SECTIONS C: CONTINUOUS OPTIMISATION REVISION CLASS 1, PART 1

HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY HILARY TERM 2006, DR RAPHAEL HAUSER

Problem 1 (The three parts of this problem are unrelated to one another.)

(i) Show that the Lagrangian dual of the problem

$$\min \frac{1}{2}\sigma x_1^2 + \frac{1}{2}x_2^2 + x_1,$$

s.t. $x_1 > 0$

is a maximisation problem in terms of a Lagrange multiplier λ . For the cases $\sigma = +1$ and $\sigma = -1$, investigate whether the local solution of the dual gives the multiplier λ^* which exists at the local solution to the primal, and explain the difference between the two cases.

(ii) Consider the problem

$$\min_{x \in \mathbb{R}} f(x) = 0,$$

s.t. $-e^x \ge 0.$

Verify that the constraint is concave but inconsistent, so that the feasible region is empty. Set up the Lagrangian dual problem and show that it is solved by $\lambda = 0$ and any x.

(iii) Consider finding the KKT points of the problem

$$\max \frac{1}{3} \sum_{i=1}^{n} x_i^3,$$
s.t.
$$\sum_{i=1}^{n} x_i = 0,$$

$$\sum_{i=1}^{n} x_i^2 = n$$

for any $n \geq 2$. Use the method of Lagrange multipliers (with multipliers λ and μ respectively) to determine the general form of a KKT point for the problem (for general n). For any given n, identify a KKT point (x_1^*, \ldots, x_n^*) with $x_1^* > 0$ and $x_2^*, \ldots, x_n^* < 0$. By examining second order sufficient conditions, show that this point is a local maximiser.

Problem 2 Consider finding the stationary point x^* of a given quadratic function q(x), of which the Hessian matrix G is nonsingular and has only one negative eigenvalue. Let s be a given direction of negative curvature $s^{\mathrm{T}}Gs < 0$. Let $x^{(1)}$ be a given point, and let $x^{(2)}$ maximise $q(x^{(1)} + \alpha s)$ over α .

- (i) If Z is a given $n \times (n-1)$ matrix with independent columns, such that $Z^{\mathrm{T}}Gs=0$, write down the set of points X such that $x-x^{(2)}$ is G-conjugate to s, that is, $s^{\mathrm{T}}G(x-x^{(2)})=0$.
- (ii) It can be shown that the matrix S = (s, Z) is nonsingular and by Sylvester's Law that $S^{T}GS$ has just one negative eigenvalue. Use these results (without proving them) to show that $Z^{T}GZ$ is positive definite and consequently that

$$\min q(x)$$

s.t. $x \in X$

has a unique minimiser x^* . Express x^* in terms of $x^{(2)}$ and $g^{(2)} = \nabla q(x^{(2)})$, and verify that x^* is also the unique saddle point of q(x) in \mathbb{R}^n .

(iii) Show that a suitable Z matrix can be obtained from an elementary Householder orthogonal matrix $Q = I - 2ww^T$, where w is a unit vector such that $Q\gamma = \pm ||\gamma||_2 e_1$, where $\gamma = Gs$, and where e_1 is the first column of the identity matrix I.