Part 2: Linesearch methods
for unconstrained optimization

Nick Gould (RAL)

minimize  f(z)
reIR"

MSc course on nonlinear optimization

UNCONSTRAINED MINIMIZATION

minimize f(z)
reIR"

where the objective function f :IR" — IR

© assume that f € C? (sometimes C?) and Lipschitz

© often in practice this assumption violated, but not necessary




ITERATIVE METHODS

® in practice very rare to be able to provide explicit minimizer
® iterative method: given starting “guess” x(, generate sequence
{z}, k=1,2,...
© AIM: ensure that (a subsequence) has some favourable limiting
properties:

o satisfies first-order necessary conditions

o satisfies second-order necessary conditions

Notation: fi, = f(xy), gr = g(z), Hy = H(x).

LINESEARCH METHODS

© calculate a search direction p; from x;
® ensure that this direction is a descent direction, i.e.,
gip. <0 if g #0

so that, for small steps along py, the objective function
will be reduced

© calculate a suitable steplength a; > 0 so that
[+ arpr) < fi

© computation of ay is the linesearch—may itself be an iteration

® generic linesearch method:

T4l = Tk + Qg



STEPS MIGHT BE TOO LONG
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The objective function f(x) = 2% and the iterates x,; = x5, + aipi
generated by the descent directions pp = (—1)*"! and steps oy =
2+ 3/2M 1 from o = 2

STEPS MIGHT BE TOO SHORT
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The objective function f(z) = 2? and the iterates x4 1 = 21 + aupr
generated by the descent directions pp = —1 and steps ay = 1/2F!
from xg = 2



PRACTICAL LINESEARCH METHODS

® in early days, pick oy to minimize
[z +apy)
o exact linesearch-—univariate minimization
o rather expensive and certainly not cost effective
® modern methods: inexact linesearch

o ensure steps are neither too long nor too short
o try to pick “useful” initial stepsize for fast convergence
o best methods are either

> “backtracking- Armijo” or

> “Armijo-Goldstein”
based

BACKTRACKING LINESEARCH

Procedure to find the stepsize ay:

Given agpit > 0 (e.g., ajpit = 1)

let o) = ajpit and [ =0

Until f(xp + a(l)pk) <7 fr
set ™) = 7o) where 7 € (0,1) (e.g., 7= 1)
and increase [ by 1

Set oy = )

© this prevents the step from getting too small . . . but does not prevent
too large steps relative to decrease in f

® need to tighten requirement

flan +aDp) < fi



ARMIJO CONDITION
In order to prevent large steps relative to decrease in f,
instead require that

flo, +oypy) < () + Byl py
for some B € (0,1) (e.g., 5 =0.1 or even = 0.0001)
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BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize ay:

Given agpit > 0 (e.g., ajpit = 1)

let o) = ajpit and [ =0

Until f(z;, + alp,) < f(z)) + oV Bglp,
set ™) = 7o) where 7 € (0,1) (e.g., 7= 1)
and increase [ by 1

Set oy = )




SATISFYING THE ARMIJO CONDITION

Theorem 2.1. Suppose that f € C1, that g(x) is Lipschitz con-
tinuous with Lipschitz constant y(x), that 8 € (0, 1) and that p is
a descent direction at . Then the Armijo condition

f(z+ap) < f(z) +afg(z)'p
is satisfied for all a € [0, Qupax(s)], Where

2B —1)g(x)"p
v()]|pll3

max —

PROOF OF THEOREM 2.1

Taylor’s theorem (Theorem 1.1) +

2(8 —1)g(x)"p
v(@)Ipll3

IA

«

< fl2) + ag(z)Tp+ y(x)a?|p|)?
< f(@) + ag(@)'p+a(f—1g(x)p
- f



THE ARMIJO LINESEARCH TERMINATES

Corollary 2.2. Suppose that f € C!, that g(z) is Lipschitz con-
tinuous with Lipschitz constant vy at xy, that § € (0, 1) and that
pr is a descent direction at zp. Then the stepsize generated by the
backtracking-Armijo linesearch terminates with

27(8 — 1)gi pi
Vil e |3

ap > min Ainits

PROOF OF COROLLARY 2.2

Theorem 2.1 = linesearch will terminate as soon as @) < qyax.
2 cases to consider:

1. May be that aj;¢ satisfies the Armijo condition = o = ajpit-
2. Otherwise, must be a last linesearch iteration (the {-th) for which

[+1)

al) > Opax — Q) > al = ral¥) > T Olppax

Combining these 2 cases gives required result.



GENERIC LINESEARCH METHOD

Given an initial guess xg, let k =0
Until convergence:
Find a descent direction pj at
Compute a stepsize ay using a
backtracking-Armijo linesearch along py
Set xr1 = x1 + apr, and increase k by 1

GLOBAL CONVERGENCE THEOREM

Theorem 2.3. Suppose that f € C! and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic
Linesearch Method,

either
g =0 for some [ >0
or
JAim i = —o0
or

lim min (|pggel, [pkgel/pillz) = 0.




PROOF OF THEOREM 2.3
Suppose that g, # 0 for all £ and that klim fr > —o0. Armijo =

fk+1 — i < O‘kﬁpggk

for all Kk = summing over first j iterations

J
fiv1 = Jo < kgo .0 9.
LHS bounded below by assumption => RHS bounded below. Sum
composed of -ve terms =
lim oy [pig| =0
Let
27(8 = 1)gi.px
Ypxl3

where 7 is the assumed uniform Lipschitz constant.

Kldéf k‘ainit> &Kgdéf{l,Q,...}\lcl

For k € K4, .

an 27(8 — 1)gx Pr
. T llpel3

T 27(8 — 1) gichpk ’
QP g < <0
. Y [rl
|p£9k| 0 1
ol = 0. (1)
eki=oe ||pi |l
For k € ICo,
Qaj 2 Qipit

—

wfm [pigil = 0. (2)

Combining (1) and (2) gives the required result.



METHOD OF STEEPEST DESCENT

The search direction
Pk = — Gk

gives the so-called steepest-descent direction.

© pi 1s a descent direction

® pg solves the problem
minimize mj(z, +p) < fr +gip subject to [|plla = llgxll2
pE]Rn

Any method that uses the steepest-descent direction is a
method of steepest descent.

GLOBAL CONVERGENCE FOR STEEPEST DESCENT

Theorem 2.4. Suppose that f € C! and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic
Linesearch Method using the steepest-descent direction,

either
g =0 for some [ >0
or
Jdim fi = —o0
or

kh—>Holo gr = 0.




PROOF OF THEOREM 2.4
Follows immediately from Theorem 2.3, since

min (lpggkL \pfgkl/llpklb) = ||gk||2min (1, ||9kH2>

and thus
kh_{go min <|p£gk‘7 |p£9/@|/HpkH2> =0
implies that limy_. . gr = 0.

METHOD OF STEEPEST DESCENT (cont.)

® archetypical globally convergent method

© many other methods resort to steepest descent in bad cases
® not scale invariant

© convergence is usually very (very!) slow (linear)

© numerically often not convergent at all



STEEPEST DESCENT EXAMPLE
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Contours for the objective function f(z,y) = 10(y — 2%)* + (x — 1),
and the iterates generated by the Generic Linesearch steepest-descent
method

MORE GENERAL DESCENT METHODS

Let B be a symmetric, positive definite matrix, and define the
search direction pj so that

Bipr = =g
Then
© pg is a descent direction
® pg solves the problem
minimize mg(azk +p) ¥ fo+glp+ "' Bip

pelR"

© if the Hessian Hy, is positive definite, and B = Hj, this is
Newton’s method



MORE GENERAL GLOBAL CONVERGENCE

Theorem 2.5. Suppose that f € C! and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic
Linesearch Method using the more general descent direction,

either
g =0 for some [ >0
or
lim fk = —00
k—o00
or
9 =0

provided that the eigenvalues of Bj are uniformly bounded and
bounded away from zero.

PROOF OF THEOREM 2.5
Let Amin(Bg) and Apax(By) be the smallest and largest eigenvalues of
B;.. By assumption, there are bounds A, > 0 and Apay such that

B
S

and thus that

TB—l
AL < ATl (BY) = Aan(BiY) < 2088

max — max — HS||2

S )\maX<Bk_1> - )\_1 (Bk> S )\_1

min
for any nonzero vector s. Thus

P19l = 195 Bi ' gkl = i (B D943 > Aol 196113
In addition

lpell3 = 98 B *gr < Amax( B ) 9xll3 < Al g2,

Ipella < Ainllgill2



|p£gk| > Amin

Ipulls = A 1
Thus
min (I s 100l ) 2 U402 i O )
3 X
lim min (|pg gy, [P gl /1pillz) = 0
—_—

i, 96 =0

MORE GENERAL DESCENT METHODS (cont.)

© may be viewed as “scaled” steepest descent
® convergence is often faster than steepest descent

® can be made scale invariant for suitable B,



CONVERGENCE OF NEWTON’S METHOD

Theorem 2.6. Suppose that f € C? and that H is Lipschitz
continuous on IR". Then suppose that the iterates generated by the
Generic Linesearch Method with a;p,;¢ = 1 and 8 < §, in which the
search direction is chosen to be the Newton direction p, = —H; g,
whenever possible, has a limit point x, for which H(z.) is positive

definite. Then

(i) ag = 1 for all sufficiently large k,

(ii) the entire sequence {xj} converges to z,, and

(iii) the rate is Q-quadratic, i.e, there is a constant k > 0.

T e aa |
k=00 |z — x5

PROOF OF THEOREM 2.6
Consider llclglcxk = x,. Continuity = H}, positive definite for all k € IC
sufficiently large = dky > 0:

pHpy > in () ||pyl3

Vko < k € K, where A\pin(H,) = smallest eigenvalue of H(x,) =

Pr gkl = —pi g, = Pr Hypy > Pwin(H)|[pk]]3- (3)
Vky < k € IC, and
kellngoopk =0

since Theorem 2.5 = at least one of the LHS of (3) and

Prgrl _  prg
[r2ale: 1pxll2

converges to zero for such k.

Z %)\min<H*> Hpk’HQ



Taylor’s theorem = dz;. between x; and xj 4 pj such that
fap+p) = fr+ phoe + 0k H(z)py.
Lipschitz continuity of H & Hypr + g = 0 =

@y +pp) — fo — 0tgr = S(f g, + piH(2k)py)
= Y(pigr + i Hipy) + S(0f (H (21) — H)py)
< Wllzr — zillollprlls < Wllpwll3 "
4

Now pick £ sufficiently large so that
YIprll2 < Amin(H)(1 —203).
+(3) + (4) =
f(xp+py) — [

VANRVAN

WE g + SAmin(H) (1 = 28)| 1413
Y1 —(1—20))pigr = Bl or

—> unit stepsize satisfies the Armijo condition, which proves (i).

To obtain the remaining results, note that ||[H; ||, < 2/Amin(H,) for
all sufficiently large k € IC. The iteration gives

Th41 — T = T — Ty — Hk_lgk’ =T — Tx — Hk_l (gk - 9(37*»
= Hy ' (g(x.) — gr — Hy(. — 1)) .
But Theorem 1.3 =

(@) = gi = Hi (2 — @) [l2 < yllwe — 2l

|z = @ully < ANH; ollze = @ll3
which is (iii) when & = 2v/Apin(Hy).

Result (ii) follows since once iterate becomes sufficiently close to z,
(iii) implies that next is even closer.



NEWTON METHOD EXAMPLE
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Contours for the objective function f(z,y) = 10(y — 2%)* + (x — 1),
and the iterates generated by the Generic Linesearch Newton method

MODIFIED NEWTON METHODS

If Hj is indefinite, it is usual to solve instead
(Hy, + My)pr = —gu
where
© M;. chosen so that Hy + M is “sufficiently” positive definite
© My = 0 when Hj, is itself “sufficiently” positive definite

Possibilities:
o If Hj, has the spectral decomposition H, = Q,.D, QL then
Hj, + My, = Q; max(e, | Dy )Qj,
© My = max(0, e — Apin(Hg)) I
©® Modified Cholesky: H, + M, = L, L{



QUASI-NEWTON METHODS

Various attempts to approximate Hy:
© Finite-difference approximations:
(Hp)e; = h™Yg(xy + hey) — gi)
for some “small” scalar h > 0

® Secant approximations: try to ensure the secant condition

Hyi18k = yr, where sp =41 — o and yr = gry1 — Gk

o Symmetric Rank-1 method (but may be indefinite or even
fail):

yr — Hisi)(ye — Hise)"

(yr — Hysp)" sy,

o BFGS method: (symmetric and positive definite if y{ s, > 0):

Hp1 = Hk;+(

yky/:gp HkSkS;‘cka

Hypy = Hyp + -
?lesk S%Hksk

MINIMIZING A CONVEX QUADRATIC MODEL

For convex models (Bj positive definite)

pr = (approximate) arg min fj + pTg,;F + %pTka
peIR"

Generic convex quadratic problem: (B positive definite)

(approximately) minimize ¢(p) = p’g + ip’ Bp
peIR™



MINIMIZATION OVER A SUBSPACE

o Di=(d: - dY)
© Subspace D' = {p | p = D'p, for some p, € IR’}

© p' = arg min q(p)
pGDi

—> D'Tg¢’ =0, where ¢' = Bp' + ¢
o pleD
= p' = p'~! + D'pl;, where
pl; = arg min piDTg =t + 1pt DT BDip,
_ _(%fg{ZBDi>—1Di Tgi=l = —qi-17Tgi-Y(DiTB D)l
— pi = pi~! — @1 TG D(DITBDY) e,

MINIMIZATION OVER A CONJUGATE SUBSPACE

Minimizer over D': p’ = p'~1 — 471 Tgi_lDi(Di TBDi)_lez‘
Suppose in addition the members of D' are B-conjugate:
©® B-conjugacy: d;fFij =0(i#7)

= p' =p'" 4+ o' 1d! where
1 dz—l ng—l

T -l TRBi-1

a

Building a B-conjugate subspace
. . . il
Since ¢ is independent of D', let d' = —¢" + Z_ZO B d’
j:
® choose 3% so that d’ is B-conjugate to D"

2

s 3ij - ii-1 — i gi
Br=0(G<i—1),08 1:ﬁ:||!, |1||2‘2
i~112




CONJUGATE-GRADIENT METHOD

Given p’ = 0, set ¢' = g, d” = —g and i = 0.
Until ¢* “small” iterate

O{i — _gi Tan/dz Tde

P =i+ ald

gt = g + o' Bd

B =1lg3/19'113

di—H _ _gi—H + 6zdz

and increase ¢ by 1

Important features
o dTgt =0foral j=0,...,1 = o' =]g'|3/d'!Bd’
o g Tgtt =0foral j=0,...,4

7

© ¢g'p' <0fori=1,...,n = descent direction for any p; = p

CONJUGATE GRADIENT METHOD GIVES DESCENT

. ) . . . i—2 ) ) .
gz—l sz—l — dz—l T<g + sz—1> — dz—l Tg + JEO Oéjdz_l Tij — dz—l Tg
p' minimizes ¢(p) in D' =

i—1 Tdi—l gTdi—l

i1 Y —1 _ i1 —1
p=p _di—lTBdi—ldl =7 _dz’—lTde'—le :
= T 7i—1)\2
T.i__ T i—1 __ (g7d™)
gr =9p Ji-1TBgi-1’
= ¢'p' < g'p"~! = (induction)
ngi <0
since H H4
T 1 gll2
gp =— <0
g'Bg

= pr = p' is a descent direction



