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ABSTRACT

We provide a concise introduction to modern methods for solving continuous nonlinear optimization

problems. We consider both linesearch and trust-region methods for unconstrained minimization,

interior-point methods for problems involving inequality constraints, and SQP methods for those

involving equality constraints. Theoretical as well as practical aspects are emphasised. We conclude

by giving a personal view of some of the most significant papers in the area, and a brief guide to

on-line resources.
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INTRODUCTION

The solution of nonlinear optimization problems—that is the minimization or maximization of an

objective function involving unknown parameters/variables in which the variables may be restricted

by constraints—is one of the core components of computational mathematics. Nature (and man)

loves to optimize, and the world is far from linear. In his book on Applied Mathematics, the

eminent mathematician Gil Strang opines that optimization, along with the solution of systems of

linear equations, and of (ordinary and partial) differential equations, is one of the three cornerstones

of modern applied mathematics.

Optimization problems can broadly be described as either continuous or discrete, but may be

a mix of both. Discrete optimization is, as its name suggests, concerned with the case where the

variables may only take on discrete (and typically integer) values. Often these problems are very

hard, and only enumeration of all possible points is guaranteed to work. Fortunately, sometimes

the problems are easy, and simple (greedy) heuristics are guaranteed to work. By contrast, the

variables in continuous optimization problems are allowed to take on any values permitted by the

constraints. Here we shall only be concerned with continuous optimization. More especially, we

shall restrict ourselves to problems whose defining functions are differentiable, since then we will be

able to predict how small changes in variable values will effect the objective and constraints. There

are good methods for non-differentiable optimization, but these often rely on estimates of (often

unknown) Lipschitz constants.

This article is partitioned in broadly the same way as the course on which it is based. Optimality

conditions play a vital role in optimization, both in the identification of optima, and in the design

of algorithms to find them. We consider these in Section 1. Sections 2 and 3 are concerned with the

two main techniques for solving unconstrained optimization problems. Although it can be argued

that such problems arise relatively infrequently in practice (nonlinear fitting being a vital exception),

the underlying linesearch and trust-region ideas are so important that it is best to understand them

first in their simplest setting. The remaining two sections cover the problems we really wish to

solve, those involving constraints. We purposely consider inequality constraints (alone) in one and

equality constraints (alone) in the other, since then the key ideas may be developed without the

complication of treating both kinds of constraints at once. Of course, real methods cope with both,

and suitable algorithms will be hybrids of the methods we have considered.

We make no apologies for mixing theory in with algorithms, since (most) good algorithms have

good theoretical underpinnings. So as not to disturb the development in the main text, the proofs

of stated theorems have been relegated to Appendix C. In addition, we do not provide citations

in the main text, but have devoted Appendix A to an annotated bibliography of what we consider

to be essential references in nonlinear optimization. Such a list is, by its nature, selective, but we

believe that the given references form a corpus of seminal work in the area, which should be read

by any student interested in pursuing a career in optimization.

Before we start, we feel that one key development during the last eight years has done more

to promote the use of optimization than possibly any other. This is NEOS, the Network Enabled

Optimization Server, at Argonne National Laboratory and Northwestern University in Chicago,

see http://www-neos.mcs.anl.gov/neos . Here, users are able to submit problems for remote

solution, without charge, by a large (and expanding) collection of the world’s best optimization

solvers, many of them being only available otherwise commercially. Further details of what may be

found on the World-Wide-Web are given in Appendix B.
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1 OPTIMALITY CONDITIONS AND WHY THEY ARE

IMPORTANT

1.1 Optimization problems

As we have said optimization is concerned with the minimization or maximization of an objective

function, say, f(x). Since

maximum f(x) = − minimum (−f(x))

there is no loss in generality in concentrating in this article on minimization—throughout, mini-

mization will take place with respect to an n-vector, x, of real unknowns. A bit of terminology here:

the smallest value of f gives its minimum, while any (there may be more than one) corresponding

values of x are a minimizer .

There are a number of important subclasses of optimization problems. The simplest is uncon-

strained minimization, where we aim to

minimize
x∈IR

n
f(x)

where the objective function f : IRn −→ IR. One level up is equality constrained minimization, where

now we try to

minimize
x∈IR

n
f(x) subject to c(x) = 0

where the constraints c: IRn −→ IRm. For consistency we shall assume that m ≤ n, for otherwise

it is unlikely (but not impossible) that there is an x that satisfies all of the equality constraints.

Another important problem is inequality constrained minimization, in which we aim to

minimize
x∈IR

n
f(x) subject to c(x) ≥ 0

where c: IRn −→ IRm and now m may be larger than n. The most general problem involves both

equality and inequality constraints—some inequalities may have upper as well as lower bounds—and

may be further sub-classified depending on the nature of the constraints. For instance, some of the

ci(x) may be linear (that is ci(x) = aTi x− bi for some vector ai and scalar bi), some may be simple

bounds on individual components of x (for example, ci(x) = xi), or some may result from a network

(“flow in = flow out”).

1.2 Notation

It is convenient to introduce our most common notation and terminology at the outset. Suppose

that f(x) is at least twice continuously differentiable (f ∈ C2). We let ∇xf(x) denote the vector

of first partial derivatives, whose i-th component is ∂f(x)/∂xi. Similarly, the i, j-th component of

the (symmetric) matrix ∇xxf(x) is the second partial derivative ∂2f(x)/∂xi∂xj . We also write the

usual Euclidean inner product between two p-vectors u and v as 〈u, v〉
def
=
∑p
i=1 uivi (and mention,

for those who care, that some but not all of what we have to say remains true in more general

Hilbert spaces!). We denote the set of points for which all the constraints are satisfied as C, and say

that any x ∈ C (resp. x /∈ C) is feasible (resp. infeasible).

With this in mind we define the gradient and Hessian (matrix) of the objective function f to be

g(x)
def
= ∇xf(x) and H(x)

def
= ∇xxf(x), respectively. Likewise, the gradient and Hessian of the i-th
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constraint are ai(x)
def
= ∇xci(x) and Hi(x)

def
= ∇xxci(x). The Jacobian (matrix) is

A(x)
def
= ∇xc(x) ≡





aT1 (x)

· · ·

aTm(x)



 .

Finally, if y is a vector (of so-called Lagrange multipliers), the Lagrangian (function) is

`(x, y)
def
= f(x) − 〈y, c(x)〉,

while its gradient and Hessian with respect to x are, respectively,

g(x, y)
def
= ∇x`(x, y) ≡ g(x) −

m
∑

i=1

yiai(x) ≡ g(x) −AT (x)y and

H(x, y)
def
= ∇xx`(x, y) ≡ H(x) −

m
∑

i=1

yiHi(x).

One last piece of notation: ei is the i-th unit vector, while e is the vector of ones, and I is the

(appropriately dimensioned) identity matrix.

1.3 Lipschitz continuity and Taylor’s theorem

It might be argued that those who understand Taylor’s theorem and have a basic grasp of linear

algebra have all the tools they need to study continuous optimization—of course, this leaves aside all

the beautiful mathematics needed to fully appreciate optimization in abstract settings, yet another

future EPSRC summer school course, we hope!

Taylor’s theorem(s) can most easily be stated for functions with Lipschitz continuous derivatives.

Let X and Y open sets, let F : X → Y , and let ‖ · ‖X and ‖ · ‖Y be norms on X and Y respectively.

Then F is Lipschitz continuous at x ∈ X if there exists a function γ(x) such that

‖F (z)− F (x)‖Y ≤ γ(x)‖z − x‖X

for all z ∈ X . Moreover F is Lipschitz continuous throughout/in X if there exists a constant γ such

that

‖F (z)− F (x)‖Y ≤ γ‖z − x‖X

for all x and z ∈ X . Lipschitz continuity relates (either locally or globally) the changes that occur

in F to those that are permitted in x.

Armed with this, we have the following Taylor approximation results. The first suggests how

good (or bad) a first-order (linear) or second-order (quadratic) Taylor series approximation to a

scalar-valued function may be.
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Theorem 1.1. Let S be an open subset of IRn, and suppose f : S → IR is continuously

differentiable throughout S. Suppose further that g(x) is Lipschitz continuous at x, with

Lipschitz constant γL(x) in some appropriate vector norm. Then, if the segment x + θs ∈ S

for all θ ∈ [0, 1],

|f(x+ s) −mL(x+ s)| ≤ 1
2
γL(x)‖s‖2, where

mL(x+ s) = f(x) + 〈g(x), s〉.

If f is twice continuously differentiable throughout S and H(x) is Lipschitz continuous at x,

with Lipschitz constant γQ(x),

|f(x+ s) −mQ(x+ s)| ≤ 1
6
γQ(x)‖s‖3, where

mQ(x+ s) = f(x) + 〈g(x), s〉 + 1
2
〈s,H(x)s〉.

The second result is a variation on the theme of the first, and is often refereed to as the generalized

mean-value theorem.

Theorem 1.2. Let S be an open subset of IRn, and suppose f : S → IR is twice continuously

differentiable throughout S. Suppose further that s 6= 0, and that the interval [x, x + s] ∈ S.

Then

f(x+ s) = f(x) + 〈g(x), s〉 + 1
2
〈s,H(z)s〉

for some z ∈ (x, x+ s).

The third result compares how bad a first-order Taylor series approximation to a vector valued

function might be.

Theorem 1.3. Let S be an open subset of IRn, and suppose F : S → IRm is continuously

differentiable throughout S. Suppose further that ∇xF (x) is Lipschitz continuous at x, with

Lipschitz constant γL(x) in some appropriate vector norm and its induced matrix norm. Then,

if the segment x+ θs ∈ S for all θ ∈ [0, 1],

‖F (x+ s) −ML(x+ s)‖ ≤ 1
2
γL(x)‖s‖2,

where

ML(x+ s) = F (x) + ∇xF (x)s

1.4 The fundamental theorem of linear inequalities

Most readers probably feel comfortable with systems of linear equations, but are less familiar with

linear inequalities. There is a rich theory of the latter, but only one famous result concerns us here.
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This is the so-called fundamental theorem of linear inequalities, or Farkas’ lemma.

To set the scene, let A be a given index set, and suppose {ai}i∈A are given vectors. The

(polyhedral) cone

C = {
∑

i∈A

yiai | yi ≥ 0}

is the closed, convex1 set of all positive linear combinations of our given vectors. The question we

ask is, when does another given vector g lie in C? The answer is if and only if g is not separated

from the vectors {ai}i∈A by a hyperplane sT v = 0 for some given s, see Figure 1.1. Formally

g

a3a2

a1

a3a2

a1

g C

s

C

Figure 1.1: In the left-hand illustration, g is not in C, and is separated from {ai}i∈A by the hyper-

plane sT v = 0.

Farkas’ Lemma. Given any vectors g and ai, i ∈ A, the set

S = {s | 〈s, g〉 < 0 and 〈s, ai〉 ≥ 0 for i ∈ A}

is empty if and only if

g =
∑

i∈A

yiai

for some yi ≥ 0, i ∈ A

1The fact that C is closed seems obvious but needs some proof. See e.g., Nocedal and Wright J. Nocedal and S.

Wright, “Numerical Optimization”, Springer Verlag (1999), p357.
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1.5 Optimality conditions

Now is the time to come clean. It is very, very difficult to say anything about the solutions to the

optimization problems given in Section 1.1. This is almost entirely because we are considering very

general problems, for which there may be many local, often non-global, minimizers. There are two

possible ways around this. We might choose to restrict the class of problems we allow, so that all

local minimizers are global. But since this would rule out the vast majority of nonlinear problems

that arise in practice, we instead choose to lower our sights, and only aim for local minimizers—there

are methods that offer some guarantee of global optimality, but to date they are really restricted to

small or very specially structured problems.

Formally, we still need to define what we mean by a local minimizer. A feasible point x∗ is a

local minimizer of f(x) if there is an open neighbourhood N of x∗ such that f(x∗) ≤ f(x) for all

x ∈ C
⋂

N . If there is an open neighbourhood N of x∗ such that f(x∗) < f(x) for all x 6= x∗ ∈ C
⋂

N ,

it is isolated.

While such definitions agree with our intuition, they are of very little use in themselves. What

we really need are optimality conditions. Optimality conditions are useful for three reasons. Firstly,

the provide a means of guaranteeing that a candidate solution is indeed (locally) optimal—these are

the so-called sufficient conditions . Secondly, they indicate when a point is not optimal—these are

the necessary conditions . Finally they guide us in the design of algorithms, since lack of optimality

indicates when we may improve our objective. We now give details.

1.6 Optimality conditions for unconstrained minimization

We first consider what we might deduce if we were fortunate enough to have found a local minimizer

of f(x). The following two results provide first- and second-order necessary optimality conditions

(respectively).

Theorem 1.4. Suppose that f ∈ C1, and that x∗ is a local minimizer of f(x). Then

g(x∗) = 0.

Theorem 1.5. Suppose that f ∈ C2, and that x∗ is a local minimizer of f(x). Then g(x∗) = 0

and H(x∗) is positive semi-definite, that is

〈s,H(x∗)s〉 ≥ 0 for all s ∈ IRn.

But what if we have found a point that satisfies the above conditions? Is it a local minimizer? Yes,

an isolated one, provided the following second-order sufficient optimality conditions are satisfied.
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Theorem 1.6. Suppose that f ∈ C2, that x∗ satisfies the condition g(x∗) = 0, and that

additionally H(x∗) is positive definite, that is

〈s,H(x∗)s〉 > 0 for all s 6= 0 ∈ IRn.

Then x∗ is an isolated local minimizer of f .

Notice how slim is the difference between these necessary and sufficient conditions.

1.7 Optimality conditions for constrained minimization

When constraints are present, things get more complicated. In particular, the geometry of the

feasible region at (or near) to a minimizer plays a very subtle role. Consider a suspected minimizer

x∗. We shall say that a constraint is active at x∗ if and only if ci(x∗) = 0. By necessity, equality

constraints will be active, while determining which (if any) of the inequalities is active is probably

the overriding concern in constrained optimization.

In order to say anything about optimality, it is unfortunately necessary to rule out “nasty” local

minimizers such as cusps on the constraint boundary. This requires that we have to ask that so-called

constraint qualifications hold—essentially these say that linear approximations to the constraints

characterize all feasible perturbations about x∗ and that perturbations which keep strongly active

constraints strongly active (a strongly active constraint is one that will still be active if the data,

and hence minimizer, is slightly perturbed) are completely characterized by their corresponding

linearizations being forced to be active. Fortunately, such assumptions are automatically satisfied if

the constraints are linear, or if the constraints that are active have independent gradients, and may

actually be guaranteed in far weaker circumstances than these.

1.7.1 Optimality conditions for equality-constrained minimization

Given constraint qualifications, first- and second-order necessary optimality conditions for problems

involving equality constraints are (respectively) as follows.

Theorem 1.7. Suppose that f, c ∈ C1, and that x∗ is a local minimizer of f(x) subject to

c(x) = 0. Then, so long as a first-order constraint qualification holds, there exist a vector of

Lagrange multipliers y∗ such that

c(x∗) = 0 (primal feasibility) and

g(x∗) −AT (x∗)y∗ = 0 (dual feasibility).
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Theorem 1.8. Suppose that f, c ∈ C2, and that x∗ is a local minimizer of f(x) subject to

c(x) = 0. Then, provided that first- and second-order constraint qualifications hold, there exist

a vector of Lagrange multipliers y∗ such that

〈s,H(x∗, y∗)s〉 ≥ 0 for all s ∈ N (1.1)

where

N = {s ∈ IRn | A(x∗)s = 0} .

Notice that there are two first-order optimality requirements: primal feasibility (the constraints

are satisfied), and dual feasibility (the gradient of the objective function is expressible as a lin-

ear combination of the gradients of the constraints). It is not hard to anticipate that, just as in

the unconstrained case, sufficient conditions occur when the requirement (1.1) is strengthened to

〈s,H(x∗, y∗)s〉 > 0 for all s ∈ N .

1.7.2 Optimality conditions for inequality-constrained minimization

Finally, when the problem involves inequality constraints, it is easy to imagine that only the con-

straints that are active at x∗ play a role—the inactive constraints play no part in defining the

minimizer—and indeed this is so. First- and second-order necessary optimality conditions are (re-

spectively) as follows.

Theorem 1.9. Suppose that f, c ∈ C1, and that x∗ is a local minimizer of f(x) subject to

c(x) ≥ 0. Then, provided that a first-order constraint qualification holds, there exist a vector

of Lagrange multipliers y∗ such that

c(x∗) ≥ 0 (primal feasibility),

g(x∗) −AT (x∗)y∗ = 0 and y∗ ≥ 0 (dual feasibility) and

ci(x∗)[y∗]i = 0 (complementary slackness).

(1.2)

Theorem 1.10. Suppose that f, c ∈ C2, and that x∗ is a local minimizer of f(x) subject

to c(x) ≥ 0. Then, provided that first- and second-order constraint qualifications hold, there

exist a vector of Lagrange multipliers y∗ for which primal/dual feasibility and complementary

slackness requirements hold as well as

〈s,H(x∗, y∗)s〉 ≥ 0 for all s ∈ N+

where

N+ =

{

s ∈ IRn
∣

∣

∣

∣

〈s, ai(x∗)〉 = 0 if ci(x∗) = 0 & [y∗]i > 0 and

〈s, ai(x∗)〉 ≥ 0 if ci(x∗) = 0 & [y∗]i = 0

}

. (1.3)
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See how dual feasibility now imposes an extra requirement, that the Lagrange multipliers be non-

negative, while as expected there is an additional (complementary slackness) assumption that inac-

tive constraints necessarily have zero Lagrange multipliers. Also notice that N+, the set over which

the Hessian of the Lagrangian is required to be positive semi-definite, may now be the intersection

of a linear manifold and a cone, a particularly unpleasant set to work with.

The by-now obvious sufficient conditions also hold:

Theorem 1.11. Suppose that f, c ∈ C2, and that x∗ and a vector of Lagrange multipliers y∗
satisfy (1.2) and

〈s,H(x∗, y∗)s〉 > 0

for all s in the set N+ given in (1.3). Then x∗ is an isolated local minimizer of f(x) subject to

c(x) ≥ 0.
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2 LINESEARCH METHODS FOR UNCONSTRAINED

OPTIMIZATION

In this and the next sections, we shall concentrate on the unconstrained minimization problem,

minimize
x∈IR

n
f(x),

where the objective function f : IRn −→ IR. We shall assume that f ∈ C1 (sometimes C2) with

Lipschitz continuous derivatives. Often in practice this assumption is violated, but nonetheless the

methods converge (perhaps by good fortune) regardless.

Despite knowing how to characterise local minimizers of our problem, in practice it is rather

unusual for us to be able to provide or compute an explicit minimizer. Instead, we would normally

expect to fall back on a suitable iterative process. An iteration is simply a procedure whereby a

sequence of points

{xk}, k = 1, 2, . . .

is generated, starting from some initial “guess” x0, with the overall aim of ensuring that (a subse-

quence) of the {xk} has favourable limiting properties. These might include that any limit generated

satisfies first-order or, even better, second-order necessary optimality conditions.

Notice that we will not be able to guarantee that our iteration will converge to a global minimizer

unless we know that f obeys very strong conditions, nor regrettably in general that any limit point

is even a local minimizer (unless by chance it happens to satisfy second-order sufficiency conditions).

What we normally do try to ensure is that, at the very least, the iteration is globally convergent,

that is that (for at least) a subsequence of iterates {g(xk)} converges to zero. And our hope is that

such a sequence converges at a reasonably fast asymptotic rate. These two preoccupations lie at the

heart of computational optimization.

For brevity, in what follows, we shall write fk = f(xk), gk = g(xk) and Hk = H(xk).

2.1 Linesearch methods

Generically, linesearch methods work as follows. Firstly, a search direction pk is calculated from xk.

This direction is required to be a descent direction, i.e.,

〈pk, gk〉 < 0 if gk 6= 0,

so that, for small steps along pk, Taylor’s theorem (Theorem 1.1) guarantees that the objective

function may be reduced. Secondly, a suitable steplength αk > 0 is calculated so that

f(xk + αkpk) < fk.

The computation of αk is the linesearch, and may itself be an iteration. Finally, given both search

direction and steplength, the iteration concludes by setting

xk+1 = xk + αkpk.

Such a scheme sounds both natural and simple. But as with most simple ideas, it needs to be

refined somewhat in order to become a viable technique. What might go wrong? Firstly, consider

the example in Figure 2.1.
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Figure 2.1: The objective function f(x) = x2 and the iterates xk+1 = xk + αkpk generated by the

descent directions pk = (−1)k+1 and steps αk = 2 + 3/2k+1 from x0 = 2.

Here the search direction gives a descent direction, and the iterates oscillate from one side of the

minimizer to the other. Unfortunately, the decrease per iteration is ultimately so small that the

iterates converge to the pair ±1, neither of which is a stationary point. What has gone wrong?

Simply the steps are too long relative to the amount of objective-function decrease that they provide.

Is this the only kind of failure? Unfortunately, no. For consider the example in Figure 2.2.

Now the iterates approach the minimizer from one side, but the stepsizes are so small that each

iterate falls woefully short of the minimizer, and ultimately converge to the non-stationary value 1.

So now we can see that a simple-minded linesearch method can fail if the linesearch allows steps

that are either too long or too short relative to the amount of decrease that might be obtained with

a well-chosen step.

2.2 Practical linesearch methods

In the early days, it was often suggested that αk should be chosen to minimize f(xk +αpk). This is

known as an exact linesearch. In most cases, exact linesearches prove to be both very expensive—

they are essentially univariate minimizations—and most definitely not cost effective, and are conse-

quently rarely used nowadays.

Modern linesearch methods prefer to use inexact linesearches, which are guaranteed to pick steps

that are neither too long nor too short. In addition, they aim to pick a “useful” initial “guess” for

each stepsize so as to ensure fast asymptotic convergence—we will return to this when we discuss

Newton’s method. The main contenders amongst the many possible inexact linesearches are the

so-called “backtracking- Armijo” and the “Armijo-Goldstein” varieties. The former are extremely

easy to implement, and form the backbone of most Newton-like linesearch methods. The latter are

particularly important when using secant quasi-Newton methods (see Section 2.5.3), but alas we do
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Figure 2.2: The objective function f(x) = x2 and the iterates xk+1 = xk + αkpk generated by the

descent directions pk = −1 and steps αk = 1/2k+1 from x0 = 2.

not have space to describe them here.

Here is a basic backtracking linesearch to find αk:

Given αinit > 0 (e.g., αinit = 1),

let α(0) = αinit and l = 0.

Until f(xk + α(l)pk) < fk
set α(l+1) = τα(l), where τ ∈ (0, 1) (e.g., τ = 1

2
)

and increase l by 1.

Set αk = α(l).

Notice that the backtracking strategy prevents the step from getting too small, since the first

allowable value stepsize of the form αinitτ
i, i = 0, 1, . . . is accepted. However, as it stands, there

is still no mechanism for preventing too large steps relative to decrease in f . What is needed is

a tighter requirement than simply that f(xk + α(l)pk) < fk. Such a role is played by the Armijo

condition.

The Armijo condition is that the steplength be asked to give slightly more than simply decrease

in f . The actual requirement is that

f(xk + αkpk) ≤ f(xk) + αkβ〈pk, gk〉

for some β ∈ (0, 1) (e.g., β = 0.1 or even β = 0.0001)—this requirement is often said to give sufficient

decrease. Observe that, since 〈pk, gk〉 < 0, the longer the step, the larger the required decrease in
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f . The range of permitted values for the stepsize is illustrated in Figure 2.3.
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f(xk+αpk)

f(xk)+α〈gk,pk〉

f(xk)+αβ〈gk,pk〉

Figure 2.3: A steplength of anything up to 1.8 is permitted for this example, in the case where

β = 0.2.

The Armijo condition may then be inserted into our previous backtracking scheme to give the

aptly-named Backtracking-Armijo linesearch:

Given αinit > 0 (e.g., αinit = 1),

let α(0) = αinit and l = 0.

Until f(xk + α(l)pk) ≤ f(xk) + α(l)β〈pk, gk〉

set α(l+1) = τα(l), where τ ∈ (0, 1) (e.g., τ = 1
2
)

and increase l by 1.

Set αk = α(l).

Of course, it is one thing to provide likely-sounding rules to control stepsize selection, but another

to be sure that they have the desired effect. Indeed, can we even be sure that there are points which

satisfy the Armijo condition? Yes, for we have
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Theorem 2.1. Suppose that f ∈ C1, that g(x) is Lipschitz continuous with Lipschitz constant

γ(x), that β ∈ (0, 1) and that p is a descent direction at x. Then the Armijo condition

f(x+ αp) ≤ f(x) + αβ〈p, g(x)〉

is satisfied for all α ∈ [0, αmax(x,p)], where

αmax(x, p) =
2(β − 1)〈p, g(x)〉

γ(x)‖p‖2
2

.

Note that since γ(x) is rarely known, the theorem does not provide a recipe for computing αmax(x, p),

merely a guarantee that there is such a suitable value. The numerator in αmax(x, p) corresponds

to the slope and the denominator to the curvature term. It can be interpreted as follows: If the

curvature term is large, then the admissible range of α is small. Similarly, if the projected gradient

along the search direction is large, then the range of admissible α is larger.

It then follows that the Backtracking-Armijo linesearch can be guaranteed to terminate with a

suitably modest stepsize.

Corollary 2.2. Suppose that f ∈ C1, that g(x) is Lipschitz continuous with Lipschitz constant

γk at xk , that β ∈ (0, 1) and that pk is a descent direction at xk. Then the stepsize generated

by the backtracking-Armijo linesearch terminates with

αk ≥ min

(

αinit,
2τ(β − 1)〈pk, gk〉

γk‖pk‖2
2

)

.

Again, since γk is rarely known, the corollary does not give a practical means for computing αk,

just an assurance that there is a suitable value. Notice that the stepsize is certainly not too large,

since it is bounded above by αmax, and can only be small when 〈p, g(x)〉/‖p‖2
2 is. This will be the

key to the successful termination of generic linesearch methods.

2.3 Convergence of generic linesearch methods

In order to tie all of the above together, we first need to state our Generic Linesearch Method:

Given an initial guess x0, let k = 0

Until convergence:

Find a descent direction pk at xk .

Compute a stepsize αk using a

backtracking-Armijo linesearch along pk.

Set xk+1 = xk + αkpk, and increase k by 1.
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It is then quite straightforward to apply Corollary 2.2 to deduce the following very general conver-

gence result.

Theorem 2.3. Suppose that f ∈ C1 and that g is Lipschitz continuous on IRn. Then, for the

iterates generated by the Generic Linesearch Method,

either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim
k→∞

min

(

|〈pk, gk〉|,
|〈pk, gk〉|

‖pk‖2

)

= 0.

In words, either we find a first-order stationary point in a finite number of iterations, or we encounter

a sequence of iterates for which the objective function is unbounded from below, or the slope (or

a normalized slope) along the search direction converges to zero. While the first two of these

possibilities are straightforward and acceptable consequences, the latter is perhaps not. For one

thing, it certainly does not say that the gradient converges to zero, that is the iterates may not

ultimately be first-order critical, since it might equally occur if the search direction and gradient

tend to be mutually orthogonal. Thus we see that simply requiring that pk be a descent direction

is not a sufficiently demanding requirement. We will return to this shortly, but first we consider the

archetypical globally convergent algorithm, the method of steepest descent.

2.4 Method of steepest descent

We have just seen that the Generic Linesearch Method may not succeed if the search direction

becomes orthogonal to the gradient. Is there a direction for which this is impossible? Yes, when the

search direction is the descent direction

pk = −gk,

the so-called steepest-descent direction—the epithet is appropriate since this direction solves the

problem

minimize
p∈IRn

mL
k (xk + p)

def
= fk + 〈p, gk〉 subject to ‖p‖2 = ‖gk‖2,
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and thus gives the greatest possible reduction in a first-order model of the objective function for a

step whose length is specified. Global convergence follows immediately from Theorem 2.3.

Theorem 2.4. Suppose that f ∈ C1 and that g is Lipschitz continuous on IRn. Then, for the

iterates generated by the Generic Linesearch Method using the steepest-descent direction,

either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim
k→∞

gk = 0.

As we mentioned above, this theorem suggests that steepest descent really is the archetypical

globally convergent method, and in practice many other methods resort to steepest descent when

they run into trouble. However, the method is not scale invariant, as re-scaling variables can lead to

widely different “steepest-descent” directions. Even worse, as we can see in Figure 2.4, convergence
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Figure 2.4: Contours for the objective function f(x, y) = 10(y − x2)2 + (x − 1)2, and the iterates

generated by the Generic Linesearch steepest-descent method.

may be (and actually almost always is) very slow in theory, while numerically convergence sometimes

does not occur at all as the iteration stagnates. In practice, steepest-descent is all but worthless

in most cases. The figure exhibits quite typical behaviour in which the iterates repeatedly oscillate
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from one side of a objective function “valley” to the other. All of these phenomena may be attributed

to a lack of attention to problem curvature when building the search direction. We now turn to

methods that try to avoid this defect.

2.5 More general descent methods

2.5.1 Newton and Newton-like methods

Let Bk be a symmetric, positive definite matrix. Then it is trivial to show that the search direction

pk for which

Bkpk = −gk

is a descent direction. In fact, this direction solves the direction-finding problem

minimize
p∈IRn

mQ
k (xk + p)

def
= fk + 〈p, gk〉 + 1

2
〈p,Bkp〉, (2.1)

where mQ
k (xk + p) is a quadratic approximation to the objective function at xk.

Of particular interest is the possibility that Bk = Hk, for in this case mQ
k (xk + p) gives a

second-order Taylor’s approximation to f(xk + p). The resulting direction for which

Hkpk = −gk

is known as the Newton direction, and any method which uses it is a Newton method. But notice

that the Newton direction is only guaranteed to be useful in a linesearch context if the Hessian Hk

is positive definite, for otherwise pk might turn out to be an ascent direction.

It is also worth saying that while one can motivate such Newton-like methods from the prospec-

tive of minimizing a local second-order model of the objective function, one could equally argue that

they aim to find a zero of a local first-order model

g(xk + p) ≈ gk +Bkpk

of its gradient. So long as Bk remains “sufficiently” positive definite, we can make precisely the

same claims for these second-order methods as for those based on steepest descent.

Theorem 2.5. Suppose that f ∈ C1 and that g is Lipschitz continuous on IRn. Then, for

the iterates generated by the Generic Linesearch Method using the Newton or Newton-like

direction,

either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim
k→∞

gk = 0

provided that the eigenvalues of Bk are uniformly bounded and bounded away from zero.
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Indeed, one can regard such methods as “scaled” steepest descent, but they have the advantage

that they can be made scale invariant for suitable Bk, and crucially, as we see in Figure 2.5, their
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Figure 2.5: Contours for the objective function f(x, y) = 10(y − x2)2 + (x − 1)2, and the iterates

generated by the Generic Linesearch Newton method.

convergence is often significantly faster than steepest descent. In particular, in the case of the

Newton direction, the Generic Linesearch method will usually converge very rapidly indeed.

Theorem 2.6. Suppose that f ∈ C2 and that H is Lipschitz continuous on IRn. Then suppose

that the iterates generated by the Generic Linesearch Method with αinit = 1 and β < 1
2
, in

which the search direction is chosen to be the Newton direction pk = −H−1
k gk whenever Hk is

positive definite, has a limit point x∗ for which H(x∗) is positive definite. Then

(i) αk = 1 for all sufficiently large k,

(ii) the entire sequence {xk} converges to x∗, and

(iii) the rate is Q-quadratic, i.e, there is a constant κ ≥ 0.

lim
k→∞

‖xk+1 − x∗‖2

‖xk − x∗‖2
2

≤ κ.
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2.5.2 Modified-Newton methods

Of course, away from a local minimizer there is no reason to believe that Hk will be positive definite,

so precautions need to be taken to ensure that Newton and Newton-like linesearch methods, for which

Bk is (or is close to) Hk, satisfy the assumptions of the global convergence Theorem 2.5. If Hk is

indefinite, it is usual to solve instead

(Hk +Mk)pk = −gk,

where Mk is chosen so that Hk +Mk is “sufficiently” positive definite and Mk = 0 when Hk is itself

“sufficiently” positive definite. This may be achieved in a number of ways.

Firstly, if Hk has the spectral (that is eigenvector-eigenvalue) decomposition Hk = QkDkQ
T
k ,

then Mk may be chosen so that

Hk +Mk = Qk max(εI, |Dk|)Q
T
k

for some “small” ε”. This will shift all the insufficiently positive eigenvalues by as little as possible

as is needed to make the overall matrix positive definite. While such a decomposition may be too

expensive to compute for larger problems, a second, cheaper alternative is to find (or estimate) the

smallest (necessarily real!) eigenvalue, λmin(Hk), of Hk, and to set

Mk = max(0, ε− λmin(Hk))I

so as to shift all the eigenvalues by just enough as to make the smallest “sufficiently” positive. While

this is often tried in practice, in the worst case it may have the effect of over-emphasising one large,

negative eigenvalue at the expense of the remaining small, positive ones, and in producing a direction

which is essentially steepest descent. Finally, a good compromise is instead to attempt a Cholesky

factorization of Hk, and to alter the generated factors if there is evidence that the factorization will

otherwise fail. There are a number of so-called Modified Cholesky factorizations, each of which will

obtain

Hk +Mk = LkL
T
k ,

where Mk is zero for sufficiently positive-definite Hk, and “not-unreasonably large” in all other

cases.

2.5.3 Quasi-Newton methods

It was fashionable in the 1960s and 1970s to attempts to build suitable approximations Bk to the

Hessian, Hk. Activity in this area has subsequently died down, possibly because people started to

realize that computing exact second derivatives was not as onerous as they had previously contended,

but these techniques are still of interest particularly when gradients are awkward to obtain (such as

when the function values are simply given as the result of some other, perhaps hidden, computation).

There are broadly two classes of what may be called quasi-Newton methods.

The first are simply based on estimating columns of Hk by finite differences . For example, we

might use the approximation

(Hk)ei ≈ h−1(g(xk + hei) − gk)
def
= (Bk)ei

for some “small” scalar h > 0. The difficulty here is in choosing an appropriate value for h: too large

a value gives inaccurate approximations, while a too small one leads to large numerical cancellation

errors.
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The second sort of quasi-Newton methods are known as secant approximations , and try to ensure

the secant condition

Bk+1sk = yk, where sk = xk+1 − xk and yk = gk+1 − gk,

that would be true if H(x) were constant, is satisfied. The secant condition gives a lot of flexibility,

and among the many methods that have been discovered, the Symmetric Rank-1 method, for which

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

T

〈sk, yk −Bksk〉
,

and the BFGS method, for which

Bk+1 = Bk +
yky

T
k

〈sk, yk〉
−
Bksks

T
kBk

〈sk, Bksk〉

are the best known (and generally the best). Note that the former may give indefinite approximations

(or even fail), while the latter is guaranteed to generate symmetric and positive definite matrices so

long as B0 is positive definite and 〈sk, yk〉 > 0 (the last condition may be ensured by an appropriate

“Goldstein” linesearch). Since both of these secant methods are based on low-rank updates, it is

possible to keep the per-iteration linear algebraic requirements at a more modest level for such

methods than is generally possible with Newton or finite-difference methods.

2.5.4 Conjugate-gradient and truncated-Newton methods

And what if the problem is large and matrix factorization is out of the question? We have already

considered (and rejected) steepest-descent methods. Is there something between the simplicity of

steepest descent and the power (but expense) of Newton-like methods? Fortunately, the answer is

yes.

Suppose that instead of solving (2.1), we instead find our search direction as

pk = (approximate) arg min
p∈IRn

q(p) = fk + 〈p, gk〉 + 1
2
〈p,Bkp〉,

where we assume that Bk is positive definite—the key word here is approximate. Suppose that

instead of minimizing q over all p ∈ IRn, we restrict p to lie in a (much) smaller subspace—of course

if we do this we will not (likely) obtain the optimal value of q, but we might hope to obtain a good

approximation with considerably less effort.

Let Di = (d0 : · · · : di−1) be any collection of i vectors, let

Di = {p | p = Dipd for some pd ∈ IRi}

be the subspace spanned by Di, and suppose that we choose to pick

pi = arg min
p∈Di

q(p).

Then immediately Di T gi = 0, where gi = Bkp
i + gk is the gradient of q at pi. More revealingly,

since pi−1 ∈ Di, it follows that pi = pi−1 +Dipid, where

pid = arg min
pd∈IRi

〈pd, Di T gi−1〉 + 1
2
〈pd, Di TBkD

ipd〉

= −(Di TBkD
i)−1Di T gi−1 = −〈di−1, gi−1〉(Di TBkD

i)−1ei.
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Hence

pi = pi−1 − 〈di−1, gi−1〉Di(Di TBkD
i)−1ei. (2.2)

All of this is true regardless of Di. But now suppose that the members of Di are Bk-conjugate, that

is to say that 〈di, Bkdj〉 = 0 for all i 6= j. If this is so (2.2) becomes

pi = pi−1 + αi−1di−1, where αi−1 = −
〈di−1, gi−1〉

〈di−1, Bkdi−1〉
. (2.3)

Thus so long as we can generate Bk-conjugate vectors, we can build up successively improving ap-

proximations to the minimize of q by solving a sequence of one-dimensional minimization problems—

the relationship (2.3) may be interpreted as finding αi−1 to minimize q(pi−1 + αdi−1). But can we

find suitable Bk-conjugate vectors?

Surprisingly perhaps, yes, it is easy. Since gi is independent of Di, let

di = −gi +
i−1
∑

j=0

βijdj

for some unknown βij . Then elementary manipulation (and a cool head) shows that if we choose

βij so that di is B-conjugate to Di, we obtain the wonderful result that

βij = 0 for j < i− 1, and βi i−1 ≡ βi−1 =
‖gi‖2

2

‖gi−1‖2
2

.

That is, almost all of the βij are zero! Summing all of this up, we arrive at the method of conjugate

gradients (CG):

Given p0 = 0, set g0 = gk, d
0 = −gk and i = 0.

Until gi is “small”, iterate:

αi = ‖gi‖2
2/〈d

i, Bdi〉

pi+1 = pi + αidi

gi+1 = gi + αiBkd
i

βi = ‖gi+1‖2
2/‖g

i‖2
2

di+1 = −gi+1 + βidi

and increase i by 1.

Important features are that 〈dj , gi+1〉 = 0 and 〈gj , gi+1〉 = 0 for all j = 0, . . . , i, and most particu-

larly that 〈pi, gk〉 ≤ 〈pi−1, gk〉 < 0 for i = 1, . . . , n, from which we see that any pk = pi is a descent

direction.

In practice the above conjugate gradient iteration may be seen to offer a compromise between

the steepest-descent direction (stopping when i = 1) and a Newton (-like) direction (stopping when

i = n). For this reason, using such a curtailed conjugate gradient step within a linesearch (or trust-

region) framework is often known as a truncated-Newton method. Frequently the size of gi relative

to gk is used as a stopping criteria, a particularly popular rule being to stop the conjugate-gradient

iteration when

‖gi‖ ≤ min(‖gk‖
ω, η)‖gk‖,
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where η and ω ∈ (0, 1), since then a faster-than-linear asymptotic convergence rate may be achieved

if Bk = Hk.

3 TRUST-REGION METHODS FOR UNCONSTRAINED

OPTIMIZATION

In this section, we continue to concentrate on the unconstrained minimization problem, and shall as

before assume that the objective function is C1 (sometimes C2) with Lipschitz continuous deriva-

tives.

3.1 Linesearch vs. trust-region methods

One might view linesearch methods as naturally “optimistic”. Fairly arbitrary search directions are

permitted—essentially 50% of all possible directions give descent from a given point—while unruly

behaviour is held in check via the linesearch. There is, however, another possibility, that more

control is taken when choosing the search direction, with the hope that this will then lead to a

higher probability that the (full) step really is useful for reducing the objective. This naturally

“conservative” approach is the basis of trust-region methods.

As we have seen, linesearch methods pick a descent direction pk, then pick a stepsize αk to

“reduce” f(xk +αpk) and finally accept xk+1 = xk +αkpk. Trust-region methods, by contrast, pick

the overall step sk to reduce a “model” of f(xk + s), and accept xk+1 = xk + sk if the decrease

predicted by the model is realised by f(xk+sk). Since there is no guarantee that this will always be

so, the fall-back mechanism is to set xk+1 = xk, and to “refine” the model when the existing model

produces a poor step. Thus, while a linesearch method recovers from a poor step by retreating

along a parametric (usually linear) curve, a trust-region method recovers by reconsidering the whole

step-finding procedure.

3.2 Trust-region models

It is natural to build a model of f(xk+s) by considering Taylor series approximations. Of particular

interest are the linear model

mL
k (s) = fk + 〈s, gk〉,

and the quadratic model

mQ
k (s) = fk + 〈s, gk〉 + 1

2
〈s,Bks〉,

where Bk is a symmetric approximation to the local Hessian matrix Hk. However, such models are

far from perfect. In particular, the models are unlikely to resemble f(xk + s) if s is large. More

seriously, the models may themselves be unbounded from below so that any attempts to minimize

them may result in a large step. This defect will always occur for the linear model (unless gk = 0),

and also for the quadratic model if Bk is indefinite (and possibly if Bk is only positive semi-definite).

Thus simply using a Taylor-series model is fraught with danger.

There is, fortunately, a simple and effective way around this conundrum. The idea is to prevent

the model mk(s) from being unboundedness by imposing a trust-region constraint

‖s‖ ≤ ∆k,
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for some “suitable” scalar radius ∆k > 0, on the step. This is a natural idea, since we know from

Theorem 1.1 that we can improve the approximation error |f(xk + s) − mk(s)| by restricting the

allowable step. Thus our trust-region subproblem is to

approximately minimize
s∈IRn

mk(s) subject to ‖s‖ ≤ ∆k,

and we shall choose sk as approximate solution of this problem. In theory, it does not depend on

which norm ‖ · ‖ we use (at least, in finite-dimensional spaces), but in practice it might!

For simplicity, we shall concentrate on the second-order (Newton-like) model

mk(s) = mQ
k (s) = fk + 〈s, gk〉 + 1

2
〈s,Bks〉

and any (consistent) trust-region norm ‖ · ‖ for which

κs‖ · ‖ ≤ ‖ · ‖2 ≤ κl‖ · ‖

for some κl ≥ κs > 0. Notice that the gradient of mk(s) at s = 0 coincides with the gradient of

f at xk, and also, unlike for linesearch methods, Bk = Hk is always allowed. The vast majority of

models use the `1, `2 or `∞ norms on IRn, and for these we have ‖ · ‖2 ≤ ‖ · ‖2 ≤ ‖ · ‖2 (obviously!!),

n− 1
2 ‖ · ‖1 ≤ ‖ · ‖2 ≤ ‖ · ‖1 and ‖ · ‖∞ ≤ ‖ · ‖2 ≤ n‖ · ‖∞.

3.3 Basic trust-region method

Having decided upon a suitable model, we now turn to the trust-region algorithm itself. As we

have suggested, we shall choose to “accept” xk+1 = xk + sk whenever (a reasonable fraction of) the

predicted model decrease fk−mk(sk) is realized by the actual decrease fk−f(xk+sk). We measure

this by computing the ratio

ρk =
fk − f(xk + sk)

fk −mk(sk)

of actual to predicted decrease, and accepting the trust-region step when ρk is not unacceptably

smaller than 1.0. If the ratio is close to (or larger than) 1.0, there is good reason to believe that

future step computations may well benefit from an increase in the trust-region radius, so we allow

a radius increase in this case. If, by contrast, there is poor agreement between the actual and

predicted decrease (and particularly, if f actually increases), the current step is poor and should be

rejected. In this case, we reduce the trust-region radius to encourage a more suitable step at the

next iteration.

We may summarize the basic trust-region method as follows:
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Given k = 0, ∆0 > 0 and x0, until “convergence” do:

Build the second-order model m(s) of f(xk + s).

“Solve” the trust-region subproblem to find sk
for which m(sk) “<” fk and ‖sk‖ ≤ ∆k, and define

ρk =
fk − f(xk + sk)

fk −mk(sk)
.

If ρk ≥ ηv [very successful ] 0 < ηv < 1

set xk+1 = xk + sk and ∆k+1 = γi∆k. γi ≥ 1

Otherwise if ρk ≥ ηs then [successful ] 0 < ηs ≤ ηv < 1

set xk+1 = xk + sk and ∆k+1 = ∆k.

Otherwise [unsuccessful ]

set xk+1 = xk and ∆k+1 = γd∆k. 0 < γd < 1

Increase k by 1.

Reasonable values might be ηv = 0.9 or 0.99, ηs = 0.1 or 0.01, γi = 2, and γd = 0.5. In practice,

these parameters might even be allowed to vary (within reasonable limits) from iteration to iteration.

In particular, there would seem to be little justification in increasing the trust region radius following

a very successful iteration unless ‖sk‖ ≈ ∆k, nor in decreasing the radius by less than is required

to “cut off” an unsuccessful sk.

In practice, the trust-region radius is not increased for a very successful iterations, if the step is

much shorter, say less than half the trust-region radius. There exist various schemes for choosing

an initial trust-region radius. However, if the problem is well scaled, then ∆0 = O(1) is reasonable.

Poor scaling can affect the performance of trust-region methods. In practice it often suffices that

the variables of the (scaled) problem have roughly the same order of magnitude.

It remains for us to decide what we mean by “solving” the trust-region subproblem. We shall

see in Section 3.5 that (at least in the `2-trust-region norm case) it is possible to find the (global)

solution to the subproblem. However, since this may result in a considerable amount of work, we

first seek “minimal” conditions under which we can guarantee convergence of the above algorithm

to a first-order critical point.

We have already seen that steepest-descent linesearch methods have very powerful (theoretical)

convergence properties. The same is true in the trust-region framework. Formally, at the very least,

we shall require that we achieve as much reduction in the model as we would from an iteration of

steepest descent. That is, if we define the Cauchy point as sC

k = −αC

kgk, where

αC

k = arg min
α>0

mk(−αgk) subject to α‖gk‖ ≤ ∆k

= arg min
0<α≤∆k/‖gk‖

mk(−αgk)
,

we shall require that our step sk satisfies

mk(sk) ≤ mk(s
C

k) and ‖sk‖ ≤ ∆k. (3.1)

Notice that the Cauchy point is extremely easy to find, since it merely requires that we minimize
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the quadratic model along a line segment. In practice, we shall hope to—and can—do far better

than this, but for now (3.1) suffices.

Figure 3.1 illustrates the trust-region problem in four different situations. The contours of the

original function are shown as dotted lines, while the contours of the trust-region model appear as

solid lines with the `2 trust-region ball in bold. Clockwise from top left, the plots depict the following

situations: first, a quadratic model with positive definite Hessian, next a linear model about the

same point, the third plot shows a quadratic model with indefinite Hessian and the final plot is a

quadratic model with positive definite Hessian whose minimizers lies outside the trust-region.
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quadratic TR model about x=(1,−0.5), ∆=1
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Figure 3.1: Trust-region models of f(x) = x4
1 + x1x2 + (1 + x2)

2 about different points.

We now examine the convergence of this trust-region method.

3.4 Basic convergence of trust-region methods

The first thing to note is that we can guarantee a reasonable reduction in the model at the Cauchy

point.

Theorem 3.1. If mk(s) is the second-order model and sC

k is its Cauchy point within the trust-

region ‖s‖ ≤ ∆k, then

fk −mk(s
C

k ) ≥
1
2
‖gk‖2 min

[

‖gk‖2

1 + ‖Bk‖2
, κs∆k

]

.

Observe that the guaranteed reduction depends on how large the current gradient is, and is also

affected by the size of both the trust-region radius and the (inverse) of the Hessian.
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Since our algorithm requires that the step does at least as well as the Cauchy point, we then

have the following immediate corollary.

Corollary 3.2. If mk(s) is the second-order model, and sk is an improvement on the Cauchy

point within the trust-region ‖s‖ ≤ ∆k,

fk −mk(sk) ≥ 1
2
‖gk‖2 min

[

‖gk‖2

1 + ‖Bk‖2
, κs∆k

]

.

This is a typical trust-region result, in that it relates the model reduction to a measure of the

distance to optimality, in this case measured in terms of the norm of the gradient.

It is also necessary to say something about how much the model and the objective can vary.

Since we are using a second-order model for which the first-two terms are exactly those from the

Taylor’s approximation, it is not difficult to believe that the difference between model and function

will vary like the square of the norm of sk, and indeed this is so.

Lemma 3.3. Suppose that f ∈ C2, and that the true and model Hessians satisfy the bounds

‖H(x)‖2 ≤ κh for all x and ‖Bk‖2 ≤ κb for all k and some κh ≥ 1 and κb ≥ 0. Then

|f(xk + sk) −mk(sk)| ≤ κd∆
2
k,

where κd = 1
2
κ2
l (κh + κb), for all k.

Actually the result is slightly weaker than necessary since, for our purposes, we have chosen to

replace ‖sk‖ by its (trust-region) bound ∆k. Moreover, rather than requiring a uniform bound on

H(x), all that is actually needed is a similar bound for all x between xk and xk + sk.

Armed with these bounds, we now arrive at a crucial result, namely that it will always be possible

to make progress from a non-optimal point (gk 6= 0).

Lemma 3.4. Suppose that f ∈ C2, that the true and model Hessians satisfy the bounds

‖Hk‖2 ≤ κh and ‖Bk‖2 ≤ κb for all k and some κh ≥ 1 and κb ≥ 0, and that κd = 1
2
κ2
l (κh+κb).

Suppose furthermore that gk 6= 0 and that

∆k ≤ ‖gk‖2 min

(

1

κs(κh + κb)
,
κs(1 − ηv)

2κd

)

.

Then iteration k is very successful and

∆k+1 ≥ ∆k.
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This result is fairly intuitive, since when the radius shrinks the model looks more and more like its

first-order Taylor’s expansion (provided Bk is bounded) and thus ultimately there must be good

local agreement between the model and objective functions.

The next result is a variation on its predecessor, and says that the radius is uniformly bounded

away from zero if the same is true of the sequence of gradients, that is the radius will not shrink to

zero at non-optimal points.

Lemma 3.5. Suppose that f ∈ C2, that the true and model Hessians satisfy the bounds

‖Hk‖2 ≤ κh and ‖Bk‖2 ≤ κb for all k and some κh ≥ 1 and κb ≥ 0, and that κd = 1
2
κ2
l (κh+κb).

Suppose furthermore that there exists a constant ε > 0 such that ‖gk‖2 ≥ ε for all k. Then

∆k ≥ κε
def
= εγdmin

(

1

κs(κh + κb)
,
κs(1 − ηv)

2κd

)

for all k.

We may then deduce that if there are only a finite number of successful iterations, the iterates

must be first-order optimal after the last of these.

Lemma 3.6. Suppose that f ∈ C2, and that both the true and model Hessians remain

bounded for all k. Suppose furthermore that there are only finitely many successful itera-

tions. Then xk = x∗ for all sufficiently large k and g(x∗) = 0.

Having ruled out this special (and highly unlikely) case, we then have our first global convergence

result, namely that otherwise there is at least one sequence of gradients that converge to zero.

Theorem 3.7. Suppose that f ∈ C2, and that both the true and model Hessians remain

bounded for all k. Then either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim inf
k→∞

‖gk‖ = 0.

Is this all we can show? Is it possible for a second sub-sequence of gradients to stay bounded

away from zero? Fortunately, no.
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Corollary 3.8. Suppose that f ∈ C2, and that both the true and model Hessians remain

bounded for all k. Then either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim
k→∞

gk = 0.

Thus we have the highly-satisfying result that the gradients of the sequence {xk} generated by our

algorithm converge to, or are all ultimately, zero. This does not mean that a subsequence of {xk}

itself converges, but if it does, the limit is first-order critical.

It is also possible to show that an enhanced version of our basic algorithm converges to second-

order critical points. To do so, we need to ensure that the Hessian of the model converges to that

of the objective (as would obviously be the case if Bk = Hk), and that the step sk has a significant

component along the eigenvector corresponding to the most negative eigenvalue of Bk (if any). It

is also possible to show that if Bk = Hk, if {xk} has a limit x∗ for which H(x∗) is positive definite,

and if sk is chosen to

minimize
s∈IRn

mk(s) subject to ‖s‖ ≤ ∆k, (3.2)

the step ∆k stays bounded away from zero, and thus the iteration ultimately becomes Newton’s

method (c.f. (2.1)).

In conclusion, we have seen that trust-region methods have a very rich underlying convergence

theory. But so much for theory. We now turn to the outstanding practical issue, namely how one

might hope to find a suitable step sk. We will consider two possibilities, one that aims to get a

very good approximation to (3.2), and a second, perhaps less ambitious method that is more geared

towards large-scale computation.

3.5 Solving the trust-region subproblem

For brevity, we will temporarily drop the iteration subscript, and consider the problem of

(approximately) minimize
s∈IRn

q(s) ≡ 〈s, g〉 + 1
2
〈s,Bs〉 subject to ‖s‖ ≤ ∆. (3.3)

As we have already mentioned, our aim is to find s∗ so that

q(s∗) ≤ q(sC) and ‖s∗‖ ≤ ∆,

where sC is the Cauchy point. We shall consider two approaches in this section. The first aims to

solve (3.3) exactly, in which case our trust-region method will be akin to a Newton-like method. The

second aims for an approximate solution using a conjugate-gradient like method. For simplicity, we

shall only consider the `2-trust region ‖s‖ ≤ ∆, mainly because there are very powerful methods in

this case, but of course other norms are possible and are sometimes preferred in practice.
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3.5.1 Solving the `2-norm trust-region subproblem

There is a really powerful solution characterisation result for the `2-norm trust-region subproblem.

Theorem 3.9. Any global minimizer s∗ of q(s) subject to ‖s‖2 ≤ ∆ satisfies the equation

(B + λ∗I)s∗ = −g,

where B + λ∗I is positive semi-definite, λ∗ ≥ 0 and λ∗(‖s∗‖2 − ∆) = 0. If B + λ∗I is positive

definite, s∗ is unique.

This result is extraordinary as it is very unusual to be able to give necessary and sufficient global

optimality conditions for a non-convex optimization problem (that is, a problem which might have

a number of local minimizers). Even more extraordinary is the fact that the necessary and sufficient

conditions are identical. But most crucially, these optimality conditions also suggest how we might

solve the problem.

There are two cases to consider. If B is positive definite and the solution s to

Bs = −g (3.4)

satisfies ‖s‖2 ≤ ∆, then it immediately follows that s∗ = s (λ∗ = 0 in Theorem 3.9)—this potential

solution may simply be checked by seeing if B has Cholesky factors and, if so, using these factors

to solve (3.4) Bs = −g and subsequently evaluate ‖s‖2. Otherwise, either B is positive definite but

the solution to (3.4) satisfies ‖s‖2 > ∆ or B is singular or indefinite. In these cases, Theorem 3.9

then says that s∗ satisfies

(B + λI)s = −g and 〈s, s〉 = ∆2, (3.5)

which is a nonlinear (quadratic) system of algebraic equations in the n+1 unknowns s and λ. Thus,

we now concentrate on methods for solving this system.

Suppose B has the spectral decomposition

B = UTΛU ;

here U is a matrix of (orthonormal) eigenvectors while the diagonal matrix Λ is made up of eigen-

values λ1 ≤ λ2 ≤ . . . ≤ λn. Theorem 3.9 requires that B + λI be positive semi-definite, and so the

solution (s, λ) to (3.5) that we seek necessarily satisfies λ ≥ −λ1. The first part of (3.5) enables us

to write s explicitly in terms of λ, that is

s(λ) = −(B + λI)−1g;

we will temporarily disregard the possibility that the theorem permits a singular B + λI . Notice

that once we have found λ,

(B + λI)s = −g (3.6)

is a linear system. In this case, we may substitute s(λ) into the second part of (3.5) to reveal that

ψ(λ)
def
= ‖s(λ)‖2

2 = ‖UT (Λ + λI)−1Ug‖2
2 =

n
∑

i=1

γ2
i

(λi + λ)2
= ∆2, (3.7)
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where γi = 〈ei, Ug〉 = 〈UT ei, g〉. Thus to solve the trust-region subproblem, it appears that all we

have to do is find a particular root of a univariate nonlinear equation.

We illustrate this in Figures 3.2–3.4.
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Figure 3.2: A plot of ψ(λ) as λ varies from −6 to 4. Note the poles at the negatives of the eigenvalues

of H . The heavy curve plots λ against ∆; the vertical component corresponds to interior solutions

while the remaining segment indicates boundary solutions.
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Figure 3.3: A plot of ψ(λ) as λ varies from −4 to 5. Again, note the poles at the negatives of the

eigenvalues of H .

The first shows a convex example (B positive definite). For ∆2 larger than roughly 1.5, the

solution to the problem lies in the interior of the trust region, and may be found directly from (3.4).

When ∆ is smaller than this, the solution lies on the boundary of the trust region, and can be found
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Figure 3.4: A plot of ψ(λ) for the modified model as λ varies from −4 to 5. Note that there is no

solution with to the equation ψ(λ) = ∆2 with λ ≥ 2 for ∆ larger than roughly 1.2.

as the right-most root of (3.7). The second example is non-convex (B indefinite). Now the solution

must lie on the boundary of the trust region for all values of ∆, and again can be found as the

right-most root of (3.7), to the right of −λ1.

In both Figures 3.2 and 3.3 everything seems easy, and at least a semblance of an algorithm is

obvious. But now consider the example in Figure 3.4. This example is especially chosen so that the

coefficient γ1 in (3.7) is zero, that is g is orthogonal to the eigenvector u1 of B corresponding to the

eigenvalue λ1 = −2. Remember that Theorem 3.9 tells us that λ ≥ 2 = −λ1. But Figure 3.4 shows

that there is no such root of (3.7) if ∆ is larger than (roughly) 1.2.

This is an example of what has become known as the hard case, which always arises when λ1 < 0,

〈u1, g〉 = 0 and ∆ is too big. What is happening? Quite simply, in the hard case λ = −λ1 and (3.6)

is a singular (but consistent) system—it is consistent precisely because 〈u1, g〉 = 0. But this system

has other solutions s+ αu1 for any α, because

(B + λI)(s+ αu1) = −g,

and u1 is an eigenvector of B + λI . The solution we require is that for which ‖s + αu1‖
2
2 = ∆2,

which is a quadratic equation for the unknown α, and either root suffices.

In the easy (that is not “hard”) case, it remains to see how best to solve |s(λ)‖2 = ∆. The answer

is blunt. Don’t! At least, not directly, since as the previous figures showed, ψ(λ) is an unappealing

function with many poles. It is far better to solve the equivalent secular equation

φ(λ)
def
=

1

‖s(λ)‖2
−

1

∆
= 0,

as this has no poles, indeed it is an analytic function, and thus ideal for Newton’s method. We

illustrate the secular equation in Figure 3.5.

Without giving details (for these, see the appendix, page 78), Newton’s method for the secular

equation is as follows
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Figure 3.5: A plot of φ(λ) against λ for the problem of minimizing − 1
4
s21 + 1

4
s22 + 1

2
s1 + s2 subject

to ‖s‖2 ≤ 0.4.

Let λ > −λ1 and ∆ > 0 be given.

Until “convergence” do:

Factorize B + λI = LLT .

Solve LLT s = −g.

Solve Lw = s.

Replace λ by

λ+

(

‖s‖2 − ∆

∆

)(

‖s‖2
2

‖w‖2
2

)

.

This is globally and ultimately quadratically convergent when started in the interval [−λ1, λ∗] except

in the hard case, but needs to be safeguarded to make it robust for the hard and interior solution

cases. Notice that the main computational cost per iteration is a Cholesky factorization of B + λI ,

and while this may be reasonable for small problems, it may prove unacceptably expensive when

the number of variables is large. We consider an alternative for this case next.

3.6 Solving the large-scale problem

Solving the large-scale trust-region subproblem using the above method is likely out of the question

in all but very special cases. The obvious alternative is to use an iterative method to approximate

its solution. The simplest approximation that is consistent with our fundamental requirement that

we do as least as well as we would at the Cauchy point is to use the Cauchy point itself. Of course,

this is simply the steepest descent method, and thus unlikely to be a practical method. The obvious

generalization is the conjugate-gradient method, since the first step of CG is in the steepest-descent

direction and, as subsequent CG steps further reduce the model, any step generated by the method

is allowed by our theory. However, there are a number of other issues we need to address first. In
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particular, what about the interaction between conjugate gradients and the trust region? And what

if B is indefinite?

The conjugate-gradient method to find an approximation to a minimizer of q(s) may be sum-

marised as follows.

Given s0 = 0, set g0 = g, d0 = −g and i = 0.

Until “breakdown” or gi “small”, iterate:

αi = ‖gi‖2
2/〈d

i, Bdi〉

si+1 = si + αidi

gi+1 = gi + αiBdi

βi = ‖gi+1‖2
2/‖g

i‖2
2

di+1 = −gi+1 + βidi

and increase i by 1.

Notice that we have inserted a termination statement concerning “breakdown”. This is intended to

cover the fatal case when 〈di, Bdi〉 = 0 (or, in practice, is close to zero), for which the iteration is

undefined, and the non-fatal case when 〈di, Bdi〉 < 0 for which q(s) is unbounded from below along

the so-called direction of negative curvature di.

But what of the trust-region constraint? Here we have a crucial result.

Theorem 3.10. Suppose that the conjugate gradient method is applied to minimize q(s) start-

ing from s0 = 0, and that 〈di, Bdi〉 > 0 for 0 ≤ i ≤ k. Then the iterates sj satisfy the

inequalities

‖sj‖2 < ‖sj+1‖2

for 0 ≤ j ≤ k − 1.

Simply put, since the norm of the approximate solution generated by the conjugate gradients

increases in norm at each iteration, if there is an iteration for which ‖sj‖2 > ∆, it must be that

the solution to the trust-region subproblem lies on the trust-region boundary. That is ‖s∗‖2 = ∆.

This then suggests that we should apply the basic conjugate-gradient method above but terminate

at iteration i if either (a) 〈di, Bdi〉 ≤ 0, since this implies that q(s) is unbounded along di, or (b)

‖si + αidi‖2 > ∆, since this implies that the solution must lie on the trust-region boundary. In

both cases, the simplest strategy is to stop on the boundary at s = si + αBdi, where αB chosen as

positive root of the quadratic equation

‖si + αBdi‖2
2 = ∆2.

Crucially this s satisfies

q(s) ≤ q(sC) and ‖s‖2 ≤ ∆

and thus Corollary 3.8 shows that the overall trust-region algorithm converges to a first-order critical

point.
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How good is this truncated conjugate-gradient strategy? In the convex case, it turns out to be

very good. Indeed, no worse than half optimal!

Theorem 3.11. Suppose that the truncated conjugate gradient method is applied to approx-

imately minimize q(s) within ‖s‖2 ≤ ∆, and that B is positive definite. Then the computed

and actual solutions to the problem, s and s∗, satisfy the bound q(s) ≤ 1
2
q(s∗).

In the non-convex (Bk indefinite) case, however, the strategy may be rather poor. For example, if

g = 0 and B is indefinite, the above truncated conjugate-gradient method will terminate at s = 0,

while the true solution lies on the trust-region boundary.

What can we do in the non-convex case? The answer is quite involved, but one possibility

is to recall that conjugate-gradients is trying to solve the overall problem by successively solving

the problem over a sequence of nested subspaces. As we saw, the CG method uses B-conjugate

subspaces. But there is an equivalent method, the Lanczos method, that uses instead orthonormal

bases. Essentially this may be achieved by applying the Gram-Schmidt procedure to the CG basis

Di to build the equivalent basis Qi = {s | s = Qisq for some sq ∈ IRi}. It is easy to show that for

this Qi,

Qi TQi = I and Qi TBQi = T i,

where T i is tridiagonal, and Qi T g = ‖g‖2 e1, and it is trivial to generate Qi from the CG Di. In

this case the trust-region subproblem (3.3) may be rewritten as

siq = arg min
sq∈Ri

‖g‖2 〈e1, sq〉 + 1
2
〈sq , T

isq〉 subject to ‖sq‖2 ≤ ∆,

where si = Qisiq. Since T i is tridiagonal, T i + λI has very sparse Cholesky factors, and thus we

can afford to solve this problem using the earlier secular equation approach. Moreover, since we

will need to solve a sequence of related problems over nested subspaces, it is easy to imagine that

one can use the solution for one problem to initialize the next. In practice, since the approach is

equivalent to conjugate gradients, it is best to use CG until the trust-region boundary is reached

and then to switch to the Lanczos method at that stage. Such a method has turned out to be most

effective in practice.

4 INTERIOR-POINT METHODS FOR INEQUALITY

CONSTRAINED OPTIMIZATION

Having given a break-neck description of methods for unconstrained minimization, we now turn

our attention to the real problems of interest, namely those involving constraints. This section

will focus on problems involving inequality constraints, while its successor will be concerned with

equality constraints. But before we start, we need to discuss the conflicting nature of constrained

optimization problems, and how we might deal with them.

Unconstrained minimization is “simple” because there is but one goal, namely to minimize the

objective. This is not so for constrained minimization because there is now a conflict of requirements,

the aforementioned objective minimization but at the same time a requirement of feasibility of the

solution. While in some instances (such as for linear equality constraints and, to a certain extent,
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all inequality constraints) it may be possible to generate feasible iterates, and thus to regain the

advantages of having a single goal, this is not true for general constrained optimization.

4.1 Merit functions for constrained minimization

Most (but not all, see Section 5.4.3) constrained optimization techniques overcome this dichotomy

by introducing a merit function to try to balance the two conflicting requirements of minimization

and feasibility. Given parameters p, a composite function Φ(x, p) is a merit function if (some)

minimizers of Φ(x, p) with respect to x approach those of f(x) subject to the constraints as p

approaches some set P . Thus a merit function combines both optimality requirements into a single

“artificial” objective function. In principal, it then only remains to use the best unconstrained

minimization methods to solve the constrained problem. If only life were that simple!

Consider the case of equality constrained minimization, that is finding x∗ to

minimize
x∈IR

n
f(x) subject to c(x) = 0. (4.1)

A suitable merit function in this case is the quadratic penalty function

Φ(x, µ) = f(x) +
1

2µ
‖c(x)‖2

2, (4.2)

where µ is a positive scalar parameter. It is easy to believe that if µ is small and we try to minimize

Φ(x, µ) much of the effort will be concentrated on making the second objective term 1
2µ‖c(x)‖

2
2

small, that is in forcing c(x) to be small. But as f has a slight presence in the merit function, any

remaining energy will be diverted to making f(x) small amongst all of the values for which c(x) is.

Formally, it is easy to show that, under modest conditions, some minimizers of Φ(x, µ) converge to

solutions of (4.1) as µ approaches the set {0} from above. Unfortunately, it is possible that Φ(x, µ)

may have other stationary points that are not solutions of (4.1)—indeed this must be the case if

c(x) = 0 are inconsistent. The quadratic penalty function is but one of many merit functions for

equality constrained minimization.

4.2 The logarithmic barrier function for inequality constraints

For the inequality constrained problem

minimize
x∈IR

n
f(x) subject to c(x) ≥ 0 (4.3)

the best known merit function is the logarithmic barrier function

Φ(x, µ) = f(x) − µ
m
∑

i=1

log ci(x),

where µ is again a positive scalar barrier parameter . Each logarithmic term − log ci(x) becomes

infinite as x approaches the boundary of the i-th inequality from the feasible side, and is undefined

(effectively infinite) beyond there. The size of the logarithmic term is mitigated when µ is small,

and it is then possible to get close to the boundary of the feasible region before its effect is felt,

any minimization effort being directed towards reducing the objective. Once again, it is easy to

show that, under modest conditions, some minimizers of Φ(x, µ) converge to solutions of (4.3) as

µ approaches the set {0} from above. And once again a possible defect is that Φ(x, µ) may have

other, useless stationary points. The contours of a typical example are shown in Figure 4.1.
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4.3 A basic barrier-function algorithm

The logarithmic barrier function is different in one vital aspect from the quadratic penalty function in

that it requires that there is a strictly interior point. If we apply the obvious sequential minimization

algorithm to Φ(x, µ), a strictly interior starting point is required, and all subsequent iterates will be
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Figure 4.1: The logarithmic barrier function for minx2
1 + x2

2 subject to x1 + x2
2 ≥ 1. The contours

for µ = 0.01 are visually indistinguishable from f(x) for feasible points.
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strictly interior. The obvious “interior-point” algorithm is as follows.

Given µ0 > 0, set k = 0.

Until “convergence”, iterate:

Find xS

k for which c(xS

k) > 0.

Starting from xS

k, use an unconstrained

minimization algorithm to find an

“approximate” minimizer xk of Φ(x, µk).

Compute µk+1 > 0 smaller than µk such

that limk→∞ µk+1 = 0. and increase k by 1.

In practice it is common to choose µk+1 = 0.1µk or even µk+1 = µ2
k, while perhaps the obvious

choice for a subsequent starting point is xS

k+1 = xk .

Fortunately, as we have hinted, basic convergence for the algorithm is easily established. Recall

that the active set A(x) at a point x is A(x) = {i | ci(x) = 0}. Then we have the following.

Theorem 4.1. Suppose that f , c ∈ C2, that (yk)i
def
= µk/ci(xk) for i = 1, . . . ,m, that

‖∇xΦ(xk , µk)‖2 ≤ εk

where εk converges to zero as k → ∞, and that xk converges to x∗ for which {ai(x∗)}i∈A(x∗)

are linearly independent. Then x∗ satisfies the first-order necessary optimality conditions for

the problem

minimize
x∈IR

n
f(x) subject to c(x) ≥ 0

and {yk} converge to the associated Lagrange multipliers y∗.

Notice here how the algorithm delivers something unexpected, namely estimates of the Lagrange

multipliers. Also see the role played by the linearly independence of the active constraint gradients,

regrettably quite a strong constraint qualification.

4.4 Potential difficulties

As we now know that it suffices to (approximately) minimize Φ(x, µ), how should we proceed? As

Φ(x, µ) is a smooth function, we can immediately appeal to the methods we discussed in Sections 2

and 3. But we need to be careful. Very, very careful.

We could use a linesearch method. Of note here is the fact that the barrier function has logarith-

mic singularities, indeed is undefined for infeasible points. Thus it makes sense to design a specialized

linesearch to cope with the singularity of the log. Alternatively, we could use a trust-region method.

Here we need to be able to instantly reject candidate steps for which c(xk + sk) 6> 0. More impor-

tantly, while all (consistent) trust-region norms are equivalent, (ideally) we should “shape” the trust

region for any barrier-function model to cope with the contours of the singularity. This implies that
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the trust-region shape may vary considerably from iteration to iteration, with its shape reflecting

the eigenvalues arising from the singularity.

4.4.1 Potential difficulty I: ill-conditioning of the barrier Hessian

At the heart of both linesearch and trust-region methods is, of course, the Newton (second-order)

model and related Newton direction. The computation of a Newton model/direction for the loga-

rithmic barrier function is vital, and the resulting equations have a lot of (exploitable) structure.

The gradient of the barrier function is

∇xΦ(x, µ) = g(x) − µ
∑

i

ai(x)/ci(x) = g(x) −AT (x)y(x) = g(x, y(x)),

where yi(x)
def
= µ/ci(x) and g(x, y) is the gradient of the Lagrangian function for (4.3). Likewise,

the Hessian is

∇xxΦ(x, µ) = H(x, y(x)) + µAT (x)C−2(x)A(x),

where H(x, y(x)) = H(x) −
m
∑

i=1

yi(x)Hi(x) and C(x) = diag(c1(x), . . . , cm(x)), the diagonal matrix

whose entries are the ci(x). Thus the Newton correction sP from x for the barrier function satisfies

(H(x, y(x)) + µAT (x)C−2(x)A(x))sP = −g(x, y(x)). (4.4)

Since y(x) = µC−1(x)e, (4.4) is sometimes written as
(

H(x, y(x)) +AT (x)C−1(x)Y (x)A(x)
)

sP = −g(x, y(x)), (4.5)

or
(

H(x, y(x)) +AT (x)Y 2(x)A(x)/µ
)

sP = −g(x, y(x)), (4.6)

where Y (x) = diag(y1(x), . . . , ym(x)).

This is where we need to be careful. For we have the following estimates of the eigenvalues of

the barrier function as we approach a solution.

Theorem 4.2. Suppose that the assumptions of Theorem 4.1 are satisfied, that AA is the

matrix whose rows are {aTi (x∗)}i∈A(x∗), that ma = |A(x∗)|, and that x∗ is non-degenerate, that

is (y∗)i > 0 for all i ∈ A(x∗). Then the Hessian matrix of the barrier function, ∇xxΦ(xk , µk),

has ma eigenvalues

λi(A
T
AY

2
AAA)/µk +O(1) for i = 1, . . . ,ma

and the remaining n−ma eigenvalues

λi(N
T
AH(x∗, y∗)NA) +O(µk) for i = 1, . . . , n−ma

as k → ∞, where λi(.) denotes the i-th eigenvalue of its matrix argument, YA is the diagonal

matrix of active Lagrange multipliers at x∗ and NA = is an orthogonal basis for the null-space

of AA.

This demonstrates that the condition number of ∇xxΦ(xk , µk) is O(1/µk) as µk shrinks to zero,

and suggests that it may not be straightforward to find the minimizer numerically. Look at how the

contours around x∗ in Figure 4.1 bunch together as µ approaches zero.
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4.4.2 Potential difficulty II: poor starting points

As if this potential defect isn’t serious enough, there is a second significant difficulty with the naive

method we described earlier. This is that xS

k+1 = xk appears to be a very poor starting point for a

Newton step just after the (small) barrier parameter is reduced. To see this suppose, as will be the

case at the end of the minimization for the k-th barrier subproblem, that

0 ≈ ∇xΦ(xk, µk) = g(xk) − µkA
T (xk)C

−1(xk)e ≈ g(xk) − µkA
T
A(xk)C

−1
A (xk)e,

the approximation being true because the neglected terms involve y(xk) = µk/ci(xk) which converge

to zero for inactive constraints. Then in the non-degenerate case, again roughly speaking, the

Newton correction sP for the new barrier parameter satisfies

µk+1A
T
A(xk)C

−2
A (xk)AA(xk)s

P ≈ (µk+1 − µk)A
T
A(xk)C

−1
A (xk)e (4.7)

since

∇xΦ(xk , µk+1) ≈ g(xk) − µk+1A
T
A(xk)C

−1
A (xk)e ≈ (µk+1 − µk)A

T
A(xk)C

−1
A (xk)e

and the µk+1A
T
A(xk)C

−2
A (xk)AA(xk) term dominates ∇xxΦ(xk , µk+1). If AA(xk) is full rank, then

multiplying the approximation (4.7) from the left first by the generalized inverse, (AAA
T
A)−1AA of

AA and then by C2
A implies that

AA(xk)s
P ≈

(

1 −
µk
µk+1

)

cA(xk)

from which a Taylor expansion of cA(xk + sP) reveals that

cA(xk + sP) ≈ cA(xk) + AA(xk)s
P ≈

(

2 −
µk
µk+1

)

cA(xk) < 0

whenever µk+1 < 1
2
µk. Hence a Newton step will asymptotically be infeasible for anything but the

most modest decrease in µ, and thus the method is unlikely to converge fast.

We will return to both of these issues shortly, but first we need to examine barrier methods in

a seemingly different light.

4.5 A different perspective: perturbed optimality conditions

We now consider what, superficially, appears to be a completely different approach to inequality-

constrained optimization. Recall from Theorem (1.9) that the first order optimality conditions for

(4.3) are that there are Lagrange multipliers (or, as they are sometimes called, dual variables) y for

which
g(x) −AT (x)y = 0 (dual feasibility)

C(x)y = 0 (complementary slackness) and

c(x) ≥ 0 and y ≥ 0.

Now consider the “perturbed” problem

g(x) − AT (x)y = 0 (dual feasibility)

C(x)y = µe (perturbed complementary slackness) and

c(x) > 0 and y > 0,

where µ > 0.
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Primal-dual path-following methods aim to track solutions to the system

g(x) −AT (x)y = 0 and C(x)y − µe = 0 (4.8)

as µ shrinks to zero, while maintaining c(x) > 0 and y > 0. This approach has been amazingly

successful when applied to linear programming problems, and has been extended to many other

classes of convex optimization problems. Since (4.8) is simply a nonlinear system, an obvious

(locally convergent) way to solve the system is, as always, to use Newton’s method. It is easy to

show that the Newton correction (sPD, w) to (x, y) satisfies
(

H(x, y) −AT (x)

Y A(x) C(x)

)(

sPD

w

)

= −

(

g(x) −AT (x)y

C(x)y − µe

)

. (4.9)

Using the second equation to eliminate w gives that
(

H(x, y) +AT (x)C−1(x)Y A(x)
)

sPD = −
(

g(x) − µAT (x)C−1(x)e
)

= g(x, y(x)), (4.10)

where, as before, y(x) = µC−1(x)e. But now compare this with the Newton barrier system (4.5).

Amazingly, the only difference is that the (left-hand-side) coefficient matrix in (4.5) mentions the

specific y(x) while that for (4.10) uses a generic y. And it is this difference that turns out to be

crucial. The freedom to choose y in H(x, y) + AT (x)C−1(x)Y A(x) for the primal-dual approach

proves to be vital. Making the primal choice y(x) = µC−1(x)e can be poor, while using a more

flexible approach in which y is chosen by other means, such as through the primal-dual correction

y + w is often highly successful.

We now return to the potential difficulties with the primal approach we identified in Sections 4.4.1

and 4.4.2.

4.5.1 Potential difficulty II . . . revisited

We first show that, despite our reservations in Section 4.4.2, the value xS

k+1 = xk can be a good

starting point. The problem with the primal correction sP is that the primal method has to choose

y = y(xS

k) = µk+1C
−1(xk)e, and this is a factor µk+1/µk too small to be a good Lagrange multiplier

estimate—recall that Theorem 4.1 shows that µkC
−1(xk)e converges to y∗.

But now suppose instead that we use the primal-dual correction sPD and choose the “proper”

y = µkC
−1(xk)e rather than y(xS

k)—we know that this is a good choice insofar as this Newton

step should decrease the dual infeasibility and complementary slackness since (xk, µkC
−1(xk)e) are

already good estimates. In this case, arguing as before, in the non-degenerate case, the correction

sPD satisfies

µkA
T
A(xk)C

−2
A (xk)AA(xk)s

PD ≈ (µk+1 − µk)A
T
A(xk)C

−1
A (xk)e,

and thus if AA(xk) is full rank,

AA(xk)s
PD ≈

(

µk+1

µk
− 1

)

cA(xk).

Then using a Taylor expansion of cA(xk + sPD) reveals that

cA(xk + sPD) ≈ cA(xk) + AA(xk)s
PD ≈

µk+1

µk
cA(xk) > 0,

and thus xk + sPD is feasible—the result is easy to show for inactive constraints. Hence, simply by

using a different model Hessian we can compute a useful Newton correction from xS

k+1 = xk that

both improves the violation of the optimality conditions (and ultimately leads to fast convergence)

and stays feasible.
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4.5.2 Primal-dual barrier methods

In order to globalize the primal-dual iteration, we simply need to build an appropriate model of

the logarithmic barrier function within either a linesearch or trust-region framework for minimizing

Φ(x, µk). As we have already pointed out the disadvantages of only allowing the (primal) Hessian

approximation ∇xxΦ(xk, µk), we instead prefer the more flexible search-direction model problem to

(approximately)

minimize
s∈IRn

〈s, g(x, y(x))〉 + 1
2

〈

s,
(

H(x, y) +AT (x)C−1(x)Y A(x)
)

s
〉

, (4.11)

possibly subject to a trust-region constraint. We have already noticed that the first-order term

g(x, y(x)) = ∇xΦ(x, µ) as y(x) = µC−1(x)e, and thus the model gradient is that of the barrier func-

tion as required by our global convergence analyses of linesearch and trust-region methods. We have

discounted always choosing y = y(x) in (4.11), and have suggested that the choice y = (µk−1/µk)y(x)

when changing the barrier parameter results in good use of the starting point. Another possibility

is to use y = yOLD + wOLD, where wOLD is the primal-dual correction to the previous dual-variable

estimates yOLD. However, this needs to be used with care since there is no a priori assurance that

yOLD + wOLD > 0, and indeed it is usual to prefer y = max(yOLD + wOLD, ε(µk)e) for some “small”

ε(µk) > 0. The choice ε(µk) = µ1.5
k leads to a realistic primal-dual method, although other precau-

tions need sometimes to be taken.

4.5.3 Potential difficulty I . . . revisited

We now return to the other perceived difficult with barrier or primal-dual path-following methods,

namely that the inherent ill-conditioning in the barrier Hessian makes it hard to generate accurate

Newton steps when the barrier parameter is small. Let I be the set of inactive constraints at x∗,

and denote the active and inactive components of c and y with suffices A and I respectively. Thus

cA(x∗) = 0 and cI(x∗) > 0, while if the solution is non-degenerate, yA(x∗) > 0 and yI(x∗) = 0. As

we have seen, the Newton correction sPD satisfies (4.9), while the equivalent system (4.10) clearly has

a condition number that approaches infinity as x and y reach their limits because cA(x) approaches

zero while yA(x) approaches yA(x∗) > 0.

But now suppose that we separate (4.9) into





H(x, y) −ATA(x) −ATI (x)

YAAA(x) CA(x) 0

YIAA(x) 0 CI(x)









sPD

wA

wI



 = −





g(x) −AT (x)y

CA(x)yA − µe

CI(x)yI − µe



 ,

and then eliminate the variables wI , multiply the second equation by Y −1
A and use CI(x)yI = µe,

we obtain
(

H(x, y) +ATI (x)CI(x)−1YIAI(x) −ATA(x)

AA(x) CA(x)Y −1
A

)(

sPD

wA

)

= −

(

g(x) −ATA(x)yA − µATI (x)C−1
I (x)e

cA(x) − µY −1
A e

)

.

(4.12)

But then we see that the terms involving inverses, C−1
I (x) and Y −1

A , remain bounded, and indeed

in the limit the system becomes

(

H(x, y) −ATA(x)

AA(x) 0

)(

sPD

wA

)

= −

(

g(x) −ATA(x)yA − µATI (x)C−1
I (x)e

0

)
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which is well behaved. Thus just because (4.10) is ill conditioned, this does not preclude us from

finding sPD from an equivalent, perfectly well-behaved system like (4.12).

4.6 A practical primal-dual method

Following on from the above, we now give the skeleton of a reasonable primal-dual method.

Given µ0 > 0 and feasible (xS

0, y
S

0), set k = 0.

Until “convergence”, iterate:

Inner minimization: starting from (xS

k, y
S

k), use an

unconstrained minimization algorithm to find (xk , yk) for which

‖C(xk)yk − µke‖ ≤ µk and ‖g(xk) −AT (xk)yk‖ ≤ µ1.00005
k .

Set µk+1 = min(0.1µk, µ
1.9999
k ).

Find (xS

k+1, y
S

k+1) using a primal-dual Newton step from (xk, yk).

If (xS

k+1, y
S

k+1) is infeasible, reset (xS

k+1, y
S

k+1) to (xk, yk).

Increase k by 1.

The inner minimization will be performed by either a linesearch or trust-region method for min-

imizing Φ(x, µk), the stopping rules ‖C(xk)yk − µke‖ ≤ µk and ‖g(xk) − AT (xk)yk‖ ≤ µ1.00005
k

certainly being attainable as the first-order optimality condition for minimizing Φ(x, µk) is that

g(x) − AT (x)y = 0, where C(x)y = µke. The extra step, in which the starting point is computed

by performing a primal-dual Newton step from (xk , yk), is simply included to generate a value that

is already close to first order critical, and the stopping tolerances are specially chosen to encourage

this. Indeed we have the following asymptotic convergence result.

Theorem 4.3. Suppose that f , c ∈ C2, that a subsequence {(xk , yk)}, k ∈ K, of the prac-

tical primal-dual method converges to (x∗, y∗) satisfying second-order sufficiency conditions,

that AA(x∗) is full-rank, and that (y∗)A > 0. Then the starting point satisfies the inner-

minimization termination test (i.e., (xk , yk) = (xS

k , y
S

k)) for all k sufficiently large, and the

whole sequence {(xk, yk)} converges to (x∗, y∗) at a superlinear rate (with a Q-factor at least

1.9998).

This is a highly acceptable result, the convergence being essentially quadratic (which would corre-

spond to a Q-factor of two—any sequence {σk} is said to converge to σ∗ with Q-factor at least q if

|σk+1 − σ∗| ≤ γ|σk − σ∗|q for some γ > 0).

Primal-dual interior-point methods have the potential for both excellent theoretical and practical

behaviour. There are polynomial interior-point algorithms for linear, (convex) quadratic and semi-

definite programming. While it is unlikely that this is true for more general (nonconvex) problems,

the barrier function globalization is most effective in practice, and the asymptotic behaviour is

normally just as for the convex case. From a global perspective, it is very important that iterates

are kept away from constraint boundary until near to convergence, as otherwise very slow progress
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will be made—this is certainly born out in practice. Finally, while the methods we have discussed

in this section have all required an interior starting point, it is possible to find one (if there is one!)

by solving the “phase-one” problem to

minimize
(x,γ)

γ subject to c(x) + γe ≥ 0;

any feasible point (x, γ) for this auxiliary problem for which γ < 0 is suitable, for then c(x) > 0.

It is quite common in practice to replace the inequality ci(x) ≥ 0 by the equation ci(x) −

si = 0, and simple bound si ≥ 0 on the slack variable si. This has the algebraic advantage that

the inequality constraints are then all simple bounds and thus that barrier terms only appear on

the diagonal of the Hessian model, but arguably the disadvantages that the dimensionality of the

problem has been artificially increased, and that we now need to use some means of coping with

equality constraints. We consider this latter point next.

5 SQP METHODS FOR EQUALITY CONSTRAINED

OPTIMIZATION

In this final section, having already investigated very good methods for dealing with inequality con-

straints, we now turn our attention to the problem (4.1), in which there are only equality constraints

on the variables. Of course in practice, there are frequently both equations and inequalities, and

composite methods using the barrier/interior-point methods discussed in Section 4 and the SQP

methods we shall consider here are often used. Alternatively, SQP methods themselves may easily

be generalized to handle inequality constraints. For brevity we shall not consider such extensions

further here.

5.1 Newton’s method for first-order optimality

Sequential Quadratic Programming (SQP) methods (sometimes called successive or recursive quadratic

programming methods) are most naturally derived by considering the first-order necessary condi-

tions for (4.1)—we will see where the names come from shortly. Recall at optimality we expect to

have

g(x, y) ≡ g(x) −AT (x)y = 0 and c(x) = 0. (5.1)

This is a system of nonlinear equations in the variables x and the Lagrange multipliers y. Notice

that the system is actually linear in y so that if x were known it would be straightforward to find y.

Suppose now that (x, y) is an approximation to a solution of (5.1). Then, as always, we might

apply Newton’s method to try to improve (x, y), and this leads us to construct a correction (s, w)

for which
(

H(x, y) −AT (x)

A(x) 0

)(

s

w

)

= −

(

g(x, y)

c(x)

)

. (5.2)

Newton’s method would then apply the same procedure to the “improved” estimate (x+, y+) =

(x+ s, y + w).

There are a number of alternative formulations of (5.2). Firstly (5.2) may be written as the

symmetric system of equations

(

H(x, y) AT (x)

A(x) 0

)(

s

−w

)

= −

(

g(x, y)

c(x)

)

;
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notice here that the coefficient matrix is indefinite because of its zero 2,2 block. Secondly, on writing

y+ = y + w, the equation becomes

(

H(x, y) −AT (x)

A(x) 0

)(

s

y+

)

= −

(

g(x)

c(x)

)

,

or finally, in symmetric form,

(

H(x, y) AT (x)

A(x) 0

)(

s

−y+

)

= −

(

g(x)

c(x)

)

.

In practice we might prefer to approximate H(x, y) by some symmetric B, and instead solve

(

B AT (x)

A(x) 0

)(

s

−y+

)

= −

(

g(x)

c(x)

)

=

(

B −AT (x)

A(x) 0

)(

s

y+

)

. (5.3)

One could imagine solving these related systems by finding an LU factorization of the coefficient

matrix in the unsymmetric case, or a symmetric-indefinite (a generalization of Cholesky) factoriza-

tion in the symmetric case. Alternatively, if B is invertible, s and y+ might be found successively

by solving

A(x)B−1A(x)T y = −c+A(x)B−1g and then Bs = A(x)T y − g

using symmetric factorizations of B and A(x)B−1A(x)T . For very large problems, iterative meth-

ods might be preferred, and here GMRES(k) or QMR, for the unsymmetric case, or MINRES or

conjugate-gradients (restricted to the null-space of A(x)), for the symmetric case, have all been

suggested. Thus there are many ways to solve the system(s) of linear equations that arise from SQP

methods, and there is currently much interest in exploiting the structure in such systems to derive

very efficient methods.

But where does the name “sequential quadratic programming” come from?

5.2 The Sequential Quadratic Programming iteration

A quadratic program is a problem involving the optimization of a quadratic function subject to a

set of linear inequality and/or equality constraints. Consider the quadratic programming problem

minimize
s∈IRn

〈s, g(x)〉 + 1
2
〈s,Bs〉 subject to A(x)s = −c(x). (5.4)

Why this problem? Well, Theorem 1.3 indicates that c(x) +A(x)s is a first-order (Taylor) approx-

imation to the constraint function c(x + s), while 〈s, g(x)〉 + 1
2
〈s,Bs〉 is potentially a second-order

model of the decrease f(x + s) − f(x). Thus one can argue that (5.4) gives a suitable (at least

first-order) model of (4.1). An objection might be that really we should be aiming for true second-

order approximations to all functions concerned, but this would lead to the significantly-harder

minimization of a quadratic function subject to quadratic constraints—constraint curvature is a

major obstacle.

The interesting feature of (5.4) is that it follows immediately from Theorem 1.7 that any first-

order critical point of (5.4) is given by (5.3). Thus Newton-like methods for first-order optimality are

equivalent to the solution of a sequence of related quadratic programs. Hence the name. Notice that

if B = H(x, y), solving (5.4) is actually Newton’s method for (5.1), and this suggests that B should

be an approximation to the Hessian of the Lagrangian function, not the objective function. Clearly
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the constraint curvature that we would have liked to have added to the linear approximations of the

constraints has worked its way into the objective function!

To summarize, the basic SQP iteration is as follows.

Given (x0, y0), set k = 0.

Until “convergence” iterate:

Compute a suitable symmetric Bk using (xk , yk).

Find

sk = arg min
s∈IRn

〈s, gk〉 + 1
2
〈s,Bks〉 subject to Aks = −ck (5.5)

along with associated Lagrange multiplier estimates yk+1.

Set xk+1 = xk + sk and increase k by 1.

The SQP method is both simple and fast. If Bk = H(xk, yk), the method is Newton’s method for

(5.1), and thus is quadratically convergent provided that (x0, y0) is sufficiently close to a first-order

critical point (x∗, y∗) of (4.1) for which
(

H(x∗, y∗) AT (x∗)

A(x∗) 0

)

is non-singular. Moreover, the method is superlinearly convergent when Bk is a “good” approxima-

tion to H(xk , yk), and there is even no necessity that this be so for fast convergence. It should also

be easy for the reader to believe that had we wanted to solve the problem (4.3) involving inequality

constraints, the suitable SQP subproblem would be

minimize
s∈IRn

〈s, g(x)〉 + 1
2
〈s,Bs〉 subject to A(x)s ≥ −c(x)

in which the nonlinear inequalities have been linearized.

But, as the reader will already have guessed, this basic iteration also has drawbacks, leading to

a number of vital questions. For a start it is a Newton-like iteration, and thus may diverge from

poor starting points. So how do we globalize this iteration? How should we pick Bk? What should

we do if (5.4) is unbounded from below? And precisely when is it unbounded?

The problem (5.4) only has a solution if the constraints A(x)s = −c(x) are consistent. This

is certainly the case if A(x) is full rank, but may not be so if A(x) is rank deficient—we shall

consider alternatives that deal with this deficiency later. Applying Theorem 1.8 to (5.4), we deduce

that any stationary point (s, y+) satisfying (5.3) solves (5.4) only if B is positive semi-definite

on the manifold {s : A(x)s = 0}—if B is positive definite on the manifold (s, y+) is the unique

solution to the problem. If the m by n matrix A(x) is full rank and the columns of N(x) form

a basis for the null-space of A(x), it is easy to show that B being positive (semi-)definite on the

manifold {s : A(x)s = 0} is equivalent to N(x)TBN(x) being positive (semi-)definite which is in

turn equivalent to the matrix
(

B AT (x)

A(x) 0

)

(being non-singular and) having m negative eigenvalues. If B violates these assumptions, (5.4) is

unbounded.
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For the remainder of this section, we focus on methods to globalize the SQP iteration. And it

should not surprise the reader that we shall do so by considering linesearch and trust-region schemes.

5.3 Linesearch SQP methods

The obvious way to embed the SQP step sk within a linesearch framework is to pick xk+1 = xk+αksk,

where the step αk > 0 is chosen so that

Φ(xk + αksk, pk) “<” Φ(xk , pk), (5.6)

and where Φ(x, p) is a “suitable” merit function depending on parameters pk. Of course it is then

vital that sk be a descent direction for Φ(x, pk) at xk , as otherwise there may be no αk for which

(5.6) is satisfied. As always with linesearch methods, this limits the choice of Bk, and it is usual

to insist that Bk be positive definite—the reader may immediately object that this is imposing an

unnatural requirement, since Bk is supposed to be approximating the (usually) indefinite matrix

H(xk, yk), and we can only sympathise with such a view!

What might a suitable merit function be? One possibility is to use the quadratic penalty function

(4.2). In this case, we have the following result.

Theorem 5.1. Suppose that Bk is positive definite, and that (sk, yk+1) are the SQP search

direction and its associated Lagrange multiplier estimates for the problem

minimize
x∈IR

n
f(x) subject to c(x) = 0

at xk. Then if xk is not a first-order critical point, sk is a descent direction for the quadratic

penalty function Φ(x, µk) at xk whenever

µk ≤
‖c(xk)‖2

‖yk+1‖2
.

We know that the parameter µk for the quadratic penalty function needs to approach zero for its

minimizers to converge to those of (4.1), so Theorem 5.1 simply confirms this by suggesting how to

adjust the parameter.

The quadratic penalty function has another role to play if the constraints are inconsistent. For

consider the quadratic (Newton-like) model

minimize
s∈IRn

〈s, gk +ATk ck/µk〉 + 1
2
〈s, (Bk + 1/µkA

T
kAk)s〉

that might be used to compute a step sQ

k from xk. Stationary points of this model satisfy

(Bk + 1/µkA
T
kAk)s

Q

k = −(gk +ATk ck/µk)

or, on defining yQ

k
def
= −µ−1

k (ck +Aks
Q

k ),

(

Bk ATk
Ak −µkI

)(

sQ

k

−yQ

k

)

= −

(

gk
ck

)

. (5.7)
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But now compare this system with (5.3) that which defines the SQP step: the only difference is

the vanishingly small 2,2 block −µkI in the coefficient matrix. While this indicates that Newton-

like directions for the quadratic penalty function will become increasingly good approximations to

SQP steps (and, incidentally, it can be shown that a Newton iteration for (4.2) with well chosen

µk converges superlinearly under reasonable assumptions), the main point of the alternative (5.7)

is that rank-deficiency in Ak is neutralised by the presence of 2,2 block term −µkI . Nevertheless,

the quadratic penalty function is rarely used, its place often being taken by non-differentiable exact

penalty functions.

The non-differentiable exact penalty function is given by

Φ(x, ρ) = f(x) + ρ‖c(x)‖ (5.8)

for any norm ‖ · ‖ and scalar ρ > 0. Notice that the function is non-differentiable particularly when

c(x) = 0, the very values we hope to attain! The following result helps explain why such a function

is considered so valuable.

Theorem 5.2. Suppose that f, c ∈ C2, and that x∗ is an isolated local minimizer of f(x)

subject to c(x) = 0, with corresponding Lagrange multipliers y∗. Then x∗ is also an isolated

local minimizer of Φ(x, ρ) provided that
ρ > ‖y∗‖D,

where the dual norm ‖y‖D = sup
x6=0

〈y, x〉

‖x‖
.

Notice that the fact that ρ merely needs to be larger than some critical value for Φ(x, ρ) to be

usable to try to identify solutions to (4.1) is completely different to the quadratic penalty function,

for which the parameter had to take on a limiting value.

More importantly, as we now see, Φ(x, ρ) may be used as a merit function for the SQP step.

Theorem 5.3. Suppose that Bk is positive definite, and that (sk, yk+1) are the SQP search

direction and its associated Lagrange multiplier estimates for the problem

minimize
x∈IR

n
f(x) subject to c(x) = 0

at xk. Then if xk is not a first-order critical point, sk is a descent direction for the non-

differentiable penalty function Φ(x, ρk) at xk whenever ρk ≥ ‖yk+1‖D.

Once again, this theorem indicates how ρk needs to be adjusted for use within a linesearch SQP

framework.

Thus far, everything looks perfect. We have methods for globalizing the SQP iteration, an

iteration that should ultimately converge very fast. But unfortunately, it is not as simple as that.

For consider the example in Figure 5.1. Here the current iterate lies close to (actually on) the

constraint, the SQP step moves tangentially from it, and thus moves away as the constraint is

nonlinear, but unfortunately, at the same time, the value of the objective function rises. Thus any
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xk

x∗

sk

Figure 5.1: `1 non-differentiable exact penalty function (ρ = 1): f(x) = 2(x2
1 + x2

2 − 1) − x1 and

c(x) = x2
1 + x2

2 − 1. Solution: x∗ = (1, 0), y∗ = 3
2
. The SQP direction using the optimal Hessian

H(x∗, y∗) = I . Notice how the merit function increases at the point xk + sk.

merit function like (4.2) or (5.8) composed simply from positive combinations of the objective and

(powers) of norms of constraint violations will increase after such an SQP step, and thus necessarily

αk 6= 1 in (5.6)—worse still, this behaviour can happen arbitrarily close to the minimizer. This has

the unfortunate side effect that it may happen that the expected fast convergence achievable by

Newton-like methods will be thwarted by the merit function. That is, there is a serious mismatch

between the global and local convergence needs of the SQP method. The fact that the merit function

may prevent acceptance of the full SQP step is known as the Maratos effect .

The Maratos effect occurs because the curvature of the constraints is not adequately represented

by linearization in the SQP model. In particular,

c(xk + sk) = O(‖sk‖
2).

This suggests that we need to correct for this curvature. We may do this by computing a second-order

correction from xk + sk, that is an extra step sC

k for which

c(xk + sk + sC

k) = o(‖sk‖
2). (5.9)

Since we do not want to destroy potential for fast convergence, we must also insist that the correction

is small relative to the SQP step, and thus that

sC

k = o(sk). (5.10)

There are a number of ways to compute a second-order correction. The first is simply to move

back as quickly as possible towards the constraints. This suggests we compute a minimum (`2-)norm

solution to c(xk + sk) +A(xk + sk)s
C

k = 0. It is easy to check that the required solution satisfies

(

I AT (xk + sk)

A(xk + sk) 0

)(

sC

k

−yC

k+1

)

= −

(

0

c(xk + sk)

)

.
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Since this requires that we re-evaluate the constraints and their Jacobian at xk + sk, we might hope

instead to find a minimum norm solution to c(xk + sk) + A(xk)s
C

k = 0, and thus that

(

I AT (xk)

A(xk) 0

)(

sC

k

−yC

k+1

)

= −

(

0

c(xk + sk)

)

.

A third amongst many other possibilities is to compute another SQP step from xk + sk, that is to

compute sC

k so that

(

BC

k AT (xk + sk)

A(xk + sk) 0

)(

sC

k

−yC

k+1

)

= −

(

g(xk + sk)

c(xk + sk)

)

,

where BC

k is an approximation to H(xk + sk, y
+
k ). It can easily be shown that all of the above

corrections satisfy (5.9)–(5.10). In Figure 5.2, we illustrate a second-order correction in action. It is

xk

x∗

sk

s
CS

k

Figure 5.2: `1 non-differentiable exact penalty function (ρ = 1): f(x) = 2(x2
1 + x2

2 − 1) − x1 and

c(x) = x2
1 + x2

2 − 1 solution: x∗ = (1, 0), y∗ = 3
2
. See that the second-order correction sCS

k helps

avoid the Maratos effect for the above problem with the `1-penalty function. Notice how sCS

k more

than compensates for the increase in the merit function at the point xk + sk, and how much closer

xk + sk + sCS

k is to x∗ than is xk.

possible to show that, under reasonable assumptions, any step xk + sk + sCS

k made up from the SQP

step sk and a second-order correction sCS

k satisfying (5.9)–(5.10) will ultimately reduce (5.8). So

now we can have both global and very fast asymptotic convergence at the expense of extra problem

evaluations. Of course, we have stressed that a second SQP step gives a second-order correction,

so another way of viewing this is to require that the merit function decreases at least every second

iteration, and to tolerate non-monotonic behaviour in the interim.

5.4 Trust-region SQP methods

The main disadvantage of (at least naive) linesearch SQP methods is the unnatural requirement

that Bk be positive definite. We saw the same restriction in the unconstrained case, although at

least then there was some expectation that ultimately the true Hessian Hk would be positive (semi-)
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definite. In the unconstrained case, indefinite model Hessians were better handled in a trust-region

framework, and the same is true in the constrained case.

The obvious trust-region generalization of the basic SQP step-generation subproblem (5.4) is to

find

sk = arg min
s∈IRn

〈s, gk〉 + 1
2
〈s,Bks〉 subject to Aks = −ck and ‖s‖ ≤ ∆k. (5.11)

Since we do not require that Bk be positive definite, this allows us to use Bk = H(xk, yk) if we so

desire. However a few moments reflection should make it clear that such an approach has a serious

flaw. Let ∆CRIT be the least distance to the linearized constraints, i.e.

∆CRIT def
= min ‖s‖ subject to Aks = −ck.

The difficulty is that if ∆k < ∆CRIT, then there is no solution to the trust-region subproblem (5.11).

This implies that unless ck = 0, the subproblem is meaningless for all sufficiently small trust-region

radius (see Figure 5.3). Thus we need to consider alternatives. In this section, we shall review the

+

+

+

+

The linearized constraint
�

��	

PPPPPPq

The trust region� -

The nonlinear constraintA
AAK

�
���

Figure 5.3: The intersection between the linearization of a nonlinear constraint and a spherical trust

region. In the left figure, the trust-region radius is sufficiently large for the trust region and the

linearized constraint to intersect. This is not so for the smaller trust region illustrated in the right

figure.

S`pQP method of Fletcher, the composite step SQP methods due to Vardi, to Byrd and Omojokun,

and to Celis, Dennis and-Tapia, and the filter-SQP approach of Fletcher and Leyffer.

5.4.1 The S`pQP method

Our first trust-region approach is to try to minimize the `p-(exact) penalty function

Φ(x, ρ) = f(x) + ρ‖c(x)‖p (5.12)

for sufficiently large ρ > 0 and some `p norm (1 ≤ p ≤ ∞). We saw in Section 5.3 that feasible

minimizers of (5.12) may be solutions to (4.1) so long as ρ > 0 is large enough. Of course, as

Φ(x, ρ) is non-differentiable, we cannot simply apply one of the unconstrained trust-region methods

discussed in Section 3, but must instead build a specialized method.
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Since we are discussing trust-region methods, a suitable model problem is the `pQP

minimize
s∈IRn

fk + 〈s, gk〉 + 1
2
〈s,Bks〉 + ρ‖ck +Aks‖p subject to ‖s‖ ≤ ∆k.

This has the major advantage that the model problem is always consistent, since now the only

constraint is the trust-region bound. In addition, when ρ and ∆k are large enough, it can be shown

that the model minimizer is the SQP direction so long as Aks = −ck is consistent. Moreover, when

the norms are polyhedral (e.g., the `1 or `∞ norms), `pQP is equivalent to a quadratic program.

To see this, consider for example the `1QP model problem with an `∞ trust region

minimize
s∈IRn

〈s, gk〉 + 1
2
〈s,Bks〉 + ρ‖ck +Aks‖1 subject to ‖s‖∞ ≤ ∆k.

But we can always write

ck +Aks = u− v, where (u, v) ≥ 0.

Hence the `1QP subproblem is equivalent to the quadratic program

minimize
s∈IRn, u,v∈IRm

〈s, gk〉 + 1
2
〈s,Bks〉 + ρ〈e, u+ v〉

subject to Aks− u+ v = −ck
u ≥ 0, v ≥ 0

and −∆ke ≤ s ≤ ∆ke.

Notice that the QP involves inequality constraints, but there are good methods (especially of the

interior-point variety) for solving such problems. In particular, it is possible to exploit the structure

of the u and v variables.

In order to develop a practical S`1QP method, it should not surprise the reader that we need to

ensure that every step we generate achieves as much reduction in the model fk+〈s, gk〉+ 1
2
〈s,Bks〉+

ρ‖ck +Aks‖p as would have been achieved at a Cauchy point. One such Cauchy point requires the

solution to `1LP model

minimize
s∈IRn

〈s, gk〉 + ρ‖ck +Aks‖1 subject to ‖s‖∞ ≤ ∆k,

which may be reformulated as a linear program. Fortunately approximate solutions to both `1LP

and `1QP subproblems suffice. In practice it is also important to adjust ρ as the method progresses

so as to ensure that ρ is larger than the (as yet unknown) ‖y∗‖D, and this may be achieved by

using the available Lagrange multiplier estimates yk. Such a scheme is globally convergent, but

there is still a need for a second-order correction to prevent the Maratos effect and thus allow fast

asymptotic convergence. If c(x) = 0 are inconsistent, the method converges to (locally) least value

of the infeasibility ‖c(x)‖ provided ρ→ ∞.

The alert reader will have noticed that in this section we have replaced the `2 trust-region of

the unconstraint trust-region method by a box or `∞ trust-region. The reason for this apparent

lack of consistency is that minimizing a quadratic subject to linear constraints and an additional

quadratic trust-region is too hard. On the other hand, adding box-constraints does not increase the

complexity of the resulting (quadratic programming) trust-region subproblem.

5.4.2 Composite-step methods

Another approach to avoid the difficulties caused by inconsistent QP subproblems is to separate the

computation of the step into two stages. The aim of a composite-step method is to find

sk = nk + tk,
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where the normal step nk moves towards feasibility of the linearized constraints (within the trust

region), while the tangential step tk reduces the model objective function (again within the trust-

region) without sacrificing feasibility obtained from nk. Of course since the normal step is solely

concerned with feasibility, the model objective may get worse, and indeed it may not recover during

the tangential step. The fact that the tangential step is required to maintain any gains in (linearized)

feasibility achieved during the normal step implies that

Ak(nk + tk) = Aknk and hence that Aktk = 0.

We illustrate possible normal and tangential steps in Figure 5.4.

+

+

+

+

The linearized constraint
�

��	

PPPPPPq

The trust region� -

Nearest point on linearized constraint

nk

Close to nearest point

nk

Figure 5.4: Computing the normal step. The left-hand figure shows the largest possible normal

step. The right-hand figure illustrates a shorter normal step n, and the freedom this then allows for

the tangential step—any point on the dotted line is a potential tangential step.

5.4.2.1 Constraint relaxation—Vardi’s method

Vardi’s approach is an early composite-step method. The normal step is found by relaxing the

requirement

Aks = −ck and ‖s‖ ≤ ∆k

to

Akn = −σkck and ‖n‖ ≤ ∆k,

where σk ∈ [0, 1] is small enough so that there is a feasible nk. Clearly s = 0 is feasible if σk = 0,

and the largest possible σmax may be found by computing

max
σ∈(0,1]

[

min
‖s‖≤∆k

‖Aks+ σck‖ = 0

]

.

In practice, some value between zero and σmax is chosen, since this gives some “elbow-room” in

which to compute the tangential step. The main defect with the approach is that there may be no

normal step if the linearized constraints are inconsistent.
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Once a normal step has been determined, the tangential step is computed as the

(approximate) arg min
t∈IRn

〈t, gk +Bknk〉 + 1
2
〈t, Bkt〉

subject to Akt = 0 and ‖nk + t‖ ≤ ∆k.

Although of historical interest, the method has been effectively superseded by the Byrd–Omojokun

approach we describe next.

5.4.2.2 Constraint reduction—the Byrd–Omojokun method

The Byrd–Omojokun method aims to cope with the inconsistency issue that afflicts Vardi’s approach.

Rather than relaxing the constraints, the normal step is now computed as

approximately minimize ‖Akn+ ck‖ subject to ‖n‖ ≤ ∆k,

in order to achieve a reasonable improvement in linearized infeasibility that is consistent with the

trust-region. The tangential step is then computed exactly as in Vardi’s method.

An important aspect is that it is possible to use the conjugate gradient method to solve both

subproblems. This provides Cauchy points in both cases and allows the method to be used to

solve large problems. The method has been shown to be globally convergent (under reasonable

assumptions) using an `2 merit function, and is the basis of the successful KNITRO software package.

5.4.2.3 Constraint lumping—the Celis–Dennis–Tapia method

A third method which might be considered to be of the composite-step variety is that due to Celis,

Dennis and Tapia. In this approach, the requirement that Aks = −ck is replaced by requiring that

‖Aks+ ck‖ ≤ σk

for some σk ∈ [0, ‖ck‖]. The value of σk is chosen so that the normal step nk satisfies

‖Akn+ ck‖ ≤ σk and ‖n‖ ≤ ∆k.

Having found a suitable normal step, the tangential step is found as an

(approximate) arg min
t∈IRn

〈t, gk +Bknk〉 + 1
2
〈t, Bkt〉

subject to ‖Akt+Aknk + ck‖ ≤ σk and ‖t+ nk‖ ≤ ∆k.

While finding a suitable σk is inconvenient, the real Achilles’ heel of this approach is that the

tangential step subproblem is (much) harder than those we have considered so far. If the `2-norm is

used for the constraints, we need to find the minimizer of a quadratic objective within the intersection

of two “spherical” regions. Unlike the case involving a single sphere (recall Section 3.5.1), it is not

known if there is an efficient algorithm in the two-sphere case. Alternatively, if polyhedral (`1 or

`∞) norms are used and Bk is indefinite, the subproblem becomes a non-convex quadratic program

for which there is unlikely to be an efficient general-purpose algorithm—in the special case where Bk
is positive semi-definite and the `∞ norm is used, the subproblem is a convex QP. For this reason,

the Celis–Dennis–Tapia approach is rarely used in practice.
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Figure 5.5: A filter with four entries.

5.4.3 Filter methods

The last SQP method we shall consider is the most recent. The approach taken is quite radical in

that, unlike all of the methods we have considered so far, it makes no use of a merit function to force

global convergence. The main objection to merit functions is that they depend, to a large degree,

on arbitrary or a-priori unknown parameters. A secondary objection is that they tend to be overly

conservative in accepting promising potential iterates. But if we wish to avoid merit functions, we

need some other device to encourage convergence. The new idea is to use a “filter”

Let θ(x) = ‖c(x)‖ be some norm of the constraint violation at x. A filter is a set of pairs

{(θk, fk)} of violations and objective values such that no member dominates another, i.e., it does

not happen that

θi“<”θj and fi“<”fj

for any pair of filter points i 6= j—the “<” here informally means “very slightly smaller than”.

We illustrate a filter in Figure 5.5. A potential new entry to the “north-east” of any of the

existing filter entries would not be permitted, and the forbidden region is the intersection of the

solid horizontal and vertical lines emanating to the right and above each filter point. For theoretical

reasons (akin to requiring sufficient decrease), we slightly enlarge the forbidden region by putting a

small margin around each filter point, and this is illustrated in the figure by the dotted lines.

And now it is clear how to use a filter. Any potential SQP (or other) iterate xk + sk will

immediately be rejected if it lies in the forbidden filter region accumulated during the previous k

iterations. This may be embedded in a trust-region framework, and a typical iteration might be as

follows:
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If possible find

sk = arg min
s∈IRn

〈s, gk〉 + 1
2
〈s,Bks〉 subject to Aks = −ck and ‖s‖ ≤ ∆k,

but otherwise, find sk such that

θ(xk + sk)“<”θi for all i ≤ k.

If xk + sk is “acceptable” for the filter, set xk+1 = xk + sk
and possibly add (f((xk + sk), θ(xk + sk)) to the filter,

“prune” the filter, and increase ∆k.

Otherwise reduce ∆k and try again.

A few words of explanation are needed. The trust-region and linearized constraints will always

be compatible if ck is small enough so long as they are at c(x) = 0. Thus if the trust-region

subproblem is incompatible, one remedy is simply to move closer to the constraints. This is known

as a restoration step. By “pruning” the filter, we mean that a new point may completely dominate

one or more existing filter points and, in this case, the dominated entry may be removed without

altering the filter. For example, if a new entry were accepted to the “south-west” of point 4 in our

figure, point 4 would be pruned.

While the basic filter idea is rather simple, in practice, it is significantly more complicated than

this. In particular, there are theoretical reasons why some points that are acceptable to the filter

should still be rejected if any decrease in the SQP model of the objective function is far from realized

in practice.

CONCLUSION

We hope we have conveyed the impression that research into the design, convergence and imple-

mentation of algorithms for nonlinear optimization is an exciting and expanding area. We have

only been able to outline the developments in the field, and have made no attempt to survey the

vast literature that has built up over the last 50 years. Current algorithms for specialized problems

like linear and quadratic programming and unconstrained optimization are well capable of solving

problems involving millions of unknowns (and constraints), while those for generally constrained

optimization routinely solve problems in the tens and, perhaps even, hundreds of thousands of un-

knowns and constraints. The next big goal is to be able to design algorithms that have some hope of

finding global optima for large problems, the current state-of-the-art being for problems with tens

or hundreds of unknowns. Clearly closing the gap between local and global optimization has some

way to go!

APPENDIX A - SEMINAL BOOKS AND PAPERS

The following books and papers are classics in the field. Although many of them cover topics outside

the material we have described, they are all worth reading. This section constitutes a personal view
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of the most significant papers in the area. It is not meant to be a complete bibliography.

General text books

There are a large number of text books devoted to nonlinear (and even more for linear) programming.

Those we find most useful and which emphasize practical methods are

J. Dennis and R. Schnabel, “Numerical Methods for Unconstrained Optimization and Non-

linear Equations”, (republished by) SIAM (Classics in Applied Mathematics 16) (1996),

R. Fletcher, “Practical Methods of Optimization”, 2nd edition Wiley (1987), (republished

in paperback 2000),

P. Gill, W. Murray and M. Wright, “Practical Optimization”, Academic Press (1981), and

J. Nocedal and S. Wright, “Numerical Optimization”, Springer Verlag (1999).

The first of these concentrates on unconstrained optimization, while the remainder cover (continu-

ous) optimization in general.

Early quasi-Newton methods

These methods were introduced by

W. Davidon, “Variable metric method for minimization”, manuscript (1958), finally pub-

lished SIAM J. Optimization 1 (1991) 1:17,

and championed by

R. Fletcher and M. J. D. Powell, “A rapidly convergent descent method for minimization”,

Computer J. (1963) 163:168.

Although the so-called DFP method has been superseded by the more reliable BFGS method, it

paved the way for a number of classes of important updates.

More modern quasi-Newton methods

Coincidentally, all of the papers

C. G. Broyden, “The convergence of a class of double-rank minimization algorithms”, J.

Inst. Math. Applcs., 6 (1970) 76:90,

R. Fletcher, “A new approach to variable metric algorithms”, Computer J. (1970) 13 (1970)

317:322,

D. Goldfarb, “A family of variable metric methods derived by variational means”, Math.

Computation 24 (1970) 23:26, and

D. F. Shanno, “Conditioning of quasi-Newton methods for function minimization”, Math.

Computation 24 (1970) 647:657

appeared in the same year. The aptly-named BFGS method has stood the test of time well, and is

still regarded as possibly the best secant updating formula.

Quasi-Newton methods for large problems

Limited memory methods are secant-updating methods that discard old information so as to reduce

the amount of storage required when solving large problems. The methods first appeared in
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J. Nocedal, “Updating quasi-Newton matrices with limited storage”, Math. Computation

35 (1980) 773:782, and

A. Buckley and A. Lenir, “QN-like variable storage conjugate gradients”, Math. Program-

ming 27 (1983) 155:175.

Secant updating formulae proved to be less useful for large-scale computation, but a successful

generalization, applicable to what are known as partially separable functions, was pioneered by

A. Griewank and Ph. Toint, “Partitioned variable metric updates for large structured

optimization problems”, Numerische Mathematik 39 (1982) 119:137, see also 429:448, as

well as

A. Griewank and Ph. Toint, “On the unconstrained optimization of partially separable

functions”, in Nonlinear Optimization 1981 (Powell, M., ed.) Academic Press (1982)

Conjugate gradient methods for large problems

Generalizations of Conjugate Gradient methods for non-quadratic minimization were originally pro-

posed by

R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients”, Computer

J. (1964) 149:154, and

E. Polak and G. Ribiére, “Note sur la convergence de méthodes de directions conjuguées”,

Revue Française d’informatique et de recherche opérationelle 16 (1969) 35:43.

An alternative is to attempt to solve the (linear) Newton system by a conjugate-gradient like method.

Suitable methods for terminating such a procedure while still maintaining fast convergence were

proposed by

R. S. Dembo and T. Steihaug, “Truncated-Newton algorithms for large-scale unconstrained

optimization”, Math. Programming 26 (1983) 190:212.

Non-monotone methods

While it is usual to think of requiring that the objective function decreases at every iteration, this

is not actually necessary for convergence so long as there is some overall downward trend. The first

method along these lines was by

L. Grippo, F. Lampariello and S. Lucidi, “A nonmonotone line search technique for Newton’s

method”, SIAM J. Num. Anal., 23 (1986) 707:716.

Trust-region methods

The earliest methods that might be regarded as trust-region methods are those by

K. Levenberg, “A method for the solution of certain problems in least squares”, Quarterly

J. Appl. Maths, 2 (1944) 164:168, and

D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters” SIAM

J. Appl. Maths, 11 (1963) 431:441
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for the solution of nonlinear least-squares problems, although they are motivated from the perspec-

tive of modifying indefinite Hessians rather than restricting the step. Probably the first “modern”

interpretation is by

S. Goldfeldt, R. Quandt and H. Trotter, “Maximization by quadratic hill-climbing”, Econo-

metrica, 34 (1966) 541:551.

Certainly, the earliest proofs of convergence are given by

M. Powell, “A New Algorithm for Unconstrained Optimization”, in Nonlinear Programming,

(Rosen, J., Mangasarian, O., and Ritter, K., eds.) Academic Press (1970),

while a good modern introduction is by

J. Moré, “Recent developments in algorithms and software for trust region methods”, in

Mathematical Programming: The State of the Art, (Bachem, A., Grötschel, M., and Korte,

B., eds.) Springer Verlag (1983).

You might want to see our book

A. Conn, N. Gould and Ph. Toint, “Trust-region methods”, SIAM (2000)

for a comprehensive history and review of the large variety of articles on trust-region methods.

Trust-region subproblems

Almost all you need to know about solving small-scale trust-region subproblems is contained in the

paper

J. Moré and D. Sorensen, “Computing a trust region step”, SIAM J. Sci. Stat. Comp. 4

(1983) 533:572.

Likewise

T. Steihaug, “The conjugate gradient method and trust regions in large scale optimization”,

SIAM J. Num. Anal. 20 (1983) 626:637

provides the basic truncated conjugate-gradient approach used so successfully for large-scale prob-

lems. More recently2

N. Gould, S. Lucidi, M. Roma and Ph. Toint, “Solving the trust-region subproblem using

the Lanczos method”, SIAM J. Optimization 9 (1999) 504:525

show how to improve on Steihaug’s approach by moving around the trust-region boundary. A

particularly nice new paper by

Y. Yuan, “On the truncated conjugate-gradient method”, Math. Programming, 87 (2000)

561:573

proves that Steihaug’s approximation gives at least 50% of the optimal function decrease when

applied to convex problems.

The Symmetric Rank-One quasi-Newton approximation

Since trust-region methods allow non-convex models, perhaps the simplest of all Hessian approxi-

mation methods, the Symmetric Rank-One update, is back in fashion. Although it is unclear who

first suggested the method,

2We would hate to claim “seminal” status for one of our own papers!
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C. Broyden, “Quasi-Newton methods and their application to function minimization”, Math.

Computation 21 (1967) 577:593

is the earliest reference that we know of. Its revival in fortune is due3 to

A. Conn, N. Gould and Ph. Toint, “Convergence of quasi-Newton matrices generated by

the Symmetric Rank One update” Math. Programming, 50 (1991) 177:196 (see also Math.

Comp. 50 (1988) 399:430), and

R. Byrd, H. Khalfan and R. Schnabel “Analysis of a symmetric rank-one trust region

method” SIAM J. Optimization 6 (1996) 1025:1039,

and it has now taken its place alongside the BFGS method as the pre-eminent updating formula.

More non-monotone methods

Non-monotone methods have also been proposed in the trust-region case. The basic reference here

is the paper by

Ph. Toint, “A non-monotone trust-region algorithm for nonlinear optimization subject to

convex constraints”, Math. Programming, 77 (1997) 69:94.

Barrier function methods

Although they appear to have originated in a pair of unpublished University of Oslo technical reports

by K. Frisch in the mid 1950s, (logarithmic) barrier function were popularized by

A. Fiacco and G. McCormick, “The sequential unconstrained minimization technique for

nonlinear programming: a primal-dual method”, Management Science 10 (1964) 360:366;

see also ibid (1964) 601:617.

A full early history is given in the book

A. Fiacco and G. McCormick, “Nonlinear programming: sequential unconstrained minimiza-

tion techniques” (1968), republished as Classics in Applied Mathematics 4, SIAM (1990).

The worsening conditioning of the Hessian was first highlighted by

F. Lootsma, “Hessian matrices of penalty functions for solving constrained optimization

problems”, Philips Research Reports, 24 (1969) 322:331, and

W. Murray, “Analytical expressions for eigenvalues and eigenvectors of the Hessian matri-

ces of barrier and penalty functions”, J. Optimization Theory and Applications, 7 (1971)

189:196,

although recent work by

M. Wright, “Ill-conditioning and computational error in interior methods for nonlinear pro-

gramming”, SIAM J. Optimization 9 (1999) 84:111, and

S. Wright, “Effects of finite-precision arithmetic on interior-point methods for nonlinear

programming”, SIAM J. Optimization 12 (2001) 36:78

3See previous footnote . . .
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demonstrates that this “defect” is far from fatal.

Interior-point methods

The interior-point revolution was started by

N. Karmarkar, “A new polynomial-time algorithm for linear programming”, Combinatorica

4 (1984) 373:395.

It did not take long for

P. Gill, W. Murray, M. Saunders, J. Tomlin and M. Wright, “On projected Newton barrier

methods for linear programming and an equivalence to Karmarkar’s projective method”,

Math. Programming, 36 (1986) 183:209

to realize that this radical “new” approach was actually something that nonlinear programmers had

tried (but, most unfortunately, discarded) in the past.

SQP methods

The first SQP method was proposed in the overlooked 1963 Harvard Master’s thesis of R. Wilson.

The generic linesearch SQP method is that of

B. Pschenichny, “Algorithms for general problems of mathematical programming”, Kiber-

netica, 6 (1970) 120:125,

while there is a much larger variety of trust-region SQP methods, principally because of the con-

straint incompatibility issue.

Merit functions for SQP

The first use of an exact penalty function to globalize the SQP method was by

S. Han, “A globally convergent method for nonlinear programming”, J. Optimization The-

ory and Applics, 22 (1977) 297:309, and

M. Powell, “A fast algorithm for nonlinearly constrained optimization calculations”, in Nu-

merical Analysis, Dundee 1977 (G. Watson, ed) Springer Verlag (1978) 144:157.

The fact that such a merit function may prevent full SQP steps was observed N. Maratos in his

1978 U. of London Ph. D. thesis, while methods for combating the Maratos effect were subsequently

proposed by

R. Fletcher, “Second-order corrections for non-differentiable optimization”, in Numerical

Analysis, Dundee 1981 (G. Watson, ed) Springer Verlag (1982) 85:114, and

R. Chamberlain, M. Powell, C. Lemaréchal, and H. Pedersen, “The watchdog technique

for forcing convergence in algorithms for constrained optimization”, Math. Programming

Studies, 16 (1982) 1:17.

An SQP method that avoids the need for a merit function altogether by staying feasible is given by

J. Bonnans, E. Panier, A. Tits, and J. Zhou, “Avoiding the Maratos effect by means of

a nonmonotone linesearch II. Inequality constrained problems—feasible iterates”, SIAM J.

Num. Anal., 29 (1992) 1187:1202.
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Hessian approximations

There is a vast literature on suitable Hessian approximations for use in SQP methods. Rather than

point at individual papers, a good place to start is

P. Boggs and J. Tolle, “Sequential quadratic programming”, Acta Numerica 4 (1995) 1:51,

but see also our paper

N. Gould and Ph. Toint, “SQP methods for large-scale nonlinear programming”, in System

modelling and optimization, methods, theory and applications (M. Powell and S. Scholtes,

eds.) Kluwer (2000) 149:178.

Trust-region SQP methods

Since the trust-region and the linearized constraints may be incompatible, almost all trust-region

SQP methods modify the basic SQP method in some way. The S`1QP method is due to

R. Fletcher, “A model algorithm for composite non-differentiable optimization problems”,

Math. Programming Studies, 17 (1982) 67:76.

Methods that relax the constraints include those proposed by

A. Vardi, “A trust region algorithm for equality constrained minimization: convergence

properties and implementation”, SIAM J. Num. Anal., 22 (1985) 575:591, and

M. Celis, J. Dennis and R. Tapia, “A trust region strategy for nonlinear equality constrained

optimization”, in Numerical Optimization 1984 (P. Boggs, R. Byrd and R. Schnabel, eds),

SIAM (1985) 71:82,

as well as a method that appeared in the 1989 U. of Colorado at Boulder Ph. D. thesis of E.

Omojokun, supervised by R. Byrd. The Filter-SQP approach may be found in4

R. Fletcher and S. Leyffer, “Nonlinear programming without a penalty function”, Math.

Programming, 91 (2002) 239:269.

Modern methods for nonlinear programming

Many modern methods for nonlinearly constrained optimization tend to be SQP-interior-point hy-

brids. A good example is due to

R. Byrd, J. Gilbert and J. Nocedal, “A trust region method based on interior point tech-

niques for nonlinear programming”, Math. Programming A 89 (2000) 149:185,

and forms the basis for the excellent KNITRO package.

4Once again, see previous footnote . . .
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APPENDIX B - OPTIMIZATION RESOURCES ON THE

WORLD-WIDE-WEB

B.1 Answering questions on the web

A good starting point for finding out more about optimization are the two lists of Frequently Asked

Questions (FAQs) on optimization. The Linear Programming FAQ,

www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html ,

is dedicated to question on linear optimization problems as well as certain aspects of mixed integer

linear programming. The Nonlinear Programming FAQ,

www-unix.mcs.anl.gov/otc/Guide/faq/nonlinear-programming-faq.html ,

offers a concise introduction to nonlinear optimization. The NEOS guide,

www-fp.mcs.anl.gov/otc/Guide ,

provides an overview of optimization and the solvers available. It contains the optimization tree,

www-fp.mcs.anl.gov/otc/Guide/OptWeb ,

a dichotomy of optimization problems. Both sites are maintained by the Optimization Technology

Center

www.ece.nwu.edu/OTC ,

a loose collaboration between Argonne National Laboratory and Northwestern University in the

USA.

Hans Mittelmann of Arizona State University maintains a decision tree for optimization soft-

ware,

plato.la.asu.edu/guide.html ,

and he also provides a useful set of benchmarks for optimization software,

plato.la.asu.edu/bench.html .

Harvey Greenberg’s Mathematical Programming Glossary,

www.cudenver.edu/ hgreenbe/glossary/glossary.html

contains brief definitions of commonly used expressions in optimization and operations research.

The usenet newsgroup

sci.op-research

is dedicated to answering questions on optimization and operations research. Brian Borchers edits

a weekly digest of postings to it. You can receive the digest by sending an email to

listserv@listserv.okstate.edu

with the message

SUBSCRIBE ORCS-L Your Name .
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B.2 Solving optimization problems on the web

B.2.1 The NEOS server

Probably the most important and useful optimization site on the web is the NEOS server5 at

www-neos.mcs.anl.gov/neos

which allows you to solve optimization problems over the internet. NEOS handles several thousand

(!) submissions per week. The server provides a wide choice of state-of-the-art optimization software

which can be used remotely without the need to install or maintain any software.

The problems should preferably be formulated in a modelling language such as AMPL6 or

GAMS7 (see Section B.2.3). However, some solvers also accept problem descriptions in other formats

such as C or fortran source code or the verbose linear programming MPS format.

There are a number of solvers implementing algorithms for nonlinearly constrained optimization

problems. Most are hybrids, and thus capable of handling both equality and inequality constraints.

There are at least four interior point solvers (see Section 4).

IPOPT, is a freely available line-search filter primal-dual interior-point method.

KNITRO (with a silent “K”), is a primal-dual interior-point method which uses trust regions.

LOQO is based on an infeasible primal-dual interior-point method. It uses a linesearch and a

version of a filter to enforce global convergence.

MOSEK can only be used to solve convex large-scale smooth nonlinear optimization problems. It

does not work for nonconvex problems.

There are at least three solvers implementing SQP algorithms (see Section 5).

DONLP2 implements a linesearch SQP algorithm with an exact non-differentiable `1-penalty func-

tion as a merit function. It uses dense linear algebra.

FILTER implements a trust-region SQP algorithm which is suitable for solving large nonlinearly

constrained problems with small degrees of freedom. It uses a filter (see Section 5.4.3) to

promote global convergence.

SNOPT implements a linesearch SQP algorithm which uses an augmented Lagrangian as a merit

function. It maintains a positive definite limited memory approximation of the Hessian of the

Lagrangian.

There is also a range of other solvers not covered in this article.

CONOPT is a feasible path method based on the generalized reduced gradient algorithm.

LANCELOT implements an augmented Lagrangian algorithm. It uses a trust-region to promote

global convergence.

5J. Czyzyk, M. Mesnier and J. Moré. The NEOS server. IEEE Journal on Computational Science and Engineering,

5:68–75, 1998.
6R. Fourer, D. Gay and B. Kernighan. AMPL: A modelling Language for Mathematical Programming. Boyd &

Fraser Publishing Company, Massachusetts, 1993.
7A. Brooke, D. Kendrick, A. Meeraus and R. Raman. GAMS A user’s guide. GAMS Developments Corporation,

1217 Potomac Street, N.W., Washington DC 20007, USA, December 1998.
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MINOS implements a sequential linearly constrained algorithm. Steplength control is heuristic (for

want of a suitable merit function), but superlinear convergence is often achieved.

PATHNLP finds stationary points for the nonlinear problem by solving the Karush-Kuhn-Tucker

conditions (see Theorems 1.7 and 1.9), written as a mixed complementarity problem, using

the PATH solver.

Consult the NEOS guide (see Section B.1) for appropriate contacts.

A wide range of other optimization problems can also be solved such as semi-infinite optimization,

mixed integer linear and nonlinear optimization, semidefinite optimization, complementarity prob-

lems, non-differentiable optimization, and unconstrained and stochastic optimization problems. The

fact that the server maintains state-of-the-art optimization software makes is suitable for medium

to large scale applications.

Users with their own copy of the modelling systems AMPL or GAMS can even invoke the NEOS

solvers out of their local AMPL or GAMS session using KESTREL,

www-neos.mcs.anl.gov/neos/kestrel.html .

This is very convenient as it makes it possible to post- or pre-process the models using a local copy

of the modelling tool.

B.2.2 Other online solvers

The system www-Nimbus, from

nimbus.mit.jyu.fi ,

is designed to solve (small) multi-objective optimization problems. It consists of a sequence of menus

to input the multi-objective problem as well as some facilities for displaying the solution. It requires

the user to interactively guide the optimization and requires some familiarity with multi-objective

terminology. An online tutorial guides the user through the process. Certain topology optimization

problems can be solved at

www.topopt.dtu.dk

The input is via a GUI and the solution is also display graphically. The system Baron,

archimedes.scs.uiuc.edu/baron/availability.html ,

allows the solution of small global optimization problems online.

B.2.3 Useful sites for modelling problems prior to online solution

AMPL (A Mathematical Programming Language)

www.ampl.com

is a modelling language for optimization problems. The site lists extensions to the book, allows the

solution of example models and contains a list of available solvers. Further AMPL models can be

found at the following sites:
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NLP models by Bob Vanderbei:

www.sor.princeton.edu/∼rvdb/ampl/nlmodels .

MINLP and MPEC models by Sven Leyffer:

www.maths.dundee.ac.uk/∼sleyffer/MacMINLP and
www.maths.dundee.ac.uk/∼sleyffer/MacMPEC .

The COPS collection of Jorge Moré:

www-unix.mcs.anl.gov/∼more/cops .

These sites are especially useful to help with your own modelling exercises.

GAMS (the General Algebraic Modelling System)

www.gams.com

is another modelling language. The site contains documentation on GAMS and some example

models. More GAMS models can be found on the GAMS-world pages. These are sites, dedicated

to important modelling areas, see

www.gamsworld.org .

It also offers a translation service from one modelling language to another.

Recently, optimization solvers have also been interfaced to matlab at

tomlab.biz/ .

B.2.4 Free optimization software

An extension of MPS to nonlinear optimization, SIF (standard input format), can be used to model

optimization problems. The reference document can be found at

www.numerical.rl.ac.uk/lancelot/sif/sifhtml.html .

A collection of optimization problems in SIF is available at CUTEr can be found via

www.cse.clrc.ac.uk/Activity/CUTEr .

Two solvers, LANCELOT

www.cse.clrc.ac.uk/Activity/LANCELOT

and GALAHAD

www.cse.clrc.ac.uk/Activity/GALAHAD

are available freely for non-commercial users.

AMPL and some solvers are also available freely in limited size student versions, which allow the

solution of problems of up to 300 variables and constraints, see

netlib.bell-labs.com/netlib/ampl/student/ .

B.3 Optimization reports on the web

Optimization online,

www.optimization-online.org ,

is an e-print site for papers on optimization. It is sponsored by the Mathematical Programming
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Society. It allows you to search for preprints on certain subjects. A monthly digest summarizes all

monthly submissions.

The two main optimization journals, Mathematical Programming and SIAM Journal on Opti-

mization maintain free sites with access to titles and abstracts, see

link.springer.de/link/service/journals/10107/,

and

www.siam.org/journals/siopt/siopt.htm .

APPENDIX C - SKETCHES OF PROOFS

Theorems 1.1—1.2 can be found in any good book on analysis. Theorems 1.1 and 1.2 follow directly

by considering the remainders of truncated Taylor expansions of the univariate function f(x+ αs)

with α ∈ [0, 1], while Theorem 1.2 uses the Newton formula

F (x+ s) = F (x) +

∫ 1

0

∇xF (x+ αs)sdα.

Proof of Theorem 1.4

Suppose otherwise, that g(x∗) 6= 0. A Taylor expansion in the direction −g(x∗) gives

f(x∗ − αg(x∗)) = f(x∗) − α‖g(x∗)‖
2 +O(α2).

For sufficiently small α, 1
2
α‖g(x∗)‖2 ≥ O(α2), and thus

f(x∗ − αg(x∗)) ≤ f(x∗) − 1
2
α‖g(x∗)‖

2 < f(x∗).

This contradicts the hypothesis that x∗ is a local minimizer.

Proof of Theorem 1.5

Again, suppose otherwise that 〈s,H(x∗)s〉 < 0. A Taylor expansion in the direction s gives

f(x∗ + αs) = f(x∗) + 1
2
α2〈s,H(x∗)s〉 +O(α3),

since g(x∗) = 0. For sufficiently small α, − 1
4
α2〈s,H(x∗)s〉 ≥ O(α3), and thus

f(x∗ + αs) ≤ f(x∗) + 1
4
α2〈s,H(x∗)s〉 < f(x∗).

Once again, this contradicts the hypothesis that x∗ is a local minimizer.

Proof of Theorem 1.6

By continuity H(x) is positive definite for all x in a open ball N around x∗. The generalized mean-

value theorem then says that if x∗ + s ∈ N , there is a value z between the points x∗ and x∗ + s for

which

f(x∗ + s) = f(x∗) + 〈s, g(x∗)〉 + 1
2
〈s,H(z)s〉 = f(x∗) + 1

2
〈s,H(z)s〉 > f(x∗)

for all nonzero s, and thus x∗ is an isolated local minimizer.
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Proof of Theorem 1.7

We consider feasible perturbations about x∗. Consider a vector valued C2 (C3 for Theorem 1.8)

function x(α) of the scalar α for which x(0) = x∗ and c(x(α)) = 0. (The constraint qualification is

that all such feasible perturbations are of this form). We may then write

x(α) = x∗ + αs+ 1
2
α2p+O(α3) (C.1)

and we require that

0 = ci(x(α)) = ci(x∗ + αs+ 1
2
α2p+O(α3))

= ci(x∗) + 〈ai(x∗), αs+ 1
2
α2p〉 + 1

2
α2〈s,Hi(x∗)s〉 +O(α3)

= α〈ai(x∗), s〉 + 1
2
α2 (〈ai(x∗), p〉 + 〈s,Hi(x∗)s〉) +O(α3)

using Taylor’s theorem. Matching similar asymptotic terms, this implies that for such a feasible

perturbation

A(x∗)s = 0 (C.2)

and

〈ai(x∗), p〉 + 〈s,Hi(x∗)s〉 = 0 (C.3)

for all i = 1, . . . ,m. Now consider the objective function

f(x(α)) = f(x∗ + αs+ 1
2
α2p+O(α3))

= f(x∗) + 〈g(x∗), αs+ 1
2
α2p〉 + 1

2
α2〈s,H(x∗)s〉 +O(α3)

= f(x∗) + α〈g(x∗), s〉 + 1
2
α2 (〈g(x∗), p〉 + 〈s,H(x∗)s〉) +O(α3).

(C.4)

This function is unconstrained along x(α), so we may deduce, as in Theorem 1.4, that

〈g(x∗), s〉 = 0 for all s such that A(x∗)s = 0. (C.5)

If we let S be a basis for the null-space of A(x∗), we may write

g(x∗) = AT (x∗)y∗ + Sz∗ (C.6)

for some y∗ and z∗. Since, by definition, A(x∗)S = 0, and as it then follows from (C.5) that

gT (x∗)S = 0, we have that

0 = ST g(x∗) = STAT (x∗)y∗ + STSz∗ = STSz∗.

Hence STSz∗ = 0 and thus z∗ = 0 since S is of full rank. Thus (C.6) gives

g(x∗) −AT (x∗)y∗ = 0. (C.7)

Proof of Theorem 1.8

We have shown that

f(x(α)) = f(x∗) + 1
2
α2 (〈p, g(x∗)〉 + 〈s,H(x∗)s〉) +O(α3) (C.8)

for all s satisfying A(x∗)s = 0, and that (C.7) holds. Hence, necessarily,

〈p, g(x∗)〉 + 〈s,H(x∗)s〉 ≥ 0 (C.9)
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for all s and p satisfying (C.2) and (C.3). But (C.7) and (C.3) combine to give

〈p, g(x∗)〉 =

m
∑

i=1

(y∗)i〈p, ai(x∗)〉 = −
m
∑

i=1

(y∗)i〈s,Hi(x∗)s〉

and thus (C.9) is equivalent to

〈

s,

(

H(x∗) −
m
∑

i=1

(y∗)iHi(x∗)

)

s

〉

≡ 〈s,H(x∗, y∗)s〉 ≥ 0

for all s satisfying (C.2).

Proof of Theorem 1.9

As in the proof of Theorem 1.7, we consider feasible perturbations about x∗. Since any constraint

that is inactive at x∗ (i.e., ci(x∗) > 0) will remain inactive for small perturbations, we need only

consider perturbations that are constrained by the constraints active at x∗, (i.e., ci(x∗) = 0). Let A

denote the indices of the active constraints. We then consider a vector valued C2 (C3 for Theorem

1.10) function x(α) of the scalar α for which x(0) = x∗ and ci(x(α)) ≥ 0 for i ∈ A. In this case,

assuming that x(α) may be expressed as (C.1), we require that

0 ≤ ci(x(α)) = c(x∗ + αs+ 1
2
α2p+O(α3))

= ci(x∗) + 〈ai(x∗), αs+ 1
2
α2p〉 + 1

2
α2〈s,Hi(x∗)s〉 +O(α3)

= α〈ai(x∗), s〉 + 1
2
α2 (〈ai(x∗), p〉 + 〈s,Hi(x∗)s〉) +O(α3)

for all i ∈ A. Thus

〈s, ai(x∗)〉 ≥ 0 (C.10)

and

〈p, ai(x∗)〉 + 〈s,Hi(x∗)s〉 ≥ 0 when 〈s, ai(x∗)〉 = 0 (C.11)

for all i ∈ A. The expansion of f(x(α)) (C.4) then implies that x∗ can only be a local minimizer if

S = {s | 〈s, g(x∗)〉 < 0 and 〈s, ai(x∗)〉 ≥ 0 for i ∈ A} = ∅.

But then the result follows directly from Farkas’ Lemma—a proof of this famous result is given, for

example, as Lemma 9.2.4 in R. Fletcher “Practical Methods of Optimization”, Wiley (1987, 2nd

edition).

Farkas’ Lemma. Given any vectors g and ai, i ∈ A, the set

S = {s | 〈s, g〉 < 0 and 〈s, ai〉 ≥ 0 for i ∈ A}

is empty if and only if

g =
∑

i∈A

yiai

for some yi ≥ 0, i ∈ A
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Proof of Theorem 1.10

The expansion (C.4) for the change in the objective function will be dominated by the first-order

term α〈s, g(x∗)〉 for feasible perturbations unless 〈s, g(x∗)〉 = 0, in which case the expansion (C.8)

is relevant. Thus we must have that (C.9) holds for all feasible s for which 〈s, g(x∗)〉 = 0. The latter

requirement gives that

0 = 〈s, g(x∗)〉 =
∑

i∈A

yi〈s, ai(x∗)〉,

and hence that either yi = 0 or 〈s, ai(x∗)〉 = 0 (or both).

We now focus on the subset of all feasible arcs that ensure ci(x(α)) = 0 if yi > 0 and ci(x(α)) ≥ 0

if yi = 0 for i ∈ A. For those constraints for which ci(x(α) = 0, we have that (C.2) and (C.3) hold,

and thus for such perturbations s ∈ N+. In this case

〈p, g(x∗)〉 =
∑

i∈A

yi〈p, ai(x∗)〉 =
∑

i∈A
yi>0

yi〈p, ai(x∗)〉 = −
∑

i∈A
yi>0

yi〈s,Hi(x∗)s〉 = −
∑

i∈A

yi〈s,Hi(x∗)s〉

This combines with (C.9) to give that

〈s,H(x∗, y∗)s〉 ≡

〈

s,

(

H(x∗) −
m
∑

i=1

(y∗)iHi(x∗)

)

s

〉

= 〈p, g(x∗)〉 + 〈s,H(x∗)s〉 ≥ 0.

for all s ∈ N+, which is the required result.

Proof of Theorem 1.11

Consider any feasible arc x(α). We have seen that (C.10) and (C.11) hold, and that first-order

feasible perturbations are characterized by N+. It then follows from (C.11) that

〈p, g(x∗)〉 =
∑

i∈A

yi〈p, ai(x∗)〉 =
∑

i∈A
〈s,ai(x∗)〉=0

yi〈p, ai(x∗)〉 ≥ −
∑

i∈A
〈s,ai(x∗)〉=0

yi〈s,Hi(x∗)s〉 = −
∑

i∈A

yi〈s,Hi(x∗)s〉,

and hence by assumption that

〈p, g(x∗)〉 + 〈s,H(x∗)s〉 ≥

〈

s,

(

H(x∗) −
m
∑

i=1

(y∗)iHi(x∗)

)

s

〉

≡ 〈s,H(x∗, y∗)s〉 > 0

for all s ∈ N+. But this then combines with (C.4) and (C.10) to show that f(x(α)) > f(x∗) for all

sufficiently small α.

Proof of Theorem 2.1

From Taylor’s theorem (Theorem 1.1), and using the bound

α ≤
2(β − 1)〈p, g(x)〉

γ(x)‖p‖2
2

,

we have that
f(x+ αp) ≤ f(x) + α〈p, g(x)〉 + 1

2
γ(x)α2‖p‖2

≤ f(x) + α〈p, g(x)〉 + α(β − 1)〈p, g(x)〉

= f(x) + αβ〈p, g(x)〉.
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Proof of Corollary 2.2

Theorem 2.1 shows that the linesearch will terminate as soon as α(l) ≤ αmax. There are two cases

to consider. Firstly, it may be that αinit satisfies the Armijo condition, in which case αk = αinit.

If not, there must be a last linesearch iteration, say the lth, for which α(l) > αmax (if the linesearch

has not already terminated). Then αk ≥ α(l+1) = τα(l) > ταmax. Combining these two cases gives

the required result.

Proof of Theorem 2.3

We shall suppose that gk 6= 0 for all k and that

lim
k→∞

fk > −∞.

From the Armijo condition, we have that

fk+1 − fk ≤ αkβ〈pk, gk〉

for all k, and hence summing over the first j iterations

fj+1 − f0 ≤

j
∑

k=0

αkβ〈pk, gk〉.

Since the left-hand side of this inequality is, by assumption, bounded below, so is the sum on

right-hand-side. As this sum is composed of negative terms, we deduce that

lim
k→∞

αk〈pk, gk〉 = 0.

Now define the two sets

K1 =

{

k | αinit >
2τ(β − 1)〈pk, gk〉

γ‖pk‖2
2

}

and

K2 =

{

k | αinit ≤
2τ(β − 1)〈pk, gk〉

γ‖pk‖2
2

}

,

where γ is the assumed uniform Lipschitz constant. For k ∈ K1,

αk ≥
2τ(β − 1)〈pk, gk〉

γ‖pk‖2
2

in which case

αk〈pk, gk〉 ≤
2τ(β − 1)

γ

(

〈pk, gk〉

‖pk‖

)2

< 0.

Thus

lim
k∈K1→∞

|〈pk, gk〉|

‖pk‖2
= 0. (C.12)

For k ∈ K2,

αk ≥ αinit

in which case

lim
k∈K2→∞

|〈pk, gk〉| = 0. (C.13)

Combining (C.12) and (C.13) gives the required result.
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Proof of Theorem 2.4

Follows immediately from Theorem 2.3, since for pk = −gk,

min (|〈pk, gk〉|, |〈pk, gk〉|/‖pk‖2) = ‖gk‖2 min (1, ‖gk‖2)

and thus

lim
k→∞

min (|〈pk, gk〉|, |〈pk, gk〉|/‖pk‖2) = 0

implies that limk→∞ gk = 0.

Proof of Theorem 2.5

Let λmin(Bk) and λmax(Bk) be the smallest and largest eigenvalues of Bk. By assumption, there

are bounds λmin > 0 and λmax such that

λmin ≤ λmin(Bk) ≤
〈s,Bks〉

‖s‖2
≤ λmax(Bk) ≤ λmax

for any nonzero vector s. Thus

|〈pk, gk〉| = |〈gk, B
−1
k gk〉| ≥ λmin(B−1

k )‖gk‖
2
2 =

1

λmax(Bk)
‖gk‖

2
2 ≥ λ−1

max‖gk‖
2
2.

In addition

‖pk‖
2
2 = 〈gk, B

−2
k gk〉 ≤ λmax(B

−2
k )‖gk‖

2
2 =

1

λmin(B2
k)

‖gk‖
2
2 ≤ λ−2

min‖gk‖
2
2,

and hence

‖pk‖2 ≤ λ−1
min‖gk‖2,

which leads to
|〈pk, gk〉|

‖pk‖2
≥
λmin

λmax
‖gk‖2.

Thus

min (|〈pk, gk〉|, |〈pk, gk〉|/‖pk‖2) ≥ λ−1
max‖gk‖2 min (‖gk‖2, λmin) .

and hence

lim
k→∞

min (|〈pk, gk〉|, |〈pk, gk〉|/‖pk‖2) = 0

implies, as before, that limk→∞ gk = 0.

Proof of Theorem 2.6

Consider the sequence of iterates xk, k ∈ K, whose limit is x∗. By continuity, Hk is positive definite

for all such k sufficiently large. In particular, we have that there is a k0 ≥ 0 such that

〈pk, Hkpk〉 ≥ 1
2
λmin(H∗)‖pk‖

2
2

for all k ∈ K ≥ k0, where λmin(H∗) is the smallest eigenvalue of H(x∗). We may then deduce that

|〈pk, gk〉| = −〈pk, gk〉 = 〈pk, Hkpk〉 ≥ 1
2
λmin(H∗)‖pk‖

2
2. (C.14)
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for all such k, and also that

lim
k∈K→∞

pk = 0

since Theorem 2.5 implies that at least one of the left-hand sides of (C.14) and

|〈pk, gk〉|

‖pk‖2
= −

〈pk, gk〉

‖pk‖2
≥ 1

2
λmin(H∗)‖pk‖2

converges to zero for all such k.

From Taylor’s theorem, there is a zk between xk and xk + pk such that

f(xk + pk) = fk + 〈pk, gk〉 + 1
2
〈pk, H(zk)pk〉.

Thus, the Lipschitz continuity of H gives that

f(xk + pk) − fk − 1
2
〈pk, gk〉 = 1

2
(〈pk, gk〉 + 〈pk, H(zk)pk〉)

= 1
2
(〈pk, gk〉 + 〈pk, Hkpk〉) + 1

2
〈pk, (H(zk) −Hk)pk〉

≤ 1
2
γ‖zk − xk‖2‖pk‖2

2 ≤ 1
2
γ‖pk‖3

2

(C.15)

since Hkpk + gk = 0. Now pick k sufficiently large so that

γ‖pk‖2 ≤ λmin(H∗)(1 − 2β).

In this case, (C.14) and (C.15) give that

f(xk + pk) − fk ≤ 1
2
〈pk, gk〉 + 1

2
λmin(H∗)(1 − 2β)‖pk‖

2
2 ≤ 1

2
(1 − (1 − 2β))〈pk , gk〉 = β〈pk, gk〉,

and thus that a unit stepsize satisfies the Armijo condition, which proves (i).

To obtain the remaining results, note that ‖H−1
k ‖2 ≤ 2/λmin(H∗) for all sufficiently large k ∈ K.

The iteration gives

xk+1 − x∗ = xk − x∗ −H−1
k gk = xk − x∗ −H−1

k (gk − g(x∗)) = H−1
k (g(x∗) − gk −Hk(x∗ − xk)) .

But Theorem 1.3 gives that

‖g(x∗) − gk −Hk (x∗ − xk) ‖2 ≤ γ‖x∗ − xk‖
2
2.

Hence

‖xk+1 − x∗‖2 ≤ γ‖H−1
k ‖2‖x∗ − xk‖

2
2

which is (iii) when κ = 2γ/λmin(H∗). Result (ii) follows since once an iterate becomes sufficiently

close to x∗, (iii) implies that the next is even closer.

Conjugate Gradient methods (Section 2)

All of the results given here are easy to verify, and may be found in any of the books of suggested

background reading material. The result that any pk = pi is a descent direction follows immediately

since the fact that pi minimizes q(p) in Di implies that

pi = pi−1 −
〈gk, di−1〉

〈di−1, Bkdi−1〉di−1
.

Thus

〈gk, p
i〉 = 〈gk, p

i−1〉 −
(〈gk, di−1〉)2

〈di−1, Bkdi−1〉
,

from which it follows that 〈gk, p
i〉 < 〈gk, p

i−1〉. The result then follows by induction, since

〈gk, p
1〉 = −

‖gk‖4
2

〈gk, Bkgk〉
< 0.
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Proof of Theorem 3.1

Firstly note that, for all α ≥ 0,

mk(−αgk) = fk − α‖gk‖
2
2 + 1

2
α2〈gk, Bkgk〉. (C.16)

If gk is zero, the result is immediate. So suppose otherwise. In this case, there are three possibilities:

(i) the curvature 〈gk, Bkgk〉 is not strictly positive; in this case mk(−αgk) is unbounded from below

as α increases, and hence the Cauchy point occurs on the trust-region boundary.

(ii) the curvature 〈gk, Bkgk〉 > 0 and the minimizer of mk(−αgk) occurs at or beyond the trust-

region boundary; once again, the the Cauchy point occurs on the trust-region boundary.

(iii) the curvature 〈gk, Bkgk〉 > 0 and the minimizer of mk(−αgk), and hence the Cauchy point,

occurs before the trust-region is reached.

We consider each case in turn;

Case (i). In this case, since 〈gk, Bkgk〉 ≤ 0, (C.16) gives

mk(−αgk) = fk − α‖gk‖
2
2 + 1

2
α2〈gk, Bkgk〉 ≤ fk − α‖gk‖

2
2 (C.17)

for all α ≥ 0. Since the Cauchy point lies on the boundary of the trust region

αC

k =
∆k

‖gk‖
. (C.18)

Substituting this value into (C.17) gives

fk −mk(s
C

k) ≥ ‖gk‖
2
2

∆k

‖gk‖
≥ κs‖gk‖2∆k ≥ 1

2
κs‖gk‖2∆k (C.19)

since ‖gk‖2 ≥ κs‖gk‖.

Case (ii). In this case, let α∗
k be the unique minimizer of (C.16); elementary calculus reveals that

α∗
k =

‖gk‖2
2

〈gk, Bkgk〉
. (C.20)

Since this minimizer lies on or beyond the trust-region boundary (C.18) and (C.20) together imply

that

αC

k 〈gk, Bkgk〉 ≤ ‖gk‖
2
2.

Substituting this last inequality in (C.16), and using (C.18) and ‖gk‖2 ≥ κs‖gk‖, it follows that

fk −mk(s
C

k) = αC

k‖gk‖
2
2 −

1
2
[αC

k ]
2〈gk, Bkgk〉 ≥ 1

2
αC

k‖gk‖
2
2 = 1

2
‖gk‖

2
2

∆k

‖gk‖
≥ 1

2
κs‖gk‖2∆k.

Case (iii). In this case, αC

k = α∗
k, and (C.16) becomes

fk −mk(s
C

k) =
‖gk‖4

2

〈gk, Bkgk〉
− 1

2

‖gk‖4
2

〈gk, Bkgk〉
= 1

2

‖gk‖4
2

〈gk, Bkgk〉
≥ 1

2

‖gk‖2
2

1 + ‖Bk‖2
,

where

|〈gk, Bkgk〉| ≤ ‖gk‖
2
2‖Bk‖2 ≤ ‖gk‖

2
2(1 + ‖Bk‖2)

because of the Cauchy-Schwarz inequality.

The result follows since it is true in each of the above three possible cases. Note that the “1+”

is only needed to cover case where Bk = 0, and that in this case, the “min” in the theorem might

actually be replaced by κs∆k.
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Proof of Corollary 3.2

Immediate from Theorem 3.1 and the requirement that mk(sk) ≤ mk(s
C

k).

Proof of Lemma 3.3

The generalized mean-value theorem gives that

f(xk + sk) = f(xk) + 〈sk,∇xf(xk)〉 + 1
2
〈sk,∇xxf(ξk)sk〉

for some ξk in the segment [xk, xk + sk]. Thus

|f(xk + sk) −mk(sk)| = 1
2
|〈sk, H(ξk)sk〉 − 〈sk, Bksk〉| ≤ 1

2
|〈sk, H(ξk)sk〉| + 1

2
|〈sk, Bksk〉|

≤ 1
2
(κh + κb)‖sk‖

2
2 ≤ 1

2
κ2
l (κh + κb)‖sk‖

2 ≤ κd∆
2
k

using the triangle and Cauchy-Schwarz inequalities.

Proof of Lemma 3.4

By definition,

1 + ‖Bk‖2 ≤ κh + κb,

and hence for any radius satisfying the given (first) bound,

κs∆k ≤
‖gk‖2

κh + κb
≤

‖gk‖2

1 + ‖Bk‖2
.

As a consequence, Corollary 3.2 gives that

fk −mk(sk) ≥ 1
2
‖gk‖2 min

[

‖gk‖2

1 + ‖Bk‖2
, κs∆k

]

= 1
2
κs‖gk‖2∆k. (C.21)

But then Lemma 3.3 and the assumed (second) bound on the radius gives that

|ρk − 1| =

∣

∣

∣

∣

f(xk + sk) −mk(sk)

fk −mk(sk)

∣

∣

∣

∣

≤ 2
κd∆

2
k

κs‖gk‖2∆k
=

2κd
κs

∆k

‖gk‖2
≤ 1 − ηv . (C.22)

Therefore, ρk ≥ ηv and the iteration is very successful.

Proof of Lemma 3.5

Suppose otherwise that ∆k can become arbitrarily small. In particular, assume that iteration k is

the first such that

∆k+1 ≤ κε. (C.23)

Then since the radius for the previous iteration must have been larger, the iteration was unsuccessful,

and thus γd∆k ≤ ∆k+1. Hence

∆k ≤ εmin

(

1

κs(κh + κb)
,
κs(1 − ηv)

2κd

)

≤ ‖gk‖min

(

1

κs(κh + κb)
,
κs(1 − ηv)

2κd

)

.

But this contradicts the assertion of Lemma 3.4 that the k-th iteration must be very successful.
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Proof of Lemma 3.6

The mechanism of the algorithm ensures that x∗ = xk0+1 = xk0+j for all j > 0, where k0 is the

index of the last successful iterate. Moreover, since all iterations are unsuccessful for sufficiently

large k, the sequence {∆k} converges to zero. If ‖gk0+1‖ > 0, Lemma 3.4 then implies that there

must be a successful iteration of index larger than k0, which is impossible. Hence ‖gk0+1‖ = 0.

Proof of Theorem 3.7

Lemma 3.6 shows that the result is true when there are only a finite number of successful iterations.

So it remains to consider the case where there are an infinite number of successful iterations. Let S

be the index set of successful iterations. Now suppose that

‖gk‖ ≥ ε (C.24)

for some ε > 0 and all k, and consider a successful iteration of index k. The fact that k is successful,

Corollary 3.2, Lemma 3.5, and the assumption (C.24) give that

fk − fk+1 ≥ ηs[fk −mk(sk)] ≥ δε
def
= 1

2
ηsεmin

[

ε

1 + κb
, κsκε

]

. (C.25)

Summing now over all successful iterations from 0 to k, it follows that

f0 − fk+1 =

k
∑

j=0
j∈S

[fj − fj+1] ≥ σkδε,

where σk is the number of successful iterations up to iteration k. But since there are infinitely many

such iterations, it must be that

lim
k→∞

σk = +∞.

Thus (C.24) can only be true if fk+1 is unbounded from below, and conversely, if fk+1 is bounded

from below, (C.24) must be false, and there is a subsequence of the ‖gk‖ converging to zero.

Proof of Corollary 3.8

Suppose otherwise that fk is bounded from below, and that there is a subsequence of successful

iterates, indexed by {ti} ⊆ S, such that

‖gti‖ ≥ 2ε > 0 (C.26)

for some ε > 0 and for all i. Theorem 3.7 ensures the existence, for each ti, of a first successful

iteration `i > ti such that ‖g`i‖ < ε. That is to say that there is another subsequence of S indexed

by {`i} such that

‖gk‖ ≥ ε for ti ≤ k < `i and ‖g`i‖ < ε. (C.27)

We now restrict our attention to the subsequence of successful iterations whose indices are in the

set

K
def
= {k ∈ S | ti ≤ k < `i},

where ti and `i belong to the two subsequences defined above.
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The subsequences {ti}, {`i} and K are all illustrated in Figure C.1, where, for simplicity, it is

assumed that all iterations are successful. In this figure, we have marked position j in each of the

subsequences represented in abscissa when j belongs to that subsequence. Note in this example that

`0 = `1 = `2 = `3 = `4 = `5 = 8, which we indicated by arrows from t0 = 0, t1 = 1, t2 = 2, t3 = 3,

t4 = 4 and t5 = 7 to k = 9, and so on.

6
‖gk‖

2ε

ε

- kS
-{ti}

{`i} - - - -
-K

r

r

r

r
r

b

b

r

?

b

r

r

r

b

b

?

b

r

r

r

b

?
?

b
b

r

r

b

?

?

Figure C.1: The subsequences of the proof of Corollary 3.8

As in the previous proof, it immediately follows that

fk − fk+1 ≥ ηs[fk −mk(sk)] ≥ 1
2
ηsεmin

[

ε

1 + κb
, κs∆k

]

(C.28)

holds for all k ∈ K because of (C.27). Hence, since {fk} is, by assumption, bounded from below,

the left-hand side of (C.28) must tend to zero when k tends to infinity, and thus that

lim
k→∞

k∈K

∆k = 0.

As a consequence, the second term dominates in the minimum of (C.28) and it follows that, for

k ∈ K sufficiently large,

∆k ≤
2

εηsκs
[fk − fk+1].

We then deduce from this bound that, for i sufficiently large,

‖xti − x`i‖ ≤
`i−1
∑

j=ti

j∈K

‖xj − xj+1‖ ≤
`i−1
∑

j=ti

j∈K

∆j ≤
2

εηsκs
[fti − f`i ]. (C.29)

But, because {fk} is monotonic and, by assumption, bounded from below, the right-hand side of

(C.29) must converge to zero. Thus ‖xti − x`i‖ tends to zero as i tends to infinity, and hence, by

continuity, ‖gti − g`i‖ also tend to zero. However this is impossible because of the definitions of {ti}

and {`i}, which imply that ‖gti − g`i‖ ≥ ε. Hence, no subsequence satisfying (C.26) can exist.
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Proof of Theorem 3.9

The constraint ‖s‖2 ≤ ∆ is equivalent to

1
2
∆2 − 1

2
〈s, s〉 ≥ 0. (C.30)

Applying Theorem 1.9 to the problem of minimizing q(s) subject to (C.30) gives

g +Bs∗ = −λ∗s∗ (C.31)

for some Lagrange multiplier λ∗ ≥ 0 for which either λ∗ = 0 or ‖s∗‖2 = ∆ (or both). It remains to

show that B + λ∗I is positive semi-definite.

If s∗ lies in the interior of the trust-region, necessarily λ∗ = 0, and Theorem 1.10 implies that

B + λ∗I = B must be positive semi-definite. Likewise if ‖s∗‖2 = ∆ and λ∗ = 0, it follows from

Theorem 1.10 that necessarily 〈v,Bv〉 ≥ 0 for all v ∈ N+ = {v|〈s∗, v〉 ≥ 0}. If v /∈ N+, then

−v ∈ N+, and thus 〈v,Bv〉 ≥ 0 for all v. Thus the only outstanding case is where ‖s∗‖2 = ∆ and

λ∗ > 0. In this case, Theorem 1.10 shows that 〈v, (B + λ∗I)v〉 ≥ 0 for all v ∈ N+ = {v|〈s∗, v〉 = 0},

so it remains to consider 〈v,Bv〉 when 〈s∗, v〉 6= 0.

w

s
s∗

N+

s

Figure C.2: Construction of “missing” directions of positive curvature.

Let s be any point on the boundary of the trust-region, and let w = s − s∗, as in Figure C.2.

Then

−〈w, s∗〉 = 〈s∗ − s, s∗〉 = 1
2
〈s∗ − s, s∗ − s〉 = 1

2
〈w,w〉 (C.32)

since ‖s‖2 = ∆ = ‖s∗‖2. Combining this with (C.31) gives

q(s) − q(s∗) = 〈w, g +Bs∗〉 + 1
2
〈w,Bw〉 = −λ∗〈w, s∗〉 + 1

2
〈w,Bw〉 = 1

2
〈w, (B + λ∗I)w〉, (C.33)

and thus necessarily 〈w, (B + λ∗I)w〉 ≥ 0 since s∗ is a global minimizer. It is easy to show that

s = s∗ − 2
〈s∗, v〉

〈v, v〉
v
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lies on the trust-region boundary, and thus for this s, w is parallel to v from which it follows that

〈v, (B + λ∗I)v〉 ≥ 0.

When B + λ∗I is positive definite, s∗ = −(B + λ∗I)
−1g. If this point is on the trust-region

boundary, while s is any value in the trust-region, (C.32) and (C.33) become −〈w, s∗〉 ≥ 1
2
〈w,w〉

and q(s) ≥ q(s∗) + 1
2
〈w, (B + λ∗I)w〉 respectively. Hence, q(s) > q(s∗) for any s 6= s∗. If s∗ is

interior, λ∗ = 0, B is positive definite, and thus s∗ is the unique unconstrained minimizer of q(s).

Newton’s method for the secular equation (Section 3)

Recall that the Newton correction at λ is −φ(λ)/φ′(λ). Since

φ(λ) =
1

‖s(λ)‖2
−

1

∆
=

1

(〈s(λ), s(λ)〉)
1
2

−
1

∆
,

it follows, on differentiating, that

φ′(λ) = −
〈s(λ),∇λs(λ)〉

(〈s(λ), s(λ)〉)
3
2

= −
〈s(λ),∇λs(λ)〉

‖s(λ)‖3
2

.

In addition, on differentiating the defining equation

(B + λI)s(λ) = −g,

it must be that

(B + λI)∇λs(λ) + s(λ) = 0.

Notice that, rather than the value of ∇λs(λ), merely the numerator

〈s(λ),∇λs(λ)〉 = −〈s(λ), (B + λI)(λ)−1s(λ)〉

is required in the expression for φ′(λ). Given the factorization B + λI = L(λ)LT (λ), the simple

relationship

〈s(λ), (B + λI)−1s(λ)〉 = 〈s(λ), L−T (λ)L−1(λ)s(λ)〉 = 〈L−1(λ)s(λ), L−1(λ)s(λ)〉 = ‖w(λ)‖2
2

where L(λ)w(λ) = s(λ) then justifies the Newton step.

Proof of Theorem 3.10

We first show that

〈di, dj〉 =
‖gi‖2

2

‖gj‖2
2

‖dj‖2
2 > 0 (C.34)

for all 0 ≤ j ≤ i ≤ k. For any i, (C.34) is trivially true for j = i. Suppose it is also true for all i ≤ l.

Then, the update for dl+1 gives

dl+1 = −gl+1 +
‖gl+1‖2

2

‖gl‖2
2

dl.

Forming the inner product with dj , and using the fact that 〈dj , gl+1〉 = 0 for all j = 0, . . . , l, and

(C.34) when j = l, reveals

〈dl+1, dj〉 = −〈gl+1, dj〉 +
‖gl+1‖2

2

‖gl‖2
2

〈dl, dj〉 =
‖gl+1‖2

2

‖gl‖2
2

‖gl‖2
2

‖gj‖2
2

‖dj‖2
2 =

‖gl+1‖2
2

‖gj‖2
2

‖dj‖2
2 > 0.
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Thus (C.34) is true for i ≤ l + 1, and hence for all 0 ≤ j ≤ i ≤ k.

We now have from the algorithm that

si = s0 +
i−1
∑

j=0

αjdj =
i−1
∑

j=0

αjdj

as, by assumption, s0 = 0. Hence

〈si, di〉 =

〈

i−1
∑

j=0

αjdj , di

〉

=

i−1
∑

j=0

αj〈dj , di〉 > 0 (C.35)

as each αj > 0, which follows from the definition of αj , since 〈dj , Hdj〉 > 0, and from relationship

(C.34). Hence

‖si+1‖2
2 = 〈si+1, si+1〉 = 〈si + αidi, si + αidi〉

= 〈si, si〉 + 2αi〈si, di〉 + αi 2〈di, di〉 > 〈si, si〉 = ‖si‖2
2

follows directly from (C.35) and αi > 0 which is the required result.

Proof of Theorem 3.11

The proof is elementary but rather complicated. See

Y. Yuan, “On the truncated conjugate-gradient method”, Mathematical Programming, 87

(2000) 561:573

for full details.

Proof of Theorem 4.1

Let A = A(x∗), and I = {1, . . . ,m} \ A be the indices of constraints that are active and inactive

at x∗. Furthermore let subscripts A and I denote the rows of matrices/vectors whose indices are

indexed by these sets. Denote the left generalized inverse of ATA(x) by

A+
A(x) =

(

AA(x)ATA(x)
)−1

AA(x)

at any point for which AA(x) is full rank. Since, by assumption, AA(x∗) is full rank, these generalized

inverses exists, and are bounded and continuous in some open neighbourhood of x∗.

Now let

(yk)i =
µk

ci(xk)

for i = 1, . . . ,m, as well as

(y∗)A = A+
A(x∗)g(x∗)

and (y∗)I = 0. If I 6= ∅, then

‖(yk)I‖2 ≤ 2µk
√

|I|/min
i∈I

|ci(x∗)| (C.36)

for all sufficiently large k. It then follows from the inner-iteration termination test that

‖g(xk) −ATA(xk)(yk)A‖2 ≤ ‖g(xk) −AT (xk)yk‖2 + ‖ATI (xk)(yk)I‖2

≤ ε̄k
def
= εk + µk

2
√

|I|‖AI‖2

mini∈I |ci(x∗)|
.

(C.37)
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Hence

‖A+
A(xk)g(xk) − (yk)A‖2 = ‖A+

A(xk)(g(xk) −ATA(xk)(yk)A)‖2 ≤ 2‖A+
A(x∗)‖2ε̄k.

Then

‖(yk)A − (y∗)A‖2 ≤ ‖A+
A(x∗)g(x∗) −A+

A(xk)g(xk)‖2 + ‖A+
A(xk)g(xk) − (yk)A‖2

which, in combination with (C.36) and convergence of xk, implies that {yk} converges to y∗. In

addition, continuity of the gradients and (C.37) implies that

g(x∗) −AT (x∗)y∗ = 0

while the fact that c(xk) > 0 for all k, the definition of yk and y∗ (and the implication that

ci(xk)(yk)i = µk) shows that c(x∗) ≥ 0, y∗ ≥ 0 and ci(x∗)(y∗)i = 0. Hence (x∗, y∗) satisfies the

first-order optimality conditions.

Proof of Theorem 4.2

A formal proof is given by

W. Murray, “Analytical expressions for eigenvalues and eigenvectors of the Hessian matrices

of barrier and penalty functions”, J. Optimization Theory and Applics, 7 (1971) 189:196.

By way of a sketch, let Q(x) and N(x) be orthonormal bases for the range- and null-spaces of

AA(x∗)(x), and let AI(x) be the matrix whose rows are {aTi (x)}i/∈A(x∗). As we have shown, the

required Hessian may be expressed (in decreasing terms of asymptotic dominance) as

∇xxΦ(x, µ) = ATA(x)Y 2
A(x)AA(x)/µ+H(x, y(x)) + µATI (x)C−2

I (x)AI(x).

Since the eigenvalues of ∇xxΦ(x, µ) are not affected by orthonormal transformations, on pre- and

post-multiplying ∇xxΦ(x, µ) by (Q(x) N(x)) and its transpose, we see that the required eigenvalues

are those of

(

Q(x)TATA(x)Y 2
A(x)AA(x)Q(x)/µ+Q(x)TH(x, y(x))Q(x) Q(x)TH(x, y(x))N(x)

N(x)TH(x, y(x))Q(x) N(x)TH(x, y(x))N(x)

)

+O(µ),

(C.38)

where we have use the relationship A(x)N(x) = 0. The dominant eigenvalues are those arising from

the 1,1 block of (C.38), and these are those of ATA(x)Y 2
A(x)AA(x)/µ with an O(1) error. Since the

remaining eigenvalues must occur for eigenvectors orthogonal to those giving the 1,1 block, they

will asymptotically be those of the 2,2 block, and thus those of N(x)TH(x, y(x))N(x) with an O(µ)

term.

Proof of Theorem 4.3

The proof of this result is elementary, but rather long and involved. See

N. Gould, D. Orban, A. Sartenaer and Ph. L. Toint, “Superlinear convergence of primal-

dual interior point algorithms for nonlinear programming”, SIAM J. Optimization, 11(4)

(2001) 974:1002

for full details.
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Proof of Theorem 5.1

The SQP search direction sk and its associated Lagrange multiplier estimates yk+1 satisfy

Bksk −ATk yk+1 = −gk (C.39)

and

Aksk = −ck. (C.40)

Pre-multiplying (C.39) by sk and using (C.40) gives that

〈sk, gk〉 = −〈sk, Bksk〉 + 〈sk, A
T
k yk+1〉 = −〈sk, Bksk〉 − 〈ck, yk+1〉. (C.41)

Likewise (C.40) gives
1

µk
〈sk, A

T
k ck〉 = −

‖ck‖
2
2

µk
. (C.42)

Combining (C.41) and (C.42), and using the positive definiteness of Bk, the Cauchy-Schwarz in-

equality and the fact that sk 6= 0 if xk is not critical, yields

〈sk,∇xΦ(xk)〉 =

〈

sk, gk +
1

µk
ATk ck

〉

= −〈sk, Bksk〉 − 〈ck, yk+1〉 −
‖ck‖2

2

µk

< −‖ck‖2

(

‖ck‖2

µk
− ‖yk+1‖2

)

≤ 0

because of the required bound on µk.

Proof of Theorem 5.2

The proof is slightly complicated as it uses the calculus of non-differentiable functions. See Theorem

14.3.1 in

R. Fletcher, “Practical Methods of Optimization”, Wiley (1987, 2nd edition),

where the converse result, that if x∗ is an isolated local minimizer of Φ(x, ρ) for which c(x∗) = 0

then x∗ solves the given nonlinear program so long as ρ is sufficiently large, is also given. Moreover,

Fletcher showns (Theorem 14.3.2) that x∗ cannot be a local minimizer of Φ(x, ρ) when ρ < ‖y∗‖D.

Proof of Theorem 5.3

For small steps α, Taylor’s theorem applied separately to f and c, along with (C.40), gives that

Φ(xk + αsk, ρk) − Φ(xk , ρk) = α〈sk , gk〉 + ρk
(

‖ck + αAksk‖ − ‖ck‖
)

+O(α2)

= α〈sk , gk〉 + ρk
(

‖(1− α)ck‖ − ‖ck‖
)

+O(α2)

= α (〈sk, gk〉 − ρk‖ck‖) +O
(

α2
)

.

Combining this with (C.41), and once again using the positive definiteness of Bk, the Hölder in-

equality (that is that 〈u, v〉 ≤ ‖u‖‖v‖D for any u, v) and the fact that sk 6= 0 if xk is not critical,

yields

Φ(xk + αsk , ρk) − Φ(xk , ρk) = −α (〈sk, Bksk〉 + 〈ck, yk+1〉 + ρk‖ck‖) +O(α2)

< −α (−‖ck|‖yk+1‖D + ρk‖ck‖) +O(α2)

= −α‖ck‖
(

ρk − ‖yk+1‖D
)

+ O(α2) < 0

because of the required bound on ρk, for sufficiently small α. Hence sufficiently small steps along

sk from non-critical xk reduce Φ(x, ρk).


