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Solution to Problem 1.

(i) We have

(

B + UV T
)(

B−1 − B−1U(I +V TB−1U)−1V TB−1
)

= I−U(I+V TB−1U)−1V TB−1 + UV TB−1 − U
(

V TB−1U
)

(I +V TB−1U)−1V TB−1

= I−U
(

I +V TB−1U
)

(I +V TB−1U)−1V TB−1 + UV TB−1

= I−UV TB−1 + UV TB−1 = I .

(ii) We observe that we never used the condition m ≤ n in part (i). Therefore,
the SMW formula should be applicable to

(

I +V T(B−1U)
)

−1
= I− IV T(I +B−1U I V T)−1B−1U I = I−V T(B + UV T)−1U,

which suggests that I +V TB−1U is invertible. We can easily check this by multiplying
the above result with I+V TB−1U :

(

I +V T(B−1U)
)(

I−V T(B + UV T)−1U
)

= I−V T(B + UV T)−1U + V TB−1U − V TB−1UV T(B + UV T)−1U

= I−V T
(

I +B−1UV T
)

(B + UV T)−1U + V TB−1U

= I−V TB−1U + V TB−1U = I .

Solution to Problem 2.

(i) We have

q(x) = f(xk) + ∇f(xk)T(x − xk) +
1

2
(x − xk)T∇2f(xk)(x − xk).

(ii) ∇q(x∗) = 0 implies

x∗ = xk −∇2f(xk)−1∇f(xk).

Since ∇2q(x) = ∇2f(xk) � 0 for all x ∈ R
n, the second order sufficient optimality

conditions hold at x∗, and x∗ is the global minimiser of q(x).
(iii) x∗ − xk is exactly equal to the Newton-Raphson step for f applied at xk .
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Solution to Problem 3.

(i) f is strictly convex because ∇2f(x) ≡ Diag(κ, 1) � 0. Moreover, ∇f(0) =
Diag(κ, 1)0 = 0, thus x∗ = 0 is a local minimiser because the 2nd order sufficient
optimality conditions hold there. Finally, since f is strictly convex, this function has
a unique local minimiser, which is also its global minimiser.

(ii) Arguing inductively, suppose xk = τ(e, κ)T, where τ > 0 and e = (−1)k.
Then ∇f(xk) ∼ (e, 1)T, so the search direction dk = (−e,−1)T is a positive scalar
multiple of the steepest descent direction. If αk = (2κτ)/(κ + 1) we find that

xk+1 = xk + αkdk = τ
κ − 1

κ + 1

(

−e
κ

)

(0.1)

and then ∇f(xk+1) ∼ (−e, 1)T ⊥ dk. Therefore, the step length αk corresponds to
an exact line search. Using the formula (0.1) inductively, we find

xk =

(

κ − 1

κ + 1

)k (

(−1)k

κ

)

∀k ∈ N0.

(iii) The convergence is Q-linear because

‖xk+1 − x∗‖

‖xk − x∗‖
= ρ =

κ − 1

κ + 1
< 1.

(iv) Expressed in the new coordinates, the objective function becomes

g(y) = f
(

x(y)
)

=
1

2

((

κ−
1

2 0
0 1

)

y

)T (

κ 0
0 1

) ((

κ−
1

2 0
0 1

)

y

)

=
1

2
yTy,

and the starting point is y0 = Diag(κ
1

2 , 1)x0 = (κ
1

2 , κ)T. The steepest descent direc-
tion at y0 is dk = −∇g(y0) = −y0. Therefore, the exact line search corresponds to
the step length α0 = 1 and leads to the global minimiser y∗ = 0 in one step.

(v) We find z0 = (κ + κ2)−
1

2 (1, 1)T and

h(z) := g(y(z)) =
1

2
zT

(

1 0
0 1

)

z.

This is the same situation as analysed in (ii), with κ = 1 and τ = (κ + κ2)−
1

2 . There-
fore, (0.1) shows that z1 = 0 = z∗. Thus, again we have convergence in one step.

Solution to Problem 4.

(i) The secant equation is B(K+1)δ = γ. The validity of this equation is checked
by direct calculation.

(ii) Let f(x) = c + bTx + 1
2xTGx. Then

γ = (b + Gx(k+1)) − (b + Gx(k)) = G(x(k+1) − x(k)) = Gδ,
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and η = (G − B(k))δ. Therefore,

B(k+1) − G = B(k) − G +
−(B(k) − G)

δTδ
δδT − δδT B(k) − G

δTδ
+

δT(B(k) − G)δ

(δTδ)2
δδT

= . . .

=

(

I−
δδT

δTδ

)

(

B(k) − G
)

(

I−
δδT

δTδ

)

.

(iii) We have

η = γ − B(k)δ =

(

1
1

)

−

(

2 1
1 1

) (

1
0

)

=

(

1
1

)

−

(

2
1

)

=

(

−1
0

)

= −δ,

and

B(k+1) =

(

2 1
1 1

)

+
−2δδT

δTδ
+

δTδ

(δTδ)2
δδT

=

(

2 1
1 1

)

−

(

1 0
0 0

)

=

(

1 1
1 1

)

.

(iv) B(k) can become singular and the algorithm may not be able to compute a
quasi-Newton step.
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