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Solution to Problem 1.
(i) The second order Taylor development of t — f(x + tu) around t = 0 is

Flo+tu) = f(2) + 1V f () u + %tQuTH(a:)u +o(t2),

where o(t?) is a function such that

o(t?)

=0.
t—0  t2

(ii) Theorem 2.4 (ii) shows
f(x+tu) > f(z) +tVf(z) u.

Therefore, (0.1) shows that

L2y T H(@)u+ ot2) = fla+ tu) — f(z) — £V f(2)Tu > 0,

2
Dividing by ¢? and taking limits, we obtain
t2 th TH + t2
umH(x)u = u' H(z)u + 2lim ot”) = 21im 2 (@)u + olt”) > 0.
t—0 t2 t—0 t2

Since u € R™ was arbitrary, this shows that H(z) is positive semidefinite.
(iii) The fundamental theorem of differential and integral calculus shows

1
flz+tu) = f(z) +/ V f(x + Itu) Ttudy
0
and
1
Vi(z+9tu) u=Vf(z) u+ / Itu” H(x + mdtu)udr.
0

The claim follows by substitution of (0.3) into (0.2).
(iv) The assumption H(y) = 0 (pos. semidefinite) implies

umH(x + m9tu)u > 0

(0.1)

(0.2)

(0.4)

for all 7,1,t such that x 4+ 79tu € D. In particular, this holds when = 4 tu € D and

7,9 € [0,1], because D is convex. Therefore,

1 1
flz+tu) = f(z) +tVf(z) u+ 2 / / YuT H (s + mtu)udrd?
o Jo

> fz) +tV f(z)"u,

(0.5)



where the inequality holds because an integral of a nonnegative function is nonneg-
ative. By virtue of Theorem 2.4 (ii), (0.5) shows that the function ¢ — f(z + tu) is
convex in ¢. That is to say, for any y of the form y = = + tu and any A € [0,1] we
have

fOz+ (1 =Ny) < AMf(x) + (1 =N f(y) (0.6)

But this holds true for all © € R™, so in particular any y € D is of this form with
u =1y — x. Therefore, f is convex on D.

(v) The argument is the same as in (iv), except that the inequalities in (0.5) and
(0.6) change to strict inequalities.

Solution to Problem 2.

(i) f"(z) = C for all x, and since C' > 0, part (v) of Problem 1 shows that f is
strictly convex.

(ii) ¢(a) = (a + bTay, + 32} Cag) + o x (bTdy + 2} Cdy) + o* x (3diCdy) is a
polynomial of degree 2 in a. Moreover, ¢ («) = df Cdj, > 0, since C' = 0 and dj, # 0.
Part (v) of Problem 1 therefore shows that ¢ is strictly convex.

(iii) ¢'(a) = (bTdy + 2}F Cdy) + o x (df Cdy). Since ¢ is strictly convex, it has
a unique local minimiser o* (which is also the global minimiser). The first order
optimality condition ¢'(a*) = 0 implies

0Tdy + 2 Cdy
dr Cdy,

o =

(iv) We have a* > 0, because df Cdy, > 0 and
bYdy 4+ 2L Cdy, = ¢'(0) = Vf(xp)Vd <0
by the assumption that dj is a descent direction. Moreover,
(bTdy + 2L Cdy,)?
2d} Cdy,
(bTdy + 2L Cdy)?
df Cdy,

1
o(a*) = (a+ blay + ixEka) -

1
< (a+b oy + 5:6;50:%) - = ¢(0) + c1a¢'(0),
where the inequality follows from the assumption that ¢; < 1/2. This shows that
the first Wolfe condition holds. The second Wolfe condition holds trivially, because
@' (0) = Vf(zy)dr <0, and hence,

¢ () = 0> c2¢/(0).

Solution to Problem 3.
(i) Since ¢'(a) < 0 for all « € [0, ag), it is true that

B8 ag
f(@rt1) = flog) + ; ¢’ (a)dor + ; ¢'(a)da
B
< fzk) + | ¢ (a)da V3 € [0, ag). (0.7)



(ii) We have

¢’ () = V f (g + ady) " dy,

= (Vf(ax) + V(o +ady) — V() dy
C.S.

A

Vf(@r)di + Nl diell x IV f(zx + adi) =V f (k)|

Lip.

< Vi(xp)Tdy + al||de | (0.8)
(iil) Tt follows from (0.8) that
V() dy + alA||dg|® < 0 (0.9)
implies ¢'(a) < 0. But (0.9) is equivalent to

5 V(@) Td
e A

Since therefore ¢/ (a) < 0 for all a < 3, it must be true that 3 € [0, a;]. Using this in
Equation (0.7), we find

8
F@nr) — flan) < /O (VF(a) dy + ad]|de|?) da

.3
= il X IV £ ()l cos Ok x 3+ - Alld]|*

_ lldell® < IV £ (@) ||? cos® by (-1+ 1)7
Alld|? 2

which proves the required formula.



