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Problem 1.

(a) Since ∇xF (x∗) is non singular, let B be the set of points for which

‖(∇xF (x))−1‖2 ≤ 2‖(∇xF (x∗))
−1‖2. (1)

Let γL be the Lipschitz constant for ∇xF (x) over B
⋃

{x | ‖x − x∗‖2 ≤ 1}, and let

0 < κ < min(1, 1/(γL‖(∇xF (x∗))
−1‖))

be chosen sufficiently small that X = {x | ‖x − x∗‖2 ≤ κ} ⊆ B.

Suppose that xk ∈ X . Then the next Newton iterate xk+1 satisfies

xk+1 − x∗ = xk − x∗ − (∇xF (xk))−1F (xk) = xk − x∗ − (∇xF (xk))−1 (F (xk) − F (x∗))

= (∇xF (xk))−1 (F (x∗) − F (xk) − (∇xF (xk)(x∗ − xk)) .
(2)

But Theorem 1.3 gives that

‖F (x
∗
) − F (xk) −∇xF (xk)(x

∗
− xk)‖2 ≤ 1

2
γL‖x

∗
− xk‖

2
2. (3)

Hence (1)–(3) and the Cauchy-Schwartz inequality gives

‖xk+1 − x
∗
‖2 ≤ γL‖(∇xF (x∗))

−1‖2‖xk − x
∗
‖2
2 (4)

It then follows from the definition of X and (4) that xk+1 ∈ X . Hence if x0 ∈ X , all xk ∈ X , and

(4) implies that {xk} converges to x∗ Q-quadratically.

(b) The equation has a single (repeated) root x∗ = 0. The Newton iteration is

xk+1 = xk −
x2

k

2xk

= 1

2
xk,

and thus ‖xk+1−x∗‖ = 1

2
‖xk−x∗‖. The convergence rate is Q-linear. The Jacobian at x∗ is singular

since ∇x = 2x∗ = 0.

Problem 2.

(a) The first-order necessary optimality conditions are that

(

4[x∗]1 − 1

4[x∗]2

)

− y∗

(

2[x∗]1
2[x∗]2

)

= 0 and [x∗]
2
1 + [x∗]

2
2 − 1 = 0.

This has two solutions x∗ = (1, 0)T , with y∗ = 3/2 and x∗ = (−1, 0)T , with y∗ = 5/2. For the former

the Hessian of the Lagrangian is I , while for the latter it is −I . Thus the former is an isolated local

(and actually global) minimizer, while the latter is an isolated local (and actually global) maximizer.
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(b) The SQP step satisfies the equations





1 0 −2 cos θ

0 1 −2 sin θ

2 cos θ 2 sin θ 0









s1

s2

y+



 = −





4 cos θ

4 sin θ

0



 ,

which has the solution s = (sin2 θ,− cos θ sin θ)T and y+ = 2 − 1

2
cos θ. But then cos(x + s) = sin2 θ

and f(x + s) − f(x) = sin2 θ which are both positive unless θ = 0.

(c) The second-order correction satisfies the equations





1 0 −2 cos θ

0 1 −2 sin θ

2 cos θ 2 sin θ 0









sC

1

sC

2

yC



 = −





0

0

sin2 θ



 ,

which has the solution sC = (− 1

2
cos θ sin2 θ,− 1

2
sin3 θ)T and yC = − sin2 θ. In particular ‖s‖2 = sin θ

but ‖sC‖2 = 1

2
sin2 θ, and thus the second-order correction is small relative to the SQP step.

Problem 3.

The problem we must solve is to minimize ‖s‖2 subject to As = c. As ‖ · ‖2 is not differentiable, we solve

instead the equivalent differentiable problem of minimizing f(s) = 1

2
‖s‖2

2 subject to the same constraints.

First-order necessary optimality conditions are that

∇sf(s) = s = AT y, where As = −c.

These are the required equations. Since the Hessian of the Lagrangian is I , second-order sufficiency

conditions hold, and thus our equations provide the required solution.

Problem 4.

The problem may be rewritten as

minimize
s∈IR

n,t∈IR

gT
k s + 1

2
sT Bks + ρt subject to ‖ck + Aks‖∞ ≤ t and ‖s‖1 ≤ ∆k

But ‖ck + Aks‖∞ ≤ t is the same as |[ck + Aks]i| ≤ t for all i, or equivalently −t ≤ [ck + Aks]i ≤ t and

t ≥ 0. The trust-region constraint ‖s‖1 ≤ ∆k is equivalent to the 2n linear constraints
∑n

i=1
σisi ≤ ∆

where σi = ±1. Thus the `∞ QP problem with an `1-norm trust region is equivalent to the quadratic

program
minimize
s∈IR

n,t∈IR

gT
k s + 1

2
sT Bks + ρt

subject to −t ≤ [ck + Aks]i ≤ t,

t ≥ 0,

and
∑n

i=1
σisi ≤ ∆ for all combinations of σi = ±1.

Problem 5.

The proof is essentially the same as for Theorem 7.1. The only significant difference is that now

∇xΦ(xk , µk) = g(xk) + ‖c(xk)‖2
2

m
∑

i=1

ai(xk)ci(xk)/µk.

Now simply replace every mention of ‖c(xk)‖2
2 by ‖c(xk)‖4

2 in the original proof.
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