Part 6: Interior-point methods
for inequality constrained optimization

Nick Gould (RAL)

minimize  f(z) subject to ¢(z) >0
zelR"

Part C course on continuoue opti

CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:
© minimize the objective function f(z)

© satisfy the constraints

Recall — overcome this by minimizing a composite merit function
O(x, p) for which

© p are parameters

© (some) minimizers of ®(x, p) wrt & approach those of f(x) subject
to the constraints as p approaches some set P

® only uses unconstrained minimization methods

CONSTRAINED MINIMIZATION

minimize f(z) subject to c¢(x) >0
r€IR"

where the objective function f:IR" — IR
and the constraints ¢ : IR" — IR"

© assume that f, ¢ € C'*! (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary

A MERIT F* FOR INEQUALITY CONSTRAINTS

minimize f(z) subject to c(x) >0
zelR"

Merit function (logarithmic barrier function):

m
Oz, 1) = flx) = p Y _logei(x)
i=1
© required solution as p approaches {0} from above
® may have other useless stationary points
© requires a strictly interior point to start

© consequent points are interior



CONTOURS OF THE BARRIER FUNCTION

=10

Barrier function for min z? + 23 subject to 1 + 23 > 1

BASIC BARRIER FUNCTION ALGORITHM

Given po > 0, set k=0
Until “convergence” iterate:
Find aj, for which ¢(x}) > 0
Starting from «j,, use an unconstrained
minimization algorithm to find an
“approximate” minimizer xy of ®(z, py)
Compute g1 > 0 smaller than py such
that limy_o pp+1 = 0 and increase k by 1

© often choose juy1 = 0.1py, or even i1 = fi}

© might choose zj ;= x;,

CONTOURS OF THE BARRIER FUNCTION (cont.)

~

u=0.01

Barrier function for min 23 + 23 subject to 1 + 23 > 1

MAIN CONVERGENCE RESULT

The active set A(x) = {i | ¢i(xz) =0}

Theorem 6.1. Suppose that f, ¢ € C?, that (y); & wi/ci(zk)
fori=1,...,m, that

[Va® (@, ) [|2 < €x

where €}, converges to zero as k — 0o, and that x; converges to x,
for which {a;(x.)}ic () are linearly independent. Then x, satisfies
the first-order necessary optimality conditions for the problem

minimize f(z) subject to ¢(z) >0
zelR"

and {y;} converge to the associated Lagrange multipliers y..




PROOF OF THEOREM 6.1 .

Let MY {1, ... om} ALY {i | ci() =0} and T M\ A
Generalized inv. Ay(z) = o (Au(z vxﬁ@va A(x) bounded near .
Define

(s = g € Mo (v)a = Alwglen) and (y)z =0,

Ii)zllz < 240/171/ min fe(2.)| (1)

i€l
(if Z # () for all sufficiently large k. (1) + inner-it. termination =

lg(xy,) — AL (@) () all < Nlg(wy) — AT @)yl + AT (2) ()l
< & o € + Ui m./\E__\»N__m
miner |¢;(,)|
(2)
__hwﬁatm@i — (W) allo = __\QAHEG@% - bm@t@»g:w
< 2| Al (@) 8

ALGORITHMS TO MINIMIZE ®(x, u)

Can use
® linesearch methods

o should use specialized linesearch to cope with singularity of log
® trust-region methods

o need to reject points for which c(xy + s5) # 0

o (ideally) need to “shape” trust region to cope with contours of

the singularity

= (W4 — W) alls
AL (z)g(z,) — Al(z)g(z)lls + 1ALz g(z)) — (y;)alla
+ (1) = {yx} — y«. Continuity of gradients + (2) =
g(z.) = Al(z.)y. =0
c(zy) > 0, defs. of y and y, + ¢;i(xg)(yr)i = pp =
QAHL >0, y. > 0and QAHLQ\L& = 0.

= (., y,) satisfies the first-order optimality conditions.

DERIVATIVES OF THE BARRIER FUNCTION

© Vo@(z, 1) = g(z,y(z))
© Viuu®(z, S H(z,y(z)) + pA" (2)C~*(2) A(x)
H(z,y) + AT (x)C Y (2)Y (x) A(2)
H(z,y) + ;A (2)Y?(2) A(x)
where
© Lagrange multiplier estimates: y(z) = uC~(x)e
where e is the vector of ones

o C(z) = diag(ci(z), ..., cn(z))

o Y(z)=diag(y(z),...,yn(x))
o g(z,y(x)) = g(x) — BHA&V (z): gradient of the Lagrangian

o H(z,y(r)) = MU? (z): Lagrangian Hessian



LIMITING DERIVATIVES OF @

Let Z = inactive set at x, = {1,...,m} \ A
For small p: roughly

Vil(z, p) = gx) — AL(@)Y i (2)e — pAL(2)CF (x)e

moderate small
g(x) = AY(a)Yy (2)e
Ve ®(x, 1) = H(z, y(x)) + pA7(z) O (x) Ag(x) +w>m€<m€§€

moderate small large

%

! 7 T 2 T T
~ ALY i) A()

= AY@)C (@)Y 4(2) Ay ()
= pAL(2)C (@) A4 ()

POTENTIAL DIFFICULTIES I

Ill-conditioning of the Hessian of the barrier function:

roughly speaking (non-degenerate case)
© my eigenvalues &~ \; [ALY3A ]/
© n—m, eigenvalues ~ \; [NYH (z,, y.) N 4]

where
m, = number of active constraints
A = active set at z,
Y = diagonal matrix of Lagrange multipliers
N4 = orthogonal basis for null-space of A4

= condition number of V., ®(zy, ux) = O(1/ )
= may not be able to find minimizer easily

GENERIC BARRIER NEWTON SYSTEM

Newton correction s from z for barrier function is

(H(z,y(2)) + AT ()07 (2)Y (2) A(2)) s = —g(,y(x))

LIMITING NEWTON METHOD
For small y: roughly
pAL(2)C (@) Ag(x)s = — (g(2) — AL(2)Y, (2)e)

POTENTIAL DIFFICULTIES II

Value z; ,, = z, is a poor starting point: Suppose
~ Vo ®(xg, ) = g(ar) — AT () C (g )e
RmAawv\tw\fm@iQ\M:&im

Roughly speaking (non-degenerate case) Newton correction satisfies

E.txﬁ@i@%@tbxﬁgm ~ (Myyr — ttxﬁ@tﬁﬁ;atm

0

= (full rank)

Aulzi)s ~ AT b Y%g
= (Taylor expansion)

calzy +s) = calxy) + Aalxy)s =~ Aw - v calzg) <0
Hk+1

if pr+1 < 3p, = Newton step infeasible = slow convergence




PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize f(z) subject to c¢(z) >0

z€IR"
are:
glz) — AT(z)y =0 dual feasibility
Clx)y=0 complementary slackness

c(z)>0 and y >0

Consider the “perturbed” problem

glx) — Al(z)y =0 dual feasibility
C(x)y = pe perturbed comp. slkns.
c(x) >0 and y >0

where p > 0

TRAJECTORIES FOR THE NON-CONVEX CASE

min —2(z; — 0.25)? + 2(z9 — 0.5)?
subject to 1+ 22 < 1
3x1+ 29 <15
(x1,29) >0

“01 0 01 02 03 04 05 06

Trajectories x(u) of perturbed optimality conditions
as p ranges from infinity down to zero

CENTRAL PATH TRAJECTORY

EWSA&H — Cw + AHN — O.mvm
subject to x7 + a9 <1
3r1 4+ 29 < 1.5
(x1,9) >0

Trajectory z(u) of perturbed optimality conditions
as p ranges from infinity down to zero

PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of
glz) — AT(z)y =0 and C(x)y — pe =0
as 0 < g — 0, while maintaining ¢(z) > 0 and y > 0

© nonlinear system = use Newton’s method

Newton correction (s, w) to (x,y) satisfies
H(w,y) =A%)\ (s | _ _ [ gl@)—Al(a)y
YA(z) C(x) w Clx)y — pe

Eliminate w —-
Am.@a y) + \»HA@QLQﬁ\.\»Aavv 5= — Q@v — t\»ﬂAanL@avmv

c.f. Newton method for barrier minimization!



PRIMAL VS. PRIMAL-DUAL

Primal:
(H(z,y(x)) + AT (2)C(2)Y (2)Alz)) 8" = —g(z,y(x))
Primal-dual:
(H(z,y) + AT(x)C ()Y A(x)) 8™ = —g(x, y())
where

y(x) = uC'(z)e

What is the difference?

o freedom to choose y in H(x,y) + AT (2)C~1(2)Y A(z) for
primal-dual . .. vital

© Hessian approximation for small
H(z,y) + AT (2)0  (2)Y A(x) & Al(2)Cy (2)Y4A 4(x)

PRIMAL-DUAL BARRIER METHODS

Choose a search direction s for ®(z, py,) by
(approximately) solving the problem

minimize g(z,y(z))"s +is" (H(z,y) + AT (2)C ()Y A(z)) s

selR"
possibly subject to a trust-region constraint
© y(x) = pC(z)e = g(z,y(x)) = Voo(, 1)
Oy=...
o y(x) = primal Newton method
o occasionally (p—1/p)y(x) = good starting point
o Yo' + " = primal-dual Newton method

o max(y” + wo, ey )e) for “small” e(py) >0
(e.g., €(px) = p}%) = practical primal-dual method

POTENTIAL DIFFICULTY II ... REVISITED

Value z;_ , = z; can be a good starting point:
 primal method has to choose y = y(z%) = p1C (x5 )e
o factor pgy1/ s too small for a good Lagrange multiplier estimate
© primal-dual method can choose y = pxC ! (z)e — v
Advantage: roughly (non-degenerate case) correction s™ satisfies
AL (@) O () A g ()™ & (gy — ) Al() O (e
= (full rank)

Aplzy)s™ =~ A\;.t - Hv calzr)
i

= (Taylor expansion)
calzy + ™) =~ calzy) + Aa(zy)s™ =~ ﬁ@;ai >0
k
= Newton step allowed = fast convergence

POTENTIAL DIFFICULTY I ... REVISITED
Ill-conditioning #=we can’t solve equations accurately:
roughly (non-degenerate case, Z = inactive set at z,)

H —AT s g— ATy
= — S
YA C w Cy — pe
H Ay =A7\ [ s 9= AdYa— ALY
YAy C4 O wy | =— C Ly — pe -
Y;A; 0 C; wy Cryr — pe
H+A7CT'Y A, —Aj s\ __ [ 9—Alya—nACr'e
Ay QLM\MH wy mkltu\\ﬂm

® potentially bad terms C7 Uand M\MH bounded

® in the limit becomes well-behaved
H Ixﬁ s g — \ﬁ“f

Ag 0 Wy 0



PRACTICAL PRIMAL-DUAL METHOD

Given pip > 0 and feasible (zf, yg), set k=0
Until “convergence” iterate:
Inner minimization: starting from (z3,y}), use an

unconstrained minimization algorithm to find (zy, yx) for which

IC(xx)yn — prell < pr and [|g(zx) — AT (zp)yxl| < pf 000

Set 1., , = min(0.142, pk*%%)
Find (x},,,¥},,) using a primal-dual Newton step from (zy, yx)
If (231,95, is infeasible, reset (x3 1,47, ) to (zk, yi)
Increase k by 1

OTHER ISSUES

® polynomial algorithms for many convex problems
o linear programming
o quadratic programming
o semi-definite programming . ..

® excellent practical performance

© globally, need to keep away from constraint boundary until near

convergence, otherwise very slow
® initial interior point:

Te subject to c(z) +¢>0

minimize e

(2.)

FAST ASYMPTOTIC CONVERGENCE

Theorem 6.2. Suppose that f, ¢ € C?, that a subsequence
{(zr, yx)}, k € K, of the practical primal-dual method converges to
(x4, y«) satisfying second-order sufficiency conditions, that A 4(z,)
is full-rank, and that (y,) 4 > 0. Then the starting point satisfies the
inner-minimization termination test (i.e., (zy, yx) = (2},y;)) and
the whole sequence {(zx, yx)} converges to (x.,y.) at a superlinear
rate (Q-factor 1.9998).




