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minimize  f(x)
reIR"

MSc course on nonlinear optimization




UNCONSTRAINED MINIMIZATION

minimize f(x)
relR"

where the objective function f : IR" — IR

© assume that f € C' (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary



ITERATIVE METHODS

® in practice very rare to be able to provide explicit minimizer

® iterative method: given starting “guess’” x, generate sequence
AMSAT k= fwu...

® ATM: ensure that (a subsequence) has some favourable limiting
properties:

o satisfies first-order necessary conditions

o satisfies second-order necessary conditions

Notation: fi = f(@k), gx = g(xr), Hp = H(xy).



LINESEARCH METHODS

® calculate a search direction p; from x;
® ensure that this direction is a descent direction, i.e.,

gip, <0 if g #0

so that, for small steps along p;., the objective function
will be reduced

® calculate a suitable steplength aj; > 0 so that
[z + arpr) < fi

® computation of ay is the linesearch—may itself be an iteration

® generic linesearch method:

Thyl = Tk + Ok



STEPS MIGHT BE TOO LONG
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The objective function f(x) = x* and the iterates x.1 = x1 + app
generated by the descent directions p; = (—1)*! and steps a; =
2+ 3/2M1 from g = 2



STEPS MIGHT BE TOO SHORT
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The objective function f(z) = z* and the iterates xp1 = z) + aupi

generated by the descent directions p, = —1 and steps oy = 1/2%F1

from xg = 2



PRACTICAL LINESEARCH METHODS

® in early days, pick a; to minimize

f(xy + apy)

o exact linesearch—univariate minimization

o rather expensive and certainly not cost effective
® modern methods: inexact linesearch

o ensure steps are neither too long nor too short
o try to pick “useful” initial stepsize for fast convergence
o best methods are either

> “backtracking- Armijo” or

> “Armijo-Goldstein”

based



BACKTRACKING LINESEARCH

Procedure to find the stepsize ay:

Given a5 > 0 (e.g., ajpie = 1)

let a0 = Qipit and [ =0

Until f(z) + QSEV <"
set oY = 70D where 7 € (0,1) (e.g.,, T =
and increase [ by 1

DO =
N———

Set ay = V)

® this prevents the step from getting too small . . . but does not prevent
too large steps relative to decrease in f

® need to tighten requirement

flon+alp) < fi



ARMIJO CONDITION
In order to prevent large steps relative to decrease in f,
instead require that

flay +aypy) < flay) + By
for some 6 € (0,1) (e.g., 8 =0.1 or even S = 0.0001)
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BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize ay:

Given a5 > 0 (e.g., ajpie = 1)

let a0 = Qipit and [ =0

Until f(z;, +aWp,) < f(xy) +aVBglp,
set o) = 70D where 7 € (0,1) (e.g., 7 = 1)
and increase [ by 1

Set ay. = alV)




SATISFYING THE ARMIJO CONDITION

Theorem 2.1. Suppose that f € C*, that g(x) is Lipschitz con-
tinuous with Lipschitz constant v(x), that 8 € (0, 1) and that p is
a descent direction at x. Then the Armijo condition

fz+ap) < f(x) +afg(z)'p
is satisfied for all a € |0, pax(s)], Where

2(8 = Dg(x)'p
v(@)lplf3

QE@N I




PROOF OF THEOREM 2.1
Taylor’s theorem (Theorem 1.1) +

2(6 — 1)g(x)'p
I

J

flz+ap) < flz)+ag(z)' p+ iy(z)a’|p|]
f(z) +ag(@)'p+a(B — 1)g(z)'p

f(x)+afg(x)'p

IA A



THE ARMIJO LINESEARCH TERMINATES

Corollary 2.2. Suppose that f € C*, that g(z) is Lipschitz con-
tinuous with Lipschitz constant v, at xy, that 8 € (0,1) and that
pi 1s a descent direction at x;. Then the stepsize generated by the

backtracking-Armijo linesearch terminates with
27(8 — 1)g94 i
Vil Pel3

ayp > min Ainits




PROOF OF COROLLARY 2.2

Theorem 2.1 = linesearch will terminate as soon as a'¥) < ..
2 cases to consider:

L. May be that ajp; it -
2. Otherwise, must be a last linesearch iteration (the [-th) for which

¢ satisfies the Armijo condition = o}, = «

I+1)

al) > Opax —> QU > al = ra¥) > T Olax

Combining these 2 cases gives required result.



GENERIC LINESEARCH METHOD

Given an initial guess xg, let £ =0
Until convergence:
Find a descent direction p;. at ;.
Compute a stepsize ay using a
backtracking-Armijo linesearch along p;
Set 1.1 = x1 + aygpr, and increase k by 1




GLOBAL CONVERGENCE THEOREM

Theorem 2.3. Suppose that f € C! and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic

Linesearch Method,

either
g; =0 for some [ >0
or
Jm fi = —o0
or

lim min (|p} g4l, [P g4l /l1psll2) = 0.

k—o00




PROOF OF THEOREM 2.3
Suppose that g # 0 for all £ and that lim f; > —o0. Armijo =

k—o00

bai — Ji < Q%ﬁmmw

for all kK = summing over first j iterations
J T
\wt — fo < wMHUo Ok G-

LHS bounded below by assumption = RHS bounded below. Sum
composed of -ve terms =—

lim a|p; g, =0

k—o00

Let

27(8 — 1)g P
odlizals

where v is the assumed uniform Lipschitz constant.

K1k | asyi > & Ko {1,2,.. 3\ K,



For k € Iy,

For k € s,

27(68 — 1)g} pr
4__§:w

w
@%®7A§§|eg&§vAo
- Y 2% ||

Vv

Qk

i Lo

— 0.
keki—oo || pg|o

Qp 2 Q4pit

im |pjg;| = 0.

keKo—o00

Combining (1) and (2) gives the required result.



METHOD OF STEEPEST DESCENT

The search direction
Pk — — 3k

gives the so-called steepest-descent direction.

© pg 1s a descent direction

® pp solves the problem

minimize my (z; + p)

pelR”

def fr + Qmﬁ subject to :ﬁ__w = :,Qw:w

Any method that uses the steepest-descent direction is a
method of steepest descent.



GLOBAL CONVERGENCE FOR STEEPEST DESCENT

Theorem 2.4. Suppose that f € C! and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic
Linesearch Method using the steepest-descent direction,

either
g1 =0 for some [ >0
or
Jm fi = —o0
or
lim g, = 0.

k—o00




PROOF OF THEOREM 2.4
Follows immediately from Theorem 2.3, since

wmin (|pg g, [P el /1Pell2) = llgillo min (1, [ gg[l2)

and thus
lim min (|p} 9.l [Pt 94l /11psll2) = 0

k— 00

implies that limy_. g = 0.



METHOD OF STEEPEST DESCENT (cont.)

® archetypical globally convergent method

® many other methods resort to steepest descent in bad cases
® not scale invariant

® convergence is usually very (very!) slow (linear)

® numerically often not convergent at all



STEEPEST DESCENT EXAMPLE
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Contours for the objective function f(z,y) = 10(y — 2%)* + (z — 1),
and the iterates generated by the Generic Linesearch steepest-descent
method



MORE GENERAL DESCENT METHODS

Let Bj be a symmetric, positive definite matrix, and define the
search direction p; so that

Bipr = —gi
Then

® pg is a descent direction

® pp solves the problem

def

minimize 3%@.» +p) = fi + Q\w@ + Wﬁﬂm\%

peIR"

® if the Hessian H. is positive definite, and B = Hj., this is
Newton’s method



MORE GENERAL GLOBAL CONVERGENCE

Theorem 2.5. Suppose that f € C! and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic
Linesearch Method using the more general descent direction,

either
g; =0 for some [ >0
or
lim \w = —0
k—o00
or
lim g =0
k— o0

provided that the eigenvalues of Bj are uniformly bounded and
bounded away from zero.




PROOF OF THEOREM 2.5

Let Amin(Bg) and Apax(Bgx) be the smallest and largest eigenvalues of
B;.. By assumption, there are bounds Ay;n > 0 and Apax such that

T
v:BE < v,EEAmwv m ’ mw%

> TR m v,meAm\Av m v,me
Is]I°

and thus that

ﬂmlH
AL <A (BY) = (B 1) < 2082

max — max — __nw:M

< mexAm\MHv — V/IH Amwv < V/IH

min min

for any nonzero vector s. Thus

P9l = 19 Br, "] = Auin(Bi V|92 115 > Al 96113
In addition

Ipellz = 9 B *gr < Amax( B )l gill2 < Auiullgi 3

Ipelly < Ainll gl



E,?SA_ Amin
el = D 4
Thus
win (1pF gyl 1ol /i) > 212 i (O, )
B s
\arlﬁu BEA_FAQL 1.9/ 1Pl ) =
—

lim g = 0.

k—00



MORE GENERAL DESCENT METHODS (cont.)

® may be viewed as “scaled” steepest descent
® convergence is often faster than steepest descent

® can be made scale invariant for suitable By



CONVERGENCE OF NEWTON’S METHOD

Theorem 2.6. Suppose that f € C? and that H is Lipschitz
continuous on IR". Then suppose that the iterates generated by the
init = 1 and 8 < 4, in which the
search direction is chosen to be the Newton direction p, = —H; 'g,

Generic Linesearch Method with o

whenever possible, has a limit point x, for which H(x,) is positive

definite. Then
(i) ag = 1 for all sufficiently large k,
(ii) the entire sequence {x} converges to x,, and

(iii) the rate is Q-quadratic, i.e, there is a constant k > 0.

oz — 2l

< K.
k=oo [y — aulls T




PROOF OF THEOREM 2.6

Consider \Wm%n&\a = x,. Continuity = H,. positive definite for all k € IC

sufficiently large = dky > 0:

@\wm\%\a > Wv,BEAmL__@w__W

Vko < k € I, where Apin(H,) = smallest eigenvalue of H(z,) =

Pr 9kl = =P 9k = i Hipe = SAin (L) || el (3)
Vko < k € K, and
\Amﬁ%mooﬁw =0

since Theorem 2.5 = at least one of the LHS of (3) and

Prgl _ Pro
pellz - ol

converges to zero for such k.




Taylor’s theorem = dz; between x; and x; + p; such that

flz, + ) = fio + prge + 00 H (21D,
Lipschitz continuity of H & Hypr + g, = 0 =

Y(pf gy, + ot H(z1)py)
Yo gp + i Hipy) + 3ot (H (2) — Hi)py)
Wllzr — zrllallpellz < Wvlipwlls
(4)

[, +pp) — fr — 0L Gk

VAN

Now pick k sufficiently large so that
YIPellz < Amin(H)(1 — 25).
+3)+4) =

flx, +p.) — i WBMJS@ + $Amin(H) (1 — w@:@i_w

Y1 — (1 —28)pi9r = Brig;

—> unit stepsize satisfies the Armijo condition, which proves (i).

IA A



To obtain the remaining results, note that ||H; ||, < 2/Amin(H,) for

all sufficiently large k£ € KC. The iteration gives

Tt — T = T — T — Hy gy = 2 — 2 — Hi (g — g(z))
— Hi (gle.) — gy — Hylz. — 21).
But Theorem 1.3 =

lg(zs) — gr — Hi (z — 1) [|o < Al — 2il5

—
|1 = zlly < YIH lollz — 2ll;
which is (iii) when K = 2v/Anin(Hy).

Result (ii) follows since once iterate becomes sufficiently close to .,
(iii) implies that next is even closer.



NEWTON METHOD EXAMPLE

0.5

-0.5

Contours for the objective function f(z,y) = 10(y — 2%)* + (z — 1),
and the iterates generated by the Generic Linesearch Newton method




MODIFIED NEWTON METHODS

If H; is indefinite, it is usual to solve instead
(Hy, + My)pr = —gx
where
® M. chosen so that Hj, + M. is “sufficiently” positive definite

© M =0 when Hy is itselt “sufficiently” positive definite

Possibilities:
© If H} has the spectral decomposition H, = Q,.D, Q4 then
Hj, + My = Q;max(e, | Dy |)Qj
© My = max(0, € — A\pin(Hy)) I
® Modified Cholesky: H, + M, = L, L}



QUASI-NEWTON METHODS

Various attempts to approximate Hy:
® Finite-difference approximations:
(Hi)ei = h™'(g(xr, + he;) — gi)
for some “small” scalar A > 0

® Secant approximations: try to ensure the secant condition

Hiy18p =Yg, where sp = 2py1 — 2 and yp = Grr1 — Gk
o Symmetric Rank-1 method (but may be indefinite or even
fail):
(yr. — Hsp) (Y — Hysp)"
(yr — Hysp)" sk
o BFGS method: (symmetric and positive definite if i s;, > 0):

Hyy = Hp +

T T
(v H;s,.s1. H

Hyo | = H, + \wwl \aﬂ\ia k
Yk Sk si. Hy.sy,




MINIMIZING A CONVEX QUADRATIC MODEL

For convex models ( By, positive definite)

pr. = (approximate) arg min fi +p’ g} + ip’ Bip
peIR"

Generic convex quadratic problem: (B positive definite)

(approximately) minimize ¢(p) = p’ g + Lp’ Bp
peIR”



MINIMIZATION OVER A SUBSPACE

© D'=(d":---:d™)
© Subspace D' = {p | p= D'p,; for some p, € IR’}

® p! = arg min q(p)
@mﬁ&

—> D'T¢’ =0, where ¢' = Bp' + ¢
® @@.IH c Mus
= p' = p'~ ! + D'p}}, where

Bg = arg min py I'pit @ LR + ipy ' Dt ﬂmbgﬁg
pa€IR’

— |A®N. ﬂmw&vlﬂg& ﬂrQN.IH — |&@.IH ﬂQ&IHAU& ﬂmw&vl
— BN. — BTH B HQTHU&AU& ﬂmw@&vl



MINIMIZATION OVER A CONJUGATE SUBSPACE

Minimizer over D% p' = p=! — d= 1 g1 DY D' T BD") te,
Suppose in addition the members of D are B-conjugate:
© B-conjugacy: d! Bd; =0 (i # j)
= p' = p L+ o' d' where

&@.IH ﬂ,Qs.IH

- Ji-1T Bgi-1

QSIH —

Building a B-conjugate subspace

| | | N
Since ¢' is independent of D, let d' = —¢" + .Mo 5 d’
b“
® choose BY so that d' is B-conjugate to D"

= U =0(j<i—1), 8 =5 = 1A
lgi-1l3



CONJUGATE-GRADIENT METHOD

Gaz g’ “small” iterate
. |Qgﬂ&g\&gﬂm&N
@. =p' t+a i
g =g' + o'Bd’
B = :Qigw\__mszw
&I.H er Q@&@
and 59@@% 1 by 1

Given p’ = 0, set ¢’ = ¢, d" =

—g and 1 = 0.

Important features

o d g™ =0forall j =0,

o g/ lg™t =0forall j =0,.

o glp' <0fori=1,...,n = descent direction for any p, = p

)

— o' = ||g'[l3/d" " Bd'

!



CONJUGATE GRADIENT METHOD GIVES DESCENT

.QsIH NJGNNIH _ &sIH NJAQAT m@slwv _ &NIH ﬂ.Ql_l,wWUo O@.&sIH ﬂm&u _ &NIH MJQ

p' minimizes ¢(p) in D' =

i i1l g~ d! g1 — i1 g'd! g1
p=p di-1TBJi—1 =P di-1TBJi—1 .
— T 7i—1\2
T i __ T i—1 __ (g"d"™)
gp=9p di-1T Bdi—1’
— glp' < ¢! p"~! = (induction)
Qﬂ@& <0
since : __NP
T 1 gil2
gp =— <0
g'Bg

= pp = p' is a descent direction



