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minimize  f(x) subject to c(z) =0
reIR"

MSc course on nonlinear optimization




EQUALITY CONSTRAINED MINIMIZATION

minimize f(z) subject to c(x) =0
r€IR"

where the objective function f : [R" — IR
and the constraints ¢ : [R" — IR™ (m < n)

© assume that f, ¢ € C! (sometimes C*) and Lipschitz
® often in practice this assumption violated, but not necessary

® easily generalized to inequality constraints ...but may be
better to use interior-point methods for these



OPTIMALITY AND NEWTON’S METHOD

1st order optimality:
g(z,y) = g(z) — Al(z)y = 0 and c(z) =0

nonlinear system (linear in y)
=
use Newton’s method to find a correction (s, w) to (x,y)

—
H(z,y) —A'(z) | [ s 9(z,y)
A(x) 0 w c(x)



ALTERNATIVE FORMULATIONS

unsymimetric:
H(z,y) —A"(z)\ (s _ (9(z.y)
A(x) 0 w c(x)
or symmetric:
H(z,y) A=)\ s | _ (9(zy)
A(x) 0 —w c(x)
or (with y* = y + w) unsymmetric:
Hizy) —AT@)\ (5| (g
Alz) 0 y" c()

or symmetric:

H(z,y) Al(z) S
A(x) 0 —y* c(x)



DETAILS

® Often approximate with symmetric B ~ H(x,y) = e.g.

Afz) 0 -yt c(x)
® solve system using
AT
o unsymmetric (LU) factorization of bmwv \»o (z)
T
o symmetric (indefinite) factorization of B Az
Alz) 0

o symmetric factorizations of B and the
Schur Complement A(z)B~ 1A (x)

o iterative method (GMRES(k), MINRES, CG within N'(A),...)



AN ALTERNATIVE INTERPRETATION
QP : minimize g(x)'s+ s’ Bs subject to A(z)s = —c(x)
s€IR"
© QP = quadratic program
® first-order model of constraints c(x + s)

® second-order model of objective f(x + s) ...but
B includes curvature of constraints

solution to QP satisfies

B Al(x) s g(x)
Alz) 0 —y " c(x)



SEQUENTIAL QUADRATIC PROGRAMMING - SQP

or successive quadratic programming
or recursive quadratic programming (RQP)

Given (zg, yo), set k =0
Until “convergence” iterate:

Compute a suitable symmetric By using (g, yx)
Find

Sp = arg min m\wm + Wmﬂm\% subject to Ars = —c¢;
seIR”

along with associated Lagrange multiplier estimates 41
Set 1.1 = x1 + S and increase k by 1




ADVANTAGES

® simple
© fast

o quadratically convergent with By = H (x, yi)
o superlinearly convergent with good By ~ H(x, yx)

> don’t actually need By — H (xy, yi)

PROBLEMS WITH PURE SQP

® how to choose B}?
® what if QP is unbounded from below?” and when?

® how do we globalize this iteration?



QP SUB-PROBLEM

minimize ¢'s+ 1sBs subject to As = —c
s€lR"

® need constraints to be consistent
o OK if A is full rank

® need B to be positive (semi-) definite when As = 0
—

NTBN positive (semi-) definite where the columns of N
form a basis for null(A)
<~

B Al(x)
Alz) 0

(is non-singular and) has m —ve eigenvalues



LINESEARCH SQP METHODS

S = arg min m\w% + Wm%m\am subject to Ars = —c¢;
seIR"

Basic idea:
® Pick 41 = 21 + ay.si, where
o @ 18 chosen so that
Oz + ansk, pr) <" P(x, pr)
o ®(x,p) is a “suitable” merit function
o pg are parameters
® vital that s; is a descent direction for ®(z, py) at xy

® normally require that B}, is positive definite



SUITABLE MERIT FUNCTIONS. I

The quadratic penalty function:

Bz, 1) = flx) + Mw__gg,_w

Theorem 5.1. Suppose that B is positive definite, and that
(Sg, yra1) are the SQP search direction and its associated Lagrange
multiplier estimates for the problem
minimize f(x) subject to c(z) =0
r€IR"

at x;. Then if x;. is not a first-order critical point, sj is a descent
direction for the quadratic penalty function ®(x, uy) at xj whenever

ezl

f <
__MSALL:M




PROOF OF THEOREM 5.1
SQP direction s; and associated multiplier estimates 1 satisfy
Bys), — }ﬂ Yk+1 = — 9k (1)

and
\rﬁww = —Cg. va

(1) + (2) = s.g, = —s. By, + s }A@\At = —s. By.s; — Q@\At

(3)

2N — sl Alc, = 4

Q) = - sfafg - 1% 4

(3) + (4), the positive definiteness of By, the Cauchy-Schwarz inequal-

1 el

ity, the required bound on ug, and s; # 0 if 2 is not critical =
T T lexll3
sk Vo P(ap) = 83| g5 + EA}A G| = =L BiSp = Chlfpsr — Iy

ol
— Y <0
2l

A
|

¢l



NON-DIFFERENTIABLE EXACT PENALTIES

The non-differentiable exact penalty function:

Oz, p) = flx) + plle(z)]

for any norm || - || and scalar p > 0.

Theorem 5.2. Suppose that f,c € C?, and that z, is an isolated
local minimizer of f(x) subject to c¢(z) = 0, with corresponding
Lagrange multipliers y,. Then x, is also an isolated local minimizer
of ®(x, p) provided that

p > ly:llp,

where the dual norm -
(TRl
lyllp = sup 7.
0 |||




SUITABLE MERIT FUNCTIONS. II

The non-differentiable exact penalty function:

Oz, p) = flx) + plle(z)]

for any norm || - || (with dual norm || - ||p) and scalar p > 0.

Theorem 5.3. Suppose that B is positive definite, and that
(Sg, yra1) are the SQP search direction and its associated Lagrange
multiplier estimates for the problem
minimize f(x) subject to c(z) =0
reIR"

at x;. Then if x;. is not a first-order critical point, sj is a descent
direction for the non-differentiable penalty function ®(x, pi) at xy
whenever pg > [|y11[[p




PROOF OF THEOREM 5.3
Taylor’s theorem applied to f and ¢ + (2) = (for small «)

O(z), + asy, pr) — Py, i) = asigy + py (o + adysyll — __Q__v +0(a?)
= asf g+ p (10 = erll = llegll) + Oa?)
= a(s,9; — prllell) + O ()

+ (3), the positive definiteness of By, the Holder inequality, and s; # 0

if z; 1s not critical =—

O(), + asy, py) — Play, pp) = —a (s Bysy, + Yy + pillell) + O(e?)

—a (=llepl 1Y llp + prllegll) + Oa?)

—allegll (or = llyesllp) + O(a?) <0

because of the required bound on pg, for sufficiently small . Hence

A

sufficiently small steps along sy from non-critical x, reduce ®(z, p;.).



THE MARATOS EFFECT

/1 non-differentiable exact
penalty function (p = 1):
flx)=2(xt+25—1) — 2
and c(z) = z¥ + 25— 1

solution: x, = (1,0), y, = 3

Maratos effect: merit function may prevent acceptance of the

SQP step arbitrarily close to z, = slow convergence



AVOIDING THE MARATOS EFFECT

The Maratos effect occurs because the curvature of the constraints is
not adequately represented by linearization in the SQP model:

c(zi + sp) = O(||sel?)

— need to correct for this curvature
— use a second-order correction from z; + Si:

ey, + s, + ) = ol[[sk[l*)
also do not want to destroy potential for fast convergence =

sy = o(sk)



POPULAR 2ND-ORDER CORRECTIONS

® minimum norm solution to c(xzy + sg) + A(xg + si)s5 =0
I Al (2 + sp) s¢ 0
\K&\a + mwv 0 |@m+~ QA&\A + m\av
® minimum norm solution to ¢(xy + sx) + A(xg)s§ =0

I Al(xy) Sy 0
Alxg) 0 — Yk 11 c(zg + sg)

® another SQP step from x; + s;

H(xy, + s,y ) Al(xy, + s1.) sy g(xk + si)
Az + sg) 0 —Ypi1 c(xy + si)

® etc., etc.



2ND-ORDER CORRECTIONS IN ACTION

/1 non-differentiable exact
penalty function (p = 1):
flx)=2(xt+25—1) — 2
and c(z) = z¥ + 25— 1

solution: x, = (1,0), y, = 3

© (very) fast convergence

© x. + s, + s; reduces ¢ = global convergence



TRUST-REGION SQP METHODS

Obvious trust-region approach:

s, = arg min g; s + 1s' B,.s subject to Aps = —c; and |[s]| < A,
s€lR"

® do not require that B} be positive definite
—> can use By = H(xy, yi)

o 1If Ap < AT where

AT min ||s|| subject to Aps = —c;

—> no solution to trust-region subproblem
—> simple trust-region approach to SQP is flawed if ¢, # 0 =
need to consider alternatives



INFEASIBILITY OF THE SQP STEP

\ The linearized oosmim_a

<— The trust region |v/

\ /

The nonlinear constraint



ALTERNATIVES

® the SL,QP method of Fletcher
® composite step SQP methods

o constraint relaxation (Vardi)
o constraint reduction (Byrd-Omojokun)

o constraint lumping (Celis-Dennis-Tapia)

® the filter-SQP approach of Fletcher and Leyffer



THE S¢,QP METHOD

Try to minimize the ¢,-(exact) penalty function

Oz, p) = flx) + plle(z)ll,

for sufficiently large p > 0 and some ¢, norm (1 < p < o0), using a
trust-region approach

Suitable model problem: ¢,QP

minimize (f,+) g;s + s’ Bys + pllex + Aps||, subject to ||s]| < Ay
s€IR"

® model problem always consistent
® when p and Aj are large enough, model minimizer = SQP direction

© when the norms are polyhedral (e.g., ¢; or o norms), ¢,QP is
equivalent to a quadratic program ...



THE (1QP SUBPROBLEM

¢1QP model problem with an /., trust region

minimize g; s + 1s' Bys + p|lcr + Ags||i subject to ||s]lee < A
seIR"

But

cr + Ars = u — v, where (u,v) >0
—> (1 QP equivalent to quadratic program (QP):

minimize gis+1s' Bis + plelu + e'v)
s€IR", u,veIR™
subject to Aps —u+v = —c¢y,
u>0, v>0
and —Are <s < Age
® good methods for solving QP

® can exploit structure of u and v variables



PRACTICAL S/;QP METHODS

® Cauchy point requires solution to £1LP model:

minimize ¢ s + p||cx + Aps||i subject to ||s|lee < Ay
scIR"

® approximate solutions to both ¢;LP and ¢;QP subproblems suffice
® need to adjust p as method progresses
® easy to generalize to inequality constraints

® globally convergent, but needs second-order correction for fast
asymptotic convergence

® if ¢(x) = 0 are inconsistent, converges to (locally) least value
of infeasibility ||c(x)||



COMPOSITE-STEP METHODS

Aim: find composite step
S = ny + 13
where

the normal step n; moves towards feasibility of the linearized
constraints (within the trust region)

[ Arng + cill < le|
(model objective may get worse)

the tangential step t; reduces the model objective function (within
the trust-region) without sacrificing feasibility obtained from ny

\KAAB\\A -+ ?ﬂv = A =— At =0



NORMAL AND TANGENTIAL STEPS

\ The linearized constraint /

Nearest point on linearized constraint

Close to nearest point

~ia.,
~—
O

<— The trust region —

Points on dotted line are all potential tangential steps



CONSTRAINT RELAXATION — VARDI

normal step: relax
Aps = —c and ||s|| < Ag
to
\w\%@ — —O0LCk and :3: M Dw

where oy, € [0, 1] is small enough so that there is a feasible ny

tangential step:

(approximate) arg min (gi + Bpng) t + 3t! Byt
telR"
subject to  Axt =0 and ||ng + t|| < Ay

Snags:
® choice of oy

® incompatible constraints



CONSTRAINT REDUCTION — BYRD-OMOJOKUN

normal step: replace
Aps = —cp and ||s|| < Ag
by

approximately minimize |[Axn + cx|| subject to ||n| < Ay

tangential step: as in Vardi

® use conjugate gradients to solve both subproblems
— (Cauchy points in both cases

© globally convergent using £5 merit function

® basis of successtul KNITRO package



CONSTRAINT LUMPING — CELIS-DENNIS-TAPIA

normal step: replace
Aps = —c¢i and ||s|| < Ay

by
__\f%@l_u Qa__ < 0. and :3: < Ag
where o € [0, ||ck||] is large enough so that there is a feasible ny

tangential step:

(approximate) arg min (gi + Bpny)'t + 3t Byt
telR"
subject to  ||Axt + Agng + ci|| < o and ||t + ng|| < Ay

Snags:
® choice of oy

® tangential subproblem is (NP?) hard



FILTER METHODS — FLETCHER AND LEYFFER

Rationale:

® trust-region and linearized constraints compatible if ¢; is small
enough so long as ¢(x) = 0 is compatible
— if trust-region subproblem incompatible, simply move closer to
constraints

® merit functions depend on arbitrary parameters
—> use a different mechanism to measure progress

Let 0 = ||c(z)]]

A filter is a set of pairs {(0, fr)} such that no member dominates
another, i.e.. it does not happen that

%&nnAS%.& @EQ «\H&RRAS n\gb

for any pair of filter points ¢ # j



A FILTER WITH FOUR ENTRIES

f(z)




BASIC FILTER METHOD

® if possible find

s, = arg min g; s + is' B;s subject to Aps = —¢;, and ||s|| < Ay
scIR"

otherwise, find s;:

O(xy + sp)“<"0; forall i <k

© if x4 sp is “acceptable” for the filter, set ;.1 = 21 + sp
and possibly increase Ay and “prune” filter

® otherwise reduce Ay and try again

In practice, far more complicated than this!



