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Solution to Problem 1: (i) Since x1 = x0 + α0d0 and d0 = −∇f(x0), we have

∇f(x1) = 2Bx1 + b = 2Bx0 − 2α0B∇f(x0) + b

= ∇f(x0) − 2α0B∇f(x0) ∈ span{∇f(x0), B∇f(x0)}.

(ii) We have shown this for k = 0, so we may assume it is true for k ≤ l, and then

∇f(xl+1) = 2Bxl+1 + b = 2Bxl + 2αlBdl + b

= ∇f(xl) + 2αlBdl. (0.1)

Because of

span{d0, . . . , dk} = span{∇f(x0), . . . ,∇f(xk)}.

and the induction hypothesis we have dl ∈ Kl. Therefore, (0.1) shows

∇f(xl+1) ∈ span
(

{∇f(xl)} ∪ BKl

)

= Kl+1.

(iii) This follows from the identity

(I +A)p = I+

(

p

1

)

A +

(

p

2

)

A2 + · · · +

(

p

p − 1

)

Ap−1 + Ap

which is easily checked by induction on p.
(iv) Since rank(A) = r, the image space of A is of dimension r. Therefore, at most

r of the vectors A∇f(x0), . . . , A
k∇f(x0) are linearly independent, and if ∇f(x0) is

linearly independent of the image space of A, then Kk is at most r + 1 dimensional.
(v) In the proof of Lemma 2.3 we have shown that ∇f(xj) ⊥ ∇f(xk) for all

j 6= k. Since Kk is at most r + 1 dimensional for all k, there are at most r + 1
mutually orthogonal nonzero vectors in this space, which shows that it must be the
case that ∇f(xk) = 0 for some k ≤ r. But since f is a strictly convex function, this
is the exact characterisation of the global minimiser (see Lecture 2).

Solution to Problem 3: If ∆k < ε
14β

for some k, then let

p := max{q ∈ N0 : ∆k ≥ ∆k−1 ≥ · · · ≥ ∆k−q}.

Since ∆0 ≥ ε
14β

, it is the case that k − p > 0 and ∆k−p was obtained by shrinking
∆k−p−1 via the relation

∆k−p =
1

4
∆k−p−1.
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But now ∆k−p ≤ ∆k < ε
14β

implies

∆k−p−1 <
2ε

7β
,

and then Lemma 3.4 and equation (1.5) of Lecture 6 show that ∆k−p ≥ ∆k−p−1. This
contradicts what we found above and proves our claim.

Solution to Problem 4: (i) If ∇f(xk)TBk∇f(xk) ≤ 0 then

yc
k = xk − ∆k/‖∇f(xk)‖∇f(xk)

and

mk(xk)−mk(yc
k) ≥ ∇f(xk)T

(

∆k

‖∇f(xk)‖
∇f(xk)

)

= ∆k‖∇f(xk)‖ ≥ ∆kε
Prob.3
≥

ε2

14β
.

(ii) Under these conditions we have

mk(xk) − mk(yc
k) = ∇f(xk)T (αc

k∇f(xk)) −
1

2
(αc

k)
2
∇f(xk)TBk∇f(xk)

=
1

2

‖∇f(xk)‖4

∇f(xk)TBk∇f(xk)
≥

1

2

‖∇f(xk)‖2

β
≥

ε2

2β
,

where we have used the bound ‖Bk‖ ≤ β.
(iii) Since ∇f(xk)TBk∇f(xk) > 0, the line-search objective function

φ(α) = f(xk) − α‖∇f(xk)‖2 +
α2

2
∇f(xk)TBk∇f(xk)

is strictly convex. Therefore, the fact that the Cauchy point can be written as the
convex combination

yc
k = xk +

αc
k

αu
k

(yu
k − xk)

implies

φ(αc
k) <

(

1 −
αc

k

αu
k

)

φ(0) +
αc

k

αu
k

φ(αu
k),

and hence,

mk(xk) − mk(yc
k) = φ(0) − φ(αc

k) >
αc

k

αu
k

(mk(xk) − mk(yu
k ))

(ii)

≥
1

2

‖∇f(xk)‖4

∇f(xk)TBk∇f(xk)

∆k∇f(xk)TBk∇f(xk)

‖∇f(xk)‖3

=
‖∇f(xk)‖∆k

2
=

ε∆k

2

Prob.3
≥

ε2

28β

(iv) The list of cases we considered is exhaustive because of formula (2.1) from
Lecture 6 and the formula for αu

k preceding it.
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(v) Because of the benchmarking of yk+1 against the Cauchy point and parts
(i)–(iii), we have

mk(xk) − mk(yk+1) ≥ mk(xk) − mk(yc
k) ≥

ε2

28β
.

On the other hand, since the step was accepted, formula (1.4) from Lecture 6 shows

f(xk) − f(yk+1) > η
(

mk(xk) − mk(yk+1)
)

≥
ηε2

28β
.
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