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Problem 1.

(a) Since V,F(z.) is non singular, let B be the set of points for which
1(VaF (@) la < 2[(VaF (@) - (1)
Let v be the Lipschitz constant for V,F(z) over B J{z | ||x — z«|]2 < 1}, and let
0 <& <min(L, 1/(v*[|(Vo F(2.)) 1)

be chosen sufficiently small that X = {z | ||z — z.|| <k} C B.

Suppose that z; € X'. Then the next Newton iterate xx1 satisfies

Thy1 —Tw = T — s — (Vo F () F (21) = 23 — 78 — (Vo F(21)) 7 (F(21) — F(24)) )
(VoF(e) " (F(a) — F(ex) — (VP () (e — 0))

But Theorem 1.3 gives that
1F(2,) = F(zy) = Vo F(z) (@, — 2p)lls < $75 |2, — a3 (3)
Hence (1)-(3) and the Cauchy-Schwartz inequality gives
1 = 2ill2 < YNV F(2:)) 7 loll2y, — 2.3 (4)

It then follows from the definition of X’ and (4) that xx41 € X. Hence if 2 € X, all 2 € X, and
(4) implies that {x)} converges to z, Q-quadratically.

(b) The equation has a single (repeated) root . = 0. The Newton iteration is

x|
Tyl = Tp — —2 = 1y,
+ 27, 2k
and thus ||zg+1 — 24| = L||ox —2«]|. The convergence rate is Q-linear. The Jacobian at x, is singular

since V, = 2z, = 0.

Problem 2.

(a) The first-order necessary optimality conditions are that

(et ) v (o ) =0 mnd bt ot =1 =0

This has two solutions z, = (1,0)7, with . = 3/2 and z, = (—1,0)7, with y, = 5/2. For the former
the Hessian of the Lagrangian is I, while for the latter it is —I. Thus the former is an isolated local
(and actually global) minimizer, while the latter is an isolated local (and actually global) maximizer.



(b) The SQP step satisfies the equations

1 0 —2cosf $1 4 cosf
0 1 —2sind So =—| 4sinf |,
2cosf 2sinf 0 yt+ 0

which has the solution s = (sin?#, — cos@sin 0)” and y* = 2 — L cos#. But then cos(z + s) = sin?
and f(z + s) — f(x) = sin? @ which are both positive unless = 0.

(¢) The second-order correction satisfies the equations

1 0 —2cosf sy 0
0 1 —2sin6 s§ | =— 0 ,
2cosf 2sin6 0 y° sin? @
which has the solution s¢ = (=1 cosfsin® §, — 1 sin® )7 and y© = — sin? 4. In particular ||s||o = sin

but ||s°||z = 1 sin? @, and thus the second-order correction is small relative to the SQP step.

Problem 3.

The problem we must solve is to minimize ||s||2 subject to As =c. As || -||2 is not differentiable, we solve
instead the equivalent differentiable problem of minimizing f(s) = 1||s||3 subject to the same constraints.
First-order necessary optimality conditions are that

V.f(s) =s= ATy, where As = —c.

These are the required equations. Since the Hessian of the Lagrangian is I, second-order sufficiency
conditions hold, and thus our equations provide the required solution.

Problem 4.

The problem may be rewritten as

minimize g} s + 157 Bys+ pt subject to |cx + Ags|loo <t and |[[s||1 < Ay
selR"teR

But ||ck + Ars|leo <t is the same as |[cx + Ags|;| <t for all 4, or equivalently —t < [cx + Ags]; <t and

t > 0. The trust-region constraint ||s||; < Ay is equivalent to the 2" linear constraints Y ., o;8; < A
where o; = £1. Thus the /., QP problem with an ¢;-norm trust region is equivalent to the quadratic

program
minimize gFs+ 1T By s + pt
s€eR",teR
subject to  —t < |[cgp + Ags]; <t
t>0,
and >, 058 <A for all combinations of o; = +1.
Problem 5.

The proof is essentially the same as for Theorem 7.1. The only significant difference is that now
m
Va®(zk, i) = g(w) + [[c(ar)] Z (zk)ci(@r)/ -

Now simply replace every mention of |c(z)||3 by |lc(zx)||3 in the original proof.



