SECTION C: CONTINUOUS OPTIMISATION PROBLEM SET 7

HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY HILARY TERM 2006, DR RAPHAEL HAUSER

*Problem 1. Consider the problem

$$\min - x_1 x_2 x_3
\text{s.t.} \quad 72 - x_1 - 2x_2 - 2x_3 = 0.$$

- (i) For $x^* = [24 \ 12 \ 12]^{\mathrm{T}}$ verify that there exists a Lagrange multiplier λ^* such that (x^*, λ^*) is a KKT point.
- (ii) Now let

$$x(\mu) := \arg\min_{x \in \mathbb{R}^2} Q(x, \mu),$$

where $Q(x,\mu)$ is the quadratic penalty function for (0.1). Verify that the explicit expression for $x(\mu)$ given by

$$x_1(\mu) = 2x_2(\mu), \quad x_2(\mu) = x_3(\mu) = \frac{24}{1 + \sqrt{1 - 8\mu}}$$

satisfies $\nabla_x Q(x(\mu), \mu) = 0$, and verify that $x(\mu) \to x^*$ as $\mu \to 0$.

- (iii) Let $\mu = 1/9$. Find $x(\mu)$ and verify that $D_{xx}^2 Q(x(\mu), \mu)$ is positive definite, so that $x(\mu)$ is a strict local minimiser of $Q(x, \mu)$.
- (iv) Show that $-g(x(\mu))/\mu \to \lambda^*$, where g is the equality constraint function in (0.1).

*Problem 2. Consider the problem

$$\min - x_1 - x_2
\text{s.t.} \quad 1 - x_1^2 - x_2^2 = 0.$$

- (i) Solve this problem using the method of Lagrange multipliers.
- (ii) Now let $x(\mu)$ be a local minimiser of

$$\min_{x \in \mathbb{R}^2} Q(x, \mu), \tag{0.3}$$

where Q is the quadratic penalty function for (0.2). Show that $x_1(\mu) = x_2(\mu)$ and $2x_1^3(\mu) - x_1(\mu) - \mu/2 = 0$.

(iii) Among the two solutions for $x(\mu)$, pick the one for which $x_1(\mu) > 0$. Show that as $\mu \to 0$,

$$x_1 = \frac{1}{\sqrt{2}} + a\mu + O(\mu^2).$$

Find the constant a.

(iv) Now consider the problem

$$\min - x_1 - x_2
\text{s.t.} \quad 1 - x_1^2 - x_2^2 = 0,
x_2 - x_1^2 \ge 0.$$

Show how the penalty function may be modified to solve this problem. Show that there is a range of values of μ for which the minimisers of the two penalty functions agree.

*Problem 3. The quadratic penalty function method was applied to the problem

$$\min - x_1 - x_2 + x_3$$

s.t. $0 \le x_3 \le 1$,
 $x_1^3 + x_3 \le 1$,
 $x_1^2 + x_2^2 + x_3^2 \le 1$,

and the following data was obtained, where k counts the iterations:

k	μ_k	$x_1(\mu_k)$	$x_2(\mu_k)$	$x_3(\mu_k)$
1	1	0.834379	0.834379	-0.454846
2	0.1	0.728324	0.728324	-0.087920
$\frac{3}{4}$	0.01 0.001	0.709557 0.707356	0.709557 0.707356	-0.009864 -0.001017

- (i) Use the table to estimate the optimal solution x^* , the optimal vector of Lagrange multipliers λ^* , and the set of active constraints at optimality $\mathcal{A}(x^*)$.
- (ii) Check that (x^*, λ^*) is a KKT point.
- (iii) What accuracy is predicted by the theory for $x(\mu_4)$ as an approximation of x^* ? Check if the predicted accuracy is consistent with the data obtained, and thus, either accept or reject your hunch about x^* .