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Problem 1.

(i) Differentiating θ(α) = f(x+αs) with respect to α, we obtain θ′(α) = sT g(x+αs). Thus the Newton

formula gives

f(x + s) − f(x) − sT g(x) =

∫

1

0

sT (g(x + αs) − g(x))dα.

Hence, using the Cauchy-Schwartz inequality and the Lipschitz continuity of g(x), we have

|f(x + s) − f(x) − sT g(x)| ≤ ‖s‖
∫

1

0

γL(x)‖αs‖dα = γL(x)‖s‖2

∫

1

0

αdα = 1

2
γL(x)‖s‖2.

(ii) Differentiating the product (1 − α)θ′(α) gives

d

dα
(1 − α)θ′(α) = −θ′(α) + (1 − α)θ′′(α).

Integrating from 0 to 1 gives

−θ′(0) = −
∫

1

0

θ′(α)dα +

∫

1

0

(1 − α)θ′′(α)dα

which yields the required integration-by-parts formula using the Newton formula.

A second differentiation θ(α) gives θ′′(α) = sT H(x + αs)s, and trivially
∫

1

0
(1 − α)dα = 1

2
. Hence

from the integration-by-parts formula, we have

f(x + s) − f(x) − sT g(x) − 1

2
sT H(x)s =

∫

1

0

(1 − α)sT (H(x + αs) − H(x))sdα.

Thus, using the Cauchy-Schwartz inequality and the Lipschitz continuity of H(x), it follows that

|f(x + s) − f(x) − sT g(x) − 1

2
sT H(x)s| ≤ ‖s‖2

∫

1

0
(1 − α)γQ(x)‖αs‖dα

= γQ(x)‖s‖3
∫

1

0
(1 − α)αdα = 1

6
γQ(x)‖s‖3

as required

Problem 2.

(i) We may write ai
T s = 0 for i ∈ E as ai

T s ≥ 0 for i ∈ E and −ai
T s ≥ 0 for i ∈ E . Thus, using

Farkas’ lemma, S /∈ ∅ if and only if

g ∈ C =

{

∑

i∈E
uiai −

∑

i∈E
viai +

∑

i∈A
yiai | (ui, vi) ≥ 0 for all i ∈ E and yi ≥ 0 for all i ∈ A

}

=

{

∑

i∈E
ziai +

∑

i∈A
yiai | yi ≥ 0 for all i ∈ A

}

where the sign of zi = ui − vi is unrestricted.
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(ii) Just as in the proofs of Theorems 1.7 and 1.9, consider feasible perturbations x(α) = x∗ +αs+O(α)

about x∗ for the equality (i ∈ E) and active inequality (i ∈ A) constraints such that ci(x(α)) = 0 for

i ∈ E and ci(x(α)) ≥ 0 for i ∈ A. Then, just as in the previous theorems, necessarily

sT ai(x∗) = 0 for all i ∈ E and sT ai(x∗) ≥ 0 for all i ∈ A.

But for such perturbations, the objective function will decrease for small α if sT g < 0, so x∗ can

only be a local minimizer if S is empty. Then Part (i) gives that

g(x∗) =
∑

i∈E
ziai(x∗) +

∑

i∈A
yiai(x∗) where yi ≥ 0 for all i ∈ A

or equivalently

g(x∗) =
∑

i∈E
ziai(x∗) +

∑

i∈I
yiai(x∗) where yi ≥ 0 and yici(x∗) = 0 for all i ∈ I.

Of course, we also necessarily have that

ci(x∗) = 0 for all i ∈ E and ci(x∗) ≥ 0 for all i ∈ I.

Problem 3.

(i) The problem might be non-differentiable because small perturbations in x may cause different terms

fi(x) to define the objective f(x). For example, suppose m = 2, f1(x) = x + 1 and f2(x) = −x + 1.

Then for x ≥ 0, f(x) = x + 1 while for x ≤ 0, f(x) = −x + 1, and there is a derivative discontinuity

at x = 0. It might also be non-differentiable because of the | · | term. For instance if m = 1 and

f1(x) = x, f(x) is non-differentiable at x = 0.

(ii) Clearly |fi(x)| ≤ u is equivalent to −u ≤ fi(x) ≤ u. Minimizing the largest |fi(x)| is equivalent to

minimizing the largest upper bound on |fi(x)|.
The constraints −u ≤ fi(x) ≤ u may be rewritten as fi(x) + u ≥ 0 and u − fi(x) ≥ 0. Let yL

i and

yU

i (respectively) be Lagrange multipliers for these constraints, and let A(x) be the Jacobian of the

vector of fi.

First-order necessary optimality conditions are that the yL and yU satisfy
(

0

1

)

−
(

A(x)

eT

)

yL −
( −A(x)

eT

)

yU = 0

and that

(fmax + fi(x))yL

i = 0 and (fmax − fi(x))yU

i = 0,

where fmax is the optimal objective value. This is to say that

A(x)(yL − yU) = 0

eT (yL + yU) = 1 and (yL, yU) ≥ 0
.

If fmax > 0 only one of the pair (yL

i , yL

u) can be nonzero.

Problem 4
†
.

Clearly, the problem is equivalent to

min
x∈IR

2

f(x) = x2

1
+ x2

2

such that c1(x) = x2

1
+ (x2 − 1)2 − 1 ≥ 0,

c2(x) = −x2

1
− (x2 − 2)2 + 1 ≥ 0.
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Figure 0.1: The feasible domain F is shaded.

We have

∇f(x) =

(

2x1

2x2

)

,

∇c1(x) =

(

2x1

2(x2 − 1)

)

,

∇c2(x) =

( −2x1

−2(x2 − 2

)

,

`(x, y) = x2

1
+ x2

2
− y1

(

x2

1
+ (x2 − 1)2 − 1

)

− y2

(

−x2

1
− (x2 − 2)2 + 1

)

,

∇x`(x, y) =

(

2x1(1 − y1 + y2)

2x2 − 2y1(x2 − 1) + 2y2(x2 − 2)

)

.

The KKT conditions are as follows:

2x1(1 − y1 + y2) = 0 (1)

2x2 − 2y1(x2 − 1) + 2y2(x2 − 2) = 0 (2)

x2

1
+ (x2 − 1)2 − 1 ≥ 0 (3)

−x2

1
− (x2 − 2)2 + 1 ≥ 0 (4)

y1

(

x2

1
+ (x2 − 1) − 1

)

= 0 (5)

y2

(

−x2

1
− (x2 − 2)2 + 1

)

= 0 (6)

y1 ≥ 0 (7)

y2 ≥ 0. (8)

Let us find all the KKT points. We need to distinguish four cases:

(a) If A(x) = ∅ then (1),(2) imply x = 0, which violates (4). Thus, there are no KKT points that

correspond to A(x) = ∅.

(b) If A = {2} then y1 = 0. (1),(2) and (4) imply

2x1(1 + y2) = 0 (9)

2x2 + 2y2(x2 − 2) = 0 (10)

x2

1
+ (x2 − 2)2 = 1. (11)

(9) implies that either x1 = 0 or y2 = −1. The second case contradicts (8), so we may assume

that the first case holds. But then (11) implies x2 ∈ {1, 3}. If x2 = 1 then A(x) = {1, 2}, which

contradicts our earlier assumption. Thus, we must have x2 = 3. But then (10) implies y2 = −3

which contradicts (8). Thus, there are no KKT points corresponding to A = {2}.
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(c) If A(x) = {1} then y2 = 0. (1)– (3) become

2x1(1 − y1) = 0, (12)

2x2 − 2y1(x2 − 1) = 0, (13)

x2

1
+ (x2 − 1)2 = 1. (14)

The unique solution of these equations is

x̂ =

(

0

2

)

, ŷ =

(

2

0

)

.

It is easily checked that (x̂, ŷ) satisfies (1)–(8) and hence is a KKT point. Moreover, the LICQ holds

at x̂ because ∇c1(x̂) =

0

@

0

2

1

A 6= 0.

(d) If A(x) = {1, 2}, then (3) and (4) must hold at equality, that is,

x2

1
+ (x2 − 1)2 − 1 = 0,

x2

1
+ (x2 − 2)2 − 1 = 0.

This system of equations implies x2 = 3/2, x1 = ±
√

3/2. Let us analyse the case x̆ =

0

@

3/2√
3/2

1

A

only, as the two cases are similar. (1),(2) imply

√
3(y2 + 1 − y1) = 0,

3 − y1 − y2 = 0,

which implies y̆ =

0

@

1

2

1

A. It is easily checked that (x̆, y̆) satisfies (1)–(8) and hence is a KKT point.

Likewise, (x̄, ȳ) is a KKT point where x̄ =

0

@

3/2√
3/2

1

A and ȳ = y̆. Furthermore, the LICQ holds

at both points because ∇c1(x̆) =

0

@

√
3

1

1

A and ∇c2(x̆) =

0

@

−
√

3

1

1

A are linearly independent, and

likewise for ∇c1(x̄) =

0

@

−
√

3

1

1

A and ∇c2(x̄) =

(
√

3

1

)

.

In summary, we have found three KKT points. It would be easy to evaluate f at all three points to

find that x̆ and x̄ are global minimizers of our problem. It can also be seen by inspection that x̂ is not a

local minimizer. But as we now show, this information can also be derived from second order information:

Since the LICQ holds at x̂, the first-order feasible directions from x̂ are characterised by

s 6= 0,

sT∇c1(x̂) ≥ 0,

which is equivalent to

s2 ≥ 0,

s2

1
+ s2

2
> 0.

If s2 > 0 then ŷ1s
T∇c1(x̂) = 4s2 > 0, so we don’t need to check any additional conditions for such

directions s. However, if s2 = 0 then ŷ1s
T∇c1(x̂) = 0, and since A(x̂) = {1}, this shows that s is a

first-order feasible direction for which the second order necessary optimality condition

sT Dxx`(x̂, ŷ)s ≥ 0
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has to be satisfied. But note that this condition is violated, because

sT Dxx`(x̂, ŷ)s = s2

1

∂2

∂x2

1

`(x̂, ŷ) = −2s2

1
< 0.

Since x̂ fails to satisfy the second order necessary optimality conditions, it cannot be a local minimizer of

our problem.

Now for x̆, where the LICQ holds, the set of first-order feasible directions is characterised by

s 6= 0,

sT∇c1(x̆) ≥ 0,

sT∇c2(x̆) ≥ 0,

which is equivalent to

|s1| ≤ d2√
3
,

s2 > 0.

But for any s that satisfies these conditions we have

y̆1s
T∇c1(x̆) = 2(

√
3s1 + s2) > 0.

Thus, the set of feasible directions that lie in the set S in the notes for Part 1 of the course is the empty

set. This shows that the sufficient optimality conditions are satisfied at x̆, and that this must be a strict

local minimizer. Likewise, one finds that the sufficient optimality conditions hold at x̄.

Problem 5
†
.

(i) The objective function is unbounded along the line x2 = 0, x1 → ∞. Thus, no global solution exists,

but we can find a local minimum with the method of Lagrange multipliers.

(ii) We get

∇x`(x, y) =

( −0.2(x1 − 4) − 2yx1

2x2 − 2yx2

)

, ∇xx`(x, y) =

( −0.2− 2y 0

0 2 − 2y

)

.

The KKT conditions are

−0.2(x1 − 4) − 2yx1 = 0,

2x2 − 2yx2 = 0,

x2

1
+ x2

2
− 1 ≥ 0,

y(x2

1
+ x2

2
− 1) = 0,

y ≥ 0.

(iii) For A(x) = ∅ have y = 0 and hence, x1 = 4, x2 = 0. This satisfies the constraint, and thus x∗ = (4, 0)

and y∗ = 0 is a KKT point.

If A = {1} then either x2 = 0 or y = 1 (or both). In the former case the active constraint implies

x1 = 1, which corresponds to y = 0.3 or x = −0.5 which gives y = −1. The latter does not satisfy

y ≥ 0 but the former does, so x∗ = (1, 0) and y∗ = 0.3 is another KKT point. Finally, if y = 1,

the first term of the gradient gives x1 = 4/11, and thus x2 =
√

105/11, giving a third KKT point

x∗ = (4/11,
√

105/11) and y∗ = 1.
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(iv) The LICQ holds at x∗ because ∇c1(x
∗) = 2

0

@

x∗
1

x∗
2

1

A 6= 0 unless x∗ = 0.

(v) For the first KKT point, the constraint is inactive and the Hessian of the Lagrangian is indefinite,

so this point does not satisfy the 2nd-order necessary optimality conditions, and thus cannot be a

local minimizer (or maximizer).

The set S of first-order feasible directions from the second KKT point x∗ is

{s ∈ IR2 : s1 = 0, s2 6= 0}.

For any s from that set we have

sT∇xx`(x∗, y∗)s =
(

0 s2

)

( −0.4 0

0 1.4

) (

0

s2

)

= 1.4s2

2
> 0.

Therefore, the sufficient optimality conditions are satisfied and x∗ is a strict local minimizer.

Finally, for the third KKT point, the set of first-order feasible directions is

{s ∈ IR2 : 4/11s1 +
√

105/11s2 = 0} = {s ∈ IR2 : s = σ(
√

105,−4) for all σ}

while the Hessian of the Lagrangian is

∇xx`(x∗, y∗) =

( −2.2 0

0 0

)

.

But then sT∇xx`(x∗, y∗)s = −231σ2 < 0 and so this point does not satisfy the 2nd-order sufficient

optimality conditions—it is a maximizer.

Problem 6
†
. The problem is of course trivial to solve directly, but we want to see how the Lagrange

multiplier approach solves the problem “blindly”. The problem is equivalent to solving

min xT x such that g(x) = aT x + b ≥ 0.

We may assume that a 6= 0; otherwise the problem is trivial. The Lagrangian of this problem is

`(x, y) = xT x − y(aT x + b).

The gradient ∇g(x) = a is nonzero everywhere, and hence the LICQ holds at all feasible points. The KKT

conditions are

x − ya = 0, (15)

y(aT x + b) = 0, (16)

aT x + b ≥ 0, (17)

y ≥ 0. (18)

If y = 0 then x = 0, and then (17) implies b ≥ 0. Either this is true, and then (x, y) = (0, 0) satisfies the

KKT conditions, or else b < 0 and then y = 0 is not a viable choice.

If y > 0, then x = ya 6= 0, aT x + b = y‖a‖2 + b = 0, and then b < 0, which is either true, in which case

(x, y) =
(

(−b/‖a‖2)a,−b/‖a‖2
)

satisfies the KKT conditions, or else y > 0 is not a viable choice.

Thus, we have found that both in the case b ≥ 0 and b < 0 there is exactly one point satisfying the KKT

conditions, and since the KKT conditions must hold at the minimum of our optimisation problem, the

resulting points must be local minimizers. Since the problem is convex these are also the global minimizers

in both cases.

† Thanks to Raphael Hauser for these solutions.
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