SECTION C: CONTINUOUS OPTIMISATION REVISION CLASS 1, PART 2

HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY HILARY TERM 2006, DR RAPHAEL HAUSER

Problem 1 Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x) = x_1 x_2$ where $x = (x_1, x_2)$, and consider the trust region $B_{\Delta}(\hat{x}) = \{x : ||x - \hat{x}|| \le \Delta\}$ around $\hat{x} = (1, 1/2)$, where $|| \cdot ||$ denotes the Euclidean norm. We are interested in solving the trust-region subproblem

$$\operatorname{TR}) \qquad \min_{x \in B_{\Delta}(\widehat{x})} f(x).$$

(i) Show that the Cauchy point is $y^c = (3/8, -3/4)$.

('

- (ii) Find an explicit parameterisation of the dogleg path.
- (iii) Show that the objective function is decreasing on the first segment of the dogleg path and increasing on the second segment. Why does this phenomenon occur?
- (iv) Conclude that there exists a critical value $\Delta_c > 0$ such that the doglegsolution to (TR) is given by the Cauchy point for all $\Delta \geq \Delta_c$.
- (v) Apply Steihaug's method with exact line-searches and find a formula for its solution $y^s(\Delta)$ as a function of Δ .
- (vi) Show that $f(y^s(\Delta))$ is strictly decreasing as a function of Δ .

Problem 2 Consider the BFGS updating formula

$$B_{k+1} = B_k - \frac{B_k \delta_k \delta_k^{\mathrm{T}} B_k}{\delta_k^{\mathrm{T}} B_k \delta_k} + \frac{\gamma_k \gamma_k^{\mathrm{T}}}{\gamma_k^{\mathrm{T}} \delta_k}$$

(i) Explain the meaning of each of the terms appearing in this formula and explain their connection with the so-called "secant-condition".

Now let f be a strictly convex quadratic function in $x \in \mathbb{R}^n$,

$$f(x) = \frac{1}{2}x^{\mathrm{T}}Ax + b^{\mathrm{T}}x + c,$$

where $b \in \mathbb{R}^n$ is a vector and $A \in \mathbb{R}^{n^2}$ a symmetric positive definite matrix. Starting with $B_0 = I$, we will apply BFGS steps with exact line searches.

- (ii) Let S_k be the linear subspace of \mathbb{R}^n such that $s \in S_k$ if $B_k s = f''(x_k)s$ and $\nabla f(x_k)^{\mathrm{T}}s = 0$. Show that if $s \in S_k$ then $\delta_k^{\mathrm{T}}B_k s$ and $\gamma_k s$ are both zero.
- (iii) Conclude from this that $s \in S_k$ implies $\nabla f(x_{k+1})^{\mathrm{T}} s = 0$.
- (iv) Show that $\delta_k^{\mathrm{T}} B_k s = \gamma_k^{\mathrm{T}} s = 0$ implies $B_{k+1} s = B_k s$ and conclude that

$$S_0 \subseteq S_1 \subseteq S_2 \subseteq \cdots \subseteq S_{k+1}.$$

- (v) Show that δ_k is not in S_k .
- (vi) Show that $\delta_k \in S_{k+1}$, and conclude that dim $S_k < \dim S_{k+1}$.
- (vii) Assuming that we stop the procedure when $\nabla f(x_k) = 0$, show that the algorithm terminates after at most *n* steps.