violated, but not necessary




CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:
© minimize the objective function f(z)

© satisfy the constraints

Recall — overcome this by minimizing a composite merit function
d(z, p) for which

© p are parameters

© (some) minimizers of ®(x, p) wrt x approach those of f(z) subject
to the constraints as p approaches some set P

© only uses unconstrained minimization methods

A MERIT F* FOR INEQUALITY CONSTRAINTS

minimize f(x) subject to c¢(x) >0
z€R”

Merit function (logarithmic barrier function):
bla, p) = flw) = p Y logei(x)
i=1

© required solution as p approaches {0} from above
© may have other useless stationary points
® requires a strictly interior point to start

® consequent points are interior



CONTOURS OF THE BARRIER FUNCTION
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Barrier function for min z + x3 subject to z; + 23 > 1

CONTOURS OF THE BARRIER FUNCTION (cont.)
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BASIC BARRIER FUNCTION ALGORITHM

Given pg > 0, set k=0
Until “convergence” iterate:
Find «j for which ¢(x}) > 0
Starting from x}, use an unconstrained
minimization algorithm to find an
“approximate” minimizer xy of ®(z, uy)
Compute 1 > 0 smaller than . such
that limg_ .o pz+1 = 0 and increase k by 1

® often choose g1 = 0.1 or even gy, = p?

® might choose z} | = ;.

MAIN CONVERGENCE RESULT

The active set A(z) = {i | ¢;(x) =0}

Theorem 6.1. Suppose that f, ¢ € C? that (y;); o i/ i)
fori=1,...,m, that

|V ®(@p, i) []2 < €r

where €, converges to zero as k — oo, and that xj; converges to x,
for which {a;(2+) }ic a(z,) are linearly independent. Then z, satisfies
the first-order necessary optimality conditions for the problem

minimize f(z) subject to ¢(x) > 0
relR"

and {y;} converge to the associated Lagrange multipliers ..




PROOF OF THEOREM 6.1

Let MY {1,...omb AY i | ci(z) =0} and T € M\ A
Generalized inv. A7 () i (AA(x)Aﬁ(a:))_l A4 (z) bounded near z,.
Define

(Yr)i = Hi deM, (y)a=A(x)g(z,) and (y.)z =0.

ci(zr)
ICy)zll2 < 2pV/ 121/ min fe; (2. )] (1)
(if Z # () for all sufficiently large k. (1) + inner-it. termination =

Hg(xk) - A£<xk><yk),4”2 < Hg@%) - AT(xk)kaQ + “A%<xk><yk>l‘|2
o 24/ |Z|||A
B S 1 2V

k= €k ,
min;er |¢; ()]

= HA;(%)(Q(%) - Aﬁ(fk)(yk)fl)HQ
< 2[|A4(z.) |l 6k

= [[A(z)9(z;,) — (Yg) alla

= Wea = W) all:
< [JAL(@)g(@,) — Au(z)g(@p)lls + (| AL ) g() — () all;
+ (1) = {yr} — y.. Continuity of gradients + (2) =

g(z.) — A (2.)y. =0

c(xg) > 0, defs. of yp and y. + c;i(xp)(yr)i = ppr =
c(xy) >0,y > 0 and ¢;(x)(ys); = 0.
—> (4, ys) satisfies the first-order optimality conditions.



ALGORITHMS TO MINIMIZE ®(x, )

Can use
® linesearch methods

o should use specialized linesearch to cope with singularity of log
® trust-region methods

o need to reject points for which ¢(xy 4 si) # 0

o (ideally) need to “shape” trust region to cope with contours of
the singularity

DERIVATIVES OF THE BARRIER FUNCTION

o Vo®(z, p) = g(x,y(x))

<3Vm¢®,) H(z,y(x)) + pAl (z)C*(z) Az)
H(z,y) + A'(z)C™ ()Y () A(z)
H(z,y) + AT (2)Y?(2)A(x)

where

© Lagrange multiplier estimates: y(z) = uC~(z)e
where e is the vector of ones

o C(z) = diag(ci(x), ..., cn(T))

o Y(x) = diag(yi(z), . .. ,ym( )
o g(x,y(z)) = g(x) — AT( Jy(x): gradient of the Lagrangian

o H(z,y(x Zyl ): Lagrangian Hessian



LIMITING DERIVATIVES OF &

Let Z = inactive set at x, = {1,...,m} \ A
For small u: roughly

Vo 0(x, p) = g(x) — Ay(@)Y (w)e — pAz(2)C7 (2)e

7 A\ 7

mO(Ierrate sn?all
~ g(z) — AL(x)Y (z)e

Vo ®(z, ) = H(w, y(w)) + pAz(2)Cr?(x) Az (2) + iAﬂ(ﬂf)Yi(ﬂf)AA(ﬂf)

\ 7 \ 7 7

moderate small large
—Aﬁ(ﬂv) A(a) Ay(x)

—AT(HJ>CA1( JYa(z)Aa(z)
= pAQ(@)C 1% () A ()

GENERIC BARRIER NEWTON SYSTEM

Newton correction s from z for barrier function is

(H(z,y(z)) + A'(2)C7 ()Y (2)A(2)) s = —g(x,y(x))

LIMITING NEWTON METHOD

For small p: roughly

pAL(@)C (@) A y(2)s = — (g() — A(2)Y, (2)e)



POTENTIAL DIFFICULTIES 1

Il1l-conditioning of the Hessian of the barrier function:
roughly speaking (non-degenerate case)

® m, eigenvalues ~ \; [AanA A] / 1k
© n —m, cigenvalues & \; [NJH (s, y) N 4]

where
m, = number of active constraints
A = active set at z,
Y = diagonal matrix of Lagrange multipliers
N 4 = orthogonal basis for null-space of A4

— condition number of V., ®(zk, ) = O(1/ )
— may not be able to find minimizer easily

POTENTIAL DIFFICULTIES II

Value x;  , = z, is a poor starting point: Suppose
0~ Vo O(zk, pur) = g(wr) — pp A" (2)CHap)e
~ g(r) — AL () Cy (zr)e
Roughly speaking (non-degenerate case) Newton correction satisfies
e A (@) O (@) A g(y)s = (e — ) Aulz)C ol (zy)e
—> (full rank)

Adtan)s = (1= caten)

k41
— (Taylor expansion)
k
CA(:IZk + S) ~~ cA(mk) + AA<$;€)S ~ (2 — 'u—) CA<5Uk> <0
Hk+1
if pry1 < 3 = Newton step infeasible = slow convergence



PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize f(z) subject to c(z) >0

relR"
are:
g(z)— AT(2)y =0 dual feasibility
C(z)y =0 complementary slackness

c(x) >0 and y >0

Consider the “perturbed” problem

g(z) — AT(x)y =0 dual feasibility
C(z)y = pe perturbed comp. slkns.
c(x) >0 and y >0

where p > 0

CENTRAL PATH TRAJECTORY

min(z; — 1)% + (x5 — 0.5)?
subject to x1 + x5 < 1
3r1+ a9 < 1.5
(x1,22) >0
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Trajectory z(u) of perturbed optimality conditions
as p ranges from infinity down to zero



TRAJECTORIES FOR THE NON-CONVEX CASE

06

min —2(z1 — 0.25)% + 2(z — 0.5)?
subject to x1 + x5 < 1
3r1+ 29 < 1.5
(x1,22) >0
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Trajectories x(p) of perturbed optimality conditions
as p ranges from infinity down to zero

PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of
glx) — AT(2)y =0 and C(z)y — pe =0
as 0 < p — 0, while maintaining ¢(z) > 0 and y > 0

© nonlinear system = use Newton’s method
Newton correction (s, w) to (x,y) satisfies
H(z,y) —AM(z) \ (s Y _ [ 9l@)—Alx)y
YA) C(z) w C(x)y — pe
Eliminate w =

(H(m, y) + AT(x)C’_l(w)YA(a:)) 5= — (g(x) — ,LLAT(J;)C’_l(:I;)e)

c.f. Newton method for barrier minimization!



PRIMAL VS. PRIMAL-DUAL

Primal:
(H(z,y(2)) + AT (z)C7H2)Y (z)A()) 8" = —g(z,y(z))
Primal-dual:
(H(z,y) + A (2)CH2)Y A(x)) 8™ = —g(z, y(x))

where

What is the difference?
© freedom to choose y in H(z,y) + AT (x)C~ (2)Y A(z) for
primal-dual ... vital

© Hessian approximation for small

H(z,y) + A (2)C 7 (2)Y A(z) = AY(2)C 1 (2)Y 1A 4(x)

POTENTIAL DIFFICULTY II ... REVISITED

Value z;_ , = z; can be a good starting point:
® primal method has to choose y = y(z3) = pp1C~Hzg)e
o factor g1/ too small for a good Lagrange multiplier estimate
© primal-dual method can choose y = 1;C~(zx)e — v,
Advantage: roughly (non-degenerate case) correction s" satisfies
T - ~ T -
NkAA<$k)CA2(33k>AA(5Uk>5PD ~ (1 — Nk)AA<xk>CAl<xk>e
— (full rank)

Apzy)s™ ~ (@ — 1) ca(zr)
Mk

—> (Taylor expansion)

PD Hi+41
Mk
—> Newton step allowed = fast convergence

CA<CL‘k + SPD> ~ CA<37I~@) + AA(JZk;)S CA<l‘k> > 0



PRIMAL-DUAL BARRIER METHODS

Choose a search direction s for ®(x, uy) by
(approximately) solving the problem

mineig}lize g(z,y(x)) s+ is" (H(z,y) + A" (x)C 7 (2)Y A(z)) s

possibly subject to a trust-region constraint
o y(x) = uC=(z)e = g(z,y(x)) = Vo @(z, 1)
©y=...
o y(x) = primal Newton method
o occasionally (px_1/px)y(r) = good starting point
o Yo + w°" = primal-dual Newton method

o max(y®™ + w e(uy)e) for “small” e(uy) > 0
(e.g., €(ug) = ;%) = practical primal-dual method

POTENTIAL DIFFICULTY I... REVISITED

Il1l-conditioning #=we can’t solve equations accurately:
roughly (non-degenerate case, Z = inactive set at x)

L)) =

H —AL —AT s 9— ALy, — ATys
YA, 0 Cf Wy Cryr — e

H+ A7Cr'Y7A; —Aj s\ __ [ 9 Alyy—pAICrle
Ay C’AYX1 w4 Cyq— ,uYgle

© potentially bad terms C;' and Ygl bounded

® 1in the limit becomes well-behaved

HORES



PRACTICAL PRIMAL-DUAL METHOD

Given po > 0 and feasible (zf,yg), set k=0

Until “convergence” iterate:
Inner minimization: starting from (x3,y;), use an
unconstrained minimization algorithm to find (z, yx) for which

|C (z)yr — prel|l < i and ||g(xr) — AT (g ye|| < pi 000
Set gy, = min(0.1p, p2h2)

Find (2} ,¥;.,) using a primal-dual Newton step from (zy, yx)
If (x5 4, y5.,) is infeasible, reset (x4, ¥j,,) to (Tr, yr)
Increase k£ by 1

FAST ASYMPTOTIC CONVERGENCE

Theorem 6.2. Suppose that f, ¢ € C?, that a subsequence
{(zk, yx)}, k € K, of the practical primal-dual method converges to
(x4, ys) satisfying second-order sufficiency conditions, that A 4(xy)
is full-rank, and that (y,)4 > 0. Then the starting point satisfies the
inner-minimization termination test (i.e., (g, yx) = (z},v;)) and
the whole sequence {(xg, yi)} converges to (z.,y«) at a superlinear
rate (Q-factor 1.9998).




OTHER ISSUES

® polynomial algorithms for many convex problems

o linear programming
o quadratic programming

o semi-definite programming . ..
© excellent practical performance

© globally, need to keep away from constraint boundary until near
convergence, otherwise very slow

® initial interior point:
minimize e’

()

¢ subject to ¢(x) +c¢ >0



