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Solution to Problem 1: (i) Since Bk � 0, mk is strictly convex. Therefore,
mk|{xk−t∇f(xk): t∈R} is strictly convex, and since yu

k is the global minimiser of this
restricted function, mk is strictly decreasing along the first section of the dogleg path.
Likewise, the restriction

mk|{yu
k
+τ(yqn

k
−yu

k
):τ∈R}

is strictly convex, and since yqn
k is the global minimiser of mk, it must also be the

global minimiser of this restricted function. Therefore, mk is strictly decreasing along
the second section of the dogleg path.

(ii) It suffices to show that yu
k − xk and yqn

k − yu
k form an acute angle. Since

yu
k − xk ∼ −∇f(xk) up to a positive scalar, this is the same as showing that

〈−∇f(xk), yqn
k − yu

k 〉 > 0. (0.1)

Now, using the notation of the hint, note that since

−∇f(xk) = −∇mk(xk) ∈ 2D

and φ is the restriction of mk to 2D + xk, it must be the case that −∇f(xk) =
−∇φ(0) = d0. Moreover, since the conjugate gradient algorithm takes exact line-
search steps, the next update is z0 = yu

k − xk . At that stage the remaining search
space is one-dimensional and the conjugate gradient algorithm moves to the exact
minimiser z∗ = z1 + αd1 of φ, where α is a positive number. But since the global
minimiser yqn

k is a member of 2D + xk, it must be the case that yqn
k − xk = z∗.

Therefore,

αd1 = z∗ − z1 = (yqn
k − xk) − (yu

k − xk),

which shows that yqn
k − yu

k = α−1d1. The relation (0.1) now follows from our proof of
Theorem 3.4, Lecture 7.

(iii) This is trivial, because in that case the global minimiser yqn
k lies in the trust

region.

(iv) This is a trivial consequence of parts (i) and (ii).

(v) The second formula is trivial. Using the hint to prove the first formula,
note that x = yqn

k is the unique point where the condition ∇mk(x) = 0 is satisfied.
Therefore, denoting the number λ obtained in Equation (0.1) of the problem statement
by λ(∆), we must have λ(∆) > 0 for ∆ < ‖yqn

k − xk‖. Moreover, since ∇mk is
continuous and Rk shrinks down to xk, we have

lim
∆→0

∇mk(x(∆)) = lim
x→xk

∇mk(x) = ∇mk(xk), (0.2)
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and hence,

lim
∆→0+

∆ × λ(∆)
(iv)
= lim

∆→0+
‖x(∆) − xk‖ × λ(∆) = lim

∆→0+
‖∇mk(x(∆))‖ = ‖∇mk(xk)‖.

Together with Equation (0.1) from the problem statement and (0.2) this shows

lim
∆→0+

x(∆) − xk

∆
= lim

∆→0+

λ(∆)(x(∆) − xk)

∆ × λ(∆)
=

−∇mk(xk)

‖∇mk(xk)‖
=

−∇f(xk)

‖∇f(xk)‖
,

as claimed.

Solution to Problem 2: (i) Using the hint, we find that Ax ≤ b has a solution
if and only if b lies in the cone generated by the columns of A′. The fundamental
theorem of linear inequalities says that this occurs if and only if there does not exist
y ∈ Rm such that A

′ Ty ≥ 0 and bTy < 0. But

A
′ Ty ≥ 0 ⇔ (y ≥ 0) ∧ (ATy = 0).

Thus, we have shown that Ax ≤ b has a solution if and only if ATy = 0, y ≥ 0,
bTy < 0 has no solution.

(ii) Clearly, if x ≥ 0, Ax = b and ATy ≥ 0 then

bTy = (Ax)Ty = xT(ATy) ≥ 0.

This shows that (I)⇒(II).
On the other hand, suppose that (I) fails to hold, that is, @ x ≥ 0 such that

Ax = b. This means that b /∈ cone(a1, . . . , am), where ai is the i-th column of A. The
fundamental theorem of linear inequalities says that in this case ∃ y ∈ Rm such that
ATy ≥ 0 and bTy < 0. This shows that ¬(I)⇒ ¬(II).

(iii) This follows immediately from (ii) applied to the matrix A = −
[

a1 ... am

]T

and b = −a0, and where the roles of n and m are exchanged.

Solution to Problem 3: (i) We have cTx = yTAx ≤ yTb, where the last inequality
follows from Equation (0.3) of the problem statement and the fact that y ≥ 0.

(ii) Equation (0.2) of the problem statement shows that y∗ is dual feasible, and
Equation (0.3) implies that x∗ is primal feasible. If x∗ is not primal optimal, then
there exists a primal feasible point x such that

cTx∗ < cTx
(i)

≤ bTy∗ (0.4)
= cTx∗.

Since this is a contradiction, x∗ is primal optimal after all. The proof that y∗ is dual
optimal is analogous.

(iii) The fundamental theorem of linear inequalities shows that exactly one of the
following two alternatives occur:

(I) ∃ {yi ≥ 0 : i ∈ J} such that c =
∑

i∈J yiai.
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(II) ∃ d ∈ Rn such that dTai ≥ 0 (i ∈ J) and dTc < 0.

We claim that (I) holds. Suppose to the contrary that (II) holds. In this case,

aT
i (x∗ − td) ≤ bi − taT

i d ≤ bi, (0 ≤ t, i ∈ J),

aT
i (x∗ − td) ≤ bi,

(

0 ≤ t < min
{i/∈J:aT

i
d<0}

−
bi − aT

i x∗

aT
i d

, i /∈ J
)

,

that is, x∗ − td is feasible for small positive t, and then

cT(x∗ − td) = cTx∗ − tcTd > cTx∗

contradicts the assumption that x∗ is a maximiser of (P).

(iv) For i 6= J set y∗
i = 0 and for i ∈ J set y∗

i = yi. Then (I) shows that ATy∗ = c.
Since y∗ ≥ 0, this shows that y∗ is dual feasible. Moreover, we have

cTx∗ =
m

∑

i=1

y∗
i (aT

i x∗) =
∑

i∈J

yi(a
T
i x∗) +

∑

i/∈J

0× (aT
i x∗)

=
∑

i∈J

yibi +
∑

i/∈J

0 × bi =
m

∑

i=1

y∗
i bi.

This shows that Equation (0.4) of the problem statement holds, and the remaining
claims follow from part (ii).

(v) Part (iv) shows that the existence of a primal optimal solution x∗ implies the
existence of a dual optimal solution y∗. On the other hand, exchanging the roles of
(P) and (D) we obtain the inverse implication. Since in this case, part (iv) also shows
that (0.4) holds: the duality gap at the optimal solutions is zero.
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