SECTION C: CONTINUOUS OPTIMISATION REVISION CLASS 1, PART 2

HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY
HILARY TERM 2006, DR RAPHAEL HAUSER

Problem 1 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x)=x_{1} x_{2}$ where $x=\left(x_{1}, x_{2}\right)$, and consider the trust region $B_{\Delta}(\widehat{x})=\{x:\|x-\widehat{x}\| \leq \Delta\}$ around $\widehat{x}=(1,1 / 2)$, where $\|\cdot\|$ denotes the Euclidean norm. We are interested in solving the trust-region subproblem

$$
(\mathrm{TR}) \quad \min _{x \in B_{\Delta}(\widehat{x})} f(x)
$$

(i) Show that the Cauchy point is $y^{c}=(3 / 8,-3 / 4)$.
(ii) Find an explicit parameterisation of the dogleg path.
(iii) Show that the objective function is decreasing on the first segment of the dogleg path and increasing on the second segment. Why does this phenomenon occur?
(iv) Conclude that there exists a critical value $\Delta_{c}>0$ such that the doglegsolution to (TR) is given by the Cauchy point for all $\Delta \geq \Delta_{c}$.
(v) Apply Steihaug's method with exact line-searches and find a formula for its solution $y^{s}(\Delta)$ as a function of Δ.
(vi) Show that $f\left(y^{s}(\Delta)\right)$ is strictly decreasing as a function of Δ.

Problem 2 Consider the BFGS updating formula

$$
B_{k+1}=B_{k}-\frac{B_{k} \delta_{k} \delta_{k}^{\mathrm{T}} B_{k}}{\delta_{k}^{\mathrm{T}} B_{k} \delta_{k}}+\frac{\gamma_{k} \gamma_{k}^{\mathrm{T}}}{\gamma_{k}^{\mathrm{T}} \delta_{k}}
$$

(i) Explain the meaning of each of the terms appearing in this formula and explain their connection with the so-called "secant-condition".

Now let f be a strictly convex quadratic function in $x \in \mathbb{R}^{n}$,

$$
f(x)=\frac{1}{2} x^{\mathrm{T}} A x+b^{\mathrm{T}} x+c,
$$

where $b \in \mathbb{R}^{n}$ is a vector and $A \in \mathbb{R}^{n^{2}}$ a symmetric positive definite matrix. Starting with $B_{0}=\mathrm{I}$, we will apply BFGS steps with exact line searches.
(ii) Let S_{k} be the linear subspace of \mathbb{R}^{n} such that $s \in S_{k}$ if $B_{k} s=f^{\prime \prime}\left(x_{k}\right) s$ and $\nabla f\left(x_{k}\right)^{\mathrm{T}} s=0$. Show that if $s \in S_{k}$ then $\delta_{k}^{\mathrm{T}} B_{k} s$ and $\gamma_{k} s$ are both zero.
(iii) Conclude from this that $s \in S_{k}$ implies $\nabla f\left(x_{k+1}\right)^{\mathrm{T}} s=0$.
(iv) Show that $\delta_{k}^{\mathrm{T}} B_{k} s=\gamma_{k}^{\mathrm{T}} s=0$ implies $B_{k+1} s=B_{k} s$ and conclude that

$$
S_{0} \subseteq S_{1} \subseteq S_{2} \subseteq \cdots \subseteq S_{k+1}
$$

(v) Show that δ_{k} is not in S_{k}.
(vi) Show that $\delta_{k} \in S_{k+1}$, and conclude that $\operatorname{dim} S_{k}<\operatorname{dim} S_{k+1}$.
(vii) Assuming that we stop the procedure when $\nabla f\left(x_{k}\right)=0$, show that the algorithm terminates after at most n steps.

