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Problem 1. Consider the following problem:

min (x1 + 1)2 + x2

2 (0.1)

s.t. x2 ≤ x
3/2

1
,

x2 ≥ −x
3/2

1
.

(i) [3 pts] Sketch the feasible region and argue by inspection of the sketch that
x∗ =

[
0
0

]
is the optimal solution of (0.1).

(ii) [4 pts] Write down the Lagrangian L, its x-gradient ∇xL and the KKT con-
ditions for problem (0.1).

(iii) [5 pts] Show that there exists no Lagrange multiplier vector λ∗ such that
(x∗, λ∗) satisfies the KKT conditions. Explain why the KKT conditions are
not necessary at x∗.

(iv) [4 pts] Now add the extra constraint x2

1
+x2

2
≥ 1 and find a Lagrange multiplier

vector λ̂ such that (x̂, λ̂) satisfies the KKT conditions of the new problem,
where x̂ =

[
1
0

]
.

(v) [5 pts] Characterise the set of feasible exit directions from x̂ and use second
order optimality conditions to show that x̂ is not a local minimiser of the
problem with the extra constraint.

(vi) [4 pts] Use necessary optimality conditions to show that x̂ is not a local max-
imiser of the problem with the extra constraint either.

Problem 2. Consider applying the conjugate gradient algorithm to the unconstrained
minimisation problem

min
x∈Rn

f(x) =
1

2
xTAx + bTx + c,

where A � 0 is a positive definite symmetric n × n matrix, b ∈ R
n and c ∈ R. Recall

that the algorithm proceeds via exact line searches, starting at some x0 ∈ R
n and

with search directions

d0 = −∇f(x0),

dk = −∇f(xk) +
‖∇f(xk)‖2

‖∇f(xk−1)‖2
dk−1.

(i) [2 pts] Show by induction on k that

span{d0, . . . , dk} ⊆ span{∇f(x0), . . . ,∇f(xk)}, (k = 0, . . . , n). (0.2)
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(ii) [6 pts] Show by induction that

∇f(xk) ∈ Kk := span{∇f(x0), A∇f(x0), . . . , A
k∇f(x0)}, (k = 0, . . . , n).

(iii) [7 pts] Now let A have r distinct eigenvalues λ1, . . . , λr (that is, if r < n

then some of the eigenvalues appear with multiplicity > 1). Show that there
exist eigenvectors v1, . . . , vr corresponding to λ1, . . . , λr such that ∇f(x0) ∈
span{v1, . . . , vr).

(iv) [4 pts] Using part (iii), show that Kk ⊆ span{v1, . . . , vr).
(v) [6 pts] Why does part (iv) imply that the algorithm converges in at most

r + 1 iterations? You may use the fact that in the lectures we proved that
∇f(xj) ⊥ ∇f(xk) for all j 6= k.
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