SECTIONS C: CONTINUOUS OPTIMISATION REVISION CLASS 2, PART 2

HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY
HILARY TERM 2006, DR RAPHAEL HAUSER

Problem 1. Consider the following problem:

$$
\begin{array}{ll}
\min \left(x_{1}+1\right)^{2}+x_{2}^{2} \tag{0.1}\\
\text { s.t. } & x_{2} \leq x_{1}^{3 / 2} \\
& x_{2} \geq-x_{1}^{3 / 2}
\end{array}
$$

(i) [3 pts] Sketch the feasible region and argue by inspection of the sketch that $x^{*}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is the optimal solution of (0.1).
(ii) [4 pts] Write down the Lagrangian \mathcal{L}, its x-gradient $\nabla_{x} \mathcal{L}$ and the KKT conditions for problem (0.1).
(iii) [5 pts] Show that there exists no Lagrange multiplier vector λ^{*} such that $\left(x^{*}, \lambda^{*}\right)$ satisfies the KKT conditions. Explain why the KKT conditions are not necessary at x^{*}.
(iv) $[4 \mathrm{pts}]$ Now add the extra constraint $x_{1}^{2}+x_{2}^{2} \geq 1$ and find a Lagrange multiplier vector $\widehat{\lambda}$ such that $(\widehat{x}, \widehat{\lambda})$ satisfies the KKT conditions of the new problem, where $\widehat{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
(v) [5 pts] Characterise the set of feasible exit directions from \widehat{x} and use second order optimality conditions to show that \widehat{x} is not a local minimiser of the problem with the extra constraint.
(vi) [4 pts] Use necessary optimality conditions to show that \widehat{x} is not a local maximiser of the problem with the extra constraint either.

Problem 2. Consider applying the conjugate gradient algorithm to the unconstrained minimisation problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)=\frac{1}{2} x^{\mathrm{T}} A x+b^{\mathrm{T}} x+c
$$

where $A \succ 0$ is a positive definite symmetric $n \times n$ matrix, $b \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Recall that the algorithm proceeds via exact line searches, starting at some $x_{0} \in \mathbb{R}^{n}$ and with search directions

$$
\begin{aligned}
& d_{0}=-\nabla f\left(x_{0}\right) \\
& d_{k}=-\nabla f\left(x_{k}\right)+\frac{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\left\|\nabla f\left(x_{k-1}\right)\right\|^{2}} d_{k-1}
\end{aligned}
$$

(i) $[2 \mathrm{pts}]$ Show by induction on k that

$$
\begin{equation*}
\operatorname{span}\left\{d_{0}, \ldots, d_{k}\right\} \subseteq \operatorname{span}\left\{\nabla f\left(x_{0}\right), \ldots, \nabla f\left(x_{k}\right)\right\}, \quad(k=0, \ldots, n) \tag{0.2}
\end{equation*}
$$

(ii) [6 pts] Show by induction that

$$
\nabla f\left(x_{k}\right) \in \mathcal{K}_{k}:=\operatorname{span}\left\{\nabla f\left(x_{0}\right), A \nabla f\left(x_{0}\right), \ldots, A^{k} \nabla f\left(x_{0}\right)\right\}, \quad(k=0, \ldots, n)
$$

(iii) [7 pts] Now let A have r distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ (that is, if $r<n$ then some of the eigenvalues appear with multiplicity >1). Show that there exist eigenvectors v_{1}, \ldots, v_{r} corresponding to $\lambda_{1}, \ldots, \lambda_{r}$ such that $\nabla f\left(x_{0}\right) \in$ $\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right)$.
(iv) [4 pts] Using part (iii), show that $\mathcal{K}_{k} \subseteq \operatorname{span}\left\{v_{1}, \ldots, v_{r}\right)$.
(v) [6 pts] Why does part (iv) imply that the algorithm converges in at most $r+1$ iterations? You may use the fact that in the lectures we proved that $\nabla f\left(x_{j}\right) \perp \nabla f\left(x_{k}\right)$ for all $j \neq k$.

