SECTIONS C: CONTINUOUS OPTIMISATION REVISION CLASS 2, PART 1

HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY
HILARY TERM 2006, DR RAPHAEL HAUSER

Problem 1. Consider the following nonlinear programming problem,

$$
\begin{align*}
& \min f(x)=\frac{x_{1}^{2}}{4}+x_{2}^{2} \tag{0.1}\\
& \text { s.t. } g_{1}(x)=4-x_{1} \geq 0 \text {, } \\
& g_{2}(x)=x_{1}^{2}+x_{2}^{2}-25 \geq 0 .
\end{align*}
$$

(i) [3 pts] Use the Bolzano-Weierstrass theorem to prove that if $f: K \rightarrow \mathbb{R}$ is a continuous function defined on the compact set K then there exists a global minimiser $x^{*} \in K$ of the optimisation problem $\min _{x \in K} f(x)$.
(ii) $[4 \mathrm{pts}]$ Sketch the feasible domain of problem (0.1). Also sketch the set $\left\{x \in \mathbb{R}^{2}: f(x) \leq f(-10,0)\right\}$. Using part (i) argue that (0.1) has a global minimiser.
(iii) [4 pts] Write down the Lagrangian \mathcal{L}, its x-gradient $\nabla_{x} \mathcal{L}$ and the KKT conditions for problem (0.1).
(iv) [4 pts] For $x^{*}=\left[\begin{array}{l}4 \\ 3\end{array}\right]$ and $\widehat{x}=\left[\begin{array}{l}0 \\ 5\end{array}\right]$ find Lagrange multiplier vectors λ^{*} and $\widehat{\lambda}$ such that $\left(x^{*}, \lambda^{*}\right)$ and $(\widehat{x}, \widehat{\lambda})$ satisfy the KKT conditions.
(v) [4 pts] Write down necessary and sufficient conditions that characterise when $d \in \mathbb{R}^{2}$ is a feasible exit direction from x^{*}, and use these conditions to prove that x^{*} is a local minimiser of (0.1).
(vi) $[6 \mathrm{pts}]$ Use the same type of argument to prove that \widehat{x} is not a local minimiser.

Problem 2. Consider the unconstrained minimisation problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{2}} f(x)=\frac{\left(x_{1}+x_{2}-10\right)^{2}}{\kappa}+\left(x_{2}-x_{1}\right)^{2} \tag{0.2}
\end{equation*}
$$

where $\kappa>1$ is a fixed parameter.
(i) [4 pts] Starting from $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, apply an exact line search along the search direction $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and show that the updated point is

$$
x^{+}=\left[\begin{array}{c}
\frac{\kappa-1}{\kappa+1} x_{2}+\frac{10}{1+\kappa} \\
x_{2}
\end{array}\right] .
$$

(ii) $[1 \mathrm{pt}]$ Now take $e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ as search direction and show that if an exact line search is applied to $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, then

$$
x^{+}=\left[\begin{array}{c}
x_{1} \\
\frac{\kappa-1}{\kappa+1} x_{1}+\frac{10}{1+\kappa}
\end{array}\right] .
$$

(iii) [5 pts] Let $x^{[0]}$ be the origin and consider the sequence $\left(x^{[k]}\right)_{\mathbb{N}}$ defined iteratively as follows: $x^{[k+1]}$ is obtained by applying an exact line search at $x^{[k]}$ with search direction e_{i} where

$$
i= \begin{cases}1 & (k=0,2,4, \ldots) \\ 2 & (k=1,3,5, \ldots)\end{cases}
$$

Show that

$$
x^{[k]}= \begin{cases}\frac{10}{\kappa-1}\left[\begin{array}{l}
\sum_{i=1}^{k-1} \lambda^{i} \\
\sum_{i=1}^{k} \lambda^{i}
\end{array}\right], & (k=2,4,6, \ldots), \\
\frac{10}{\kappa-1}\left[\begin{array}{l}
\sum_{i=1}^{k} \lambda^{i} \\
\sum_{i=1}^{k-1} \lambda^{i}
\end{array}\right], & (k=3,5, \ldots),\end{cases}
$$

where $\lambda=\frac{\kappa-1}{\kappa+1}$.
(iv) [4 pts] Compute $x^{*}=\lim _{k \rightarrow \infty} x^{[k]}$ and, using sufficient optimality conditions, show that x^{*} is the global optimiser of f.
(v) [6 pts] Define what it means for a sequence to be Q-linearly convergent, and show that $x^{[k]}$ converges to x^{*} Q-linearly.
(vi) [5 pts] What happens to the convergence factor for large κ ? What happens when κ is close to 1 ? How is κ related to the condition number of $f^{\prime \prime}\left(x^{*}\right)$?

