Part 1: Optimality conditions
and why they are important

Nick Gould (RAL)

c(z) >0, g(x)+ Al (z)y=0, y>0

MSec course on not mization

NOTATION

Use the following throughout the course:

g(x) dof V.f(z) gradient of f
H(z) ¢ Ve f () Hessian matrix of f
a;(z) & V.ci(x) gradient of ith constraint
Hy(z) ¢ Vazci(x) Hessian of ith constraint
af (z)
Alz) ¥ V,oe(x)=| --- | Jacobian matrix of ¢
ay, ()

Uz, y) ¥ f(z)—yTe(r) Lagrangian function, where
y are Lagrange multipliers
H(z,y) ¥  V,l(r,y) = Hessian of the Lagrangian

OPTIMIZATION PROBLEMS
Unconstrained minimization:

minimize f(z)
z€IR"

where the objective function f : IR" — IR

Equality constrained minimization:

minimize f(x) subject to ¢(z) =0
z€IR"

where the constraints ¢ : IR" — IR™ (m < n)

Inequality constrained minimization:

minimize f(z) subject to ¢(z) >0
z€IR"

where ¢ : IR" — IR™ (m may be larger than n)

LIPSCHITZ CONTINUITY

® X and ) open sets
o F: X —=Y

© ||+ |lx and || - ||y are norms

Then
® F'is Lipschitz continuous at z € X if 3 y(z) such that

[F(2) = F(z)lly <v(@)|lz — z|x
forall z € X.

© F'is Lipschitz continuous throughout/in X if 3 7 such that

[F(2) = F(z)lly <Allz — 2|«
forall z and 2 € X.



USEFUL TAYLOR APPROXIMATIONS

Theorem 1.1. Let S be an open subset of IR", and suppose
f S — IR is continuously differentiable throughout S. Suppose
further that g(z) is Lipschitz continuous at z, with Lipschitz con-
stant v*(x) in some appropriate vector norm. Then, if the segment
x+0s e Sforallde0,1],
|[f(@+5) —m"(@+ )| < 3" (@)]s]?, where
mE(z+s) = f(z) + glz)’s.

If f is twice continuously differentiable throughout S and H(z) is
Lipschitz continuous at z, with Lipschitz constant v9(x),

|[f(z +5) = ma + )] < 1y9(a)ls]]°, where

m@(z +s) = f(x) + g(x)'s + 1s H(x)s.

ANOTHER USEFUL TAYLOR APPROXIMATION

Theorem 1.3. Let S be an open subset of IR", and suppose F :
S — IR™ is continuously differentiable throughout S. Suppose
further that V,F(z) is Lipschitz continuous at x, with Lipschitz
constant v%(z) in some appropriate vector norm and its induced
matrix norm. Then, if the segment x + 0s € S for all § € [0, 1],

1F(x +5) = Mz + )| < 47" ()lls[,

where

MYz + s) = F(z) + V,.F(z)s

MEAN VALUE THEOREM

Theorem 1.2. Let S be an open subset of IR", and suppose f :
S — IR is twice continuously differentiable throughout S. Suppose
further that s # 0, and that the interval [z, z + s] € S. Then

flx+s)=f(z)+ m@vﬂm +1sTH(2)s

for some z € (z,x + s).

OPTIMALITY CONDITIONS

Optimality conditions are useful because:

© they provide a means of guaranteeing that a
candidate solution is indeed optimal
(sufficient conditions), and

® they indicate when a point is not optimal
(necessary conditions)

Furthermore they

© guide in the design of algorithms, since
lack of optimality <=-indication of improvement



UNCONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.4. Suppose that f € C!, and that x, is a local mini-
mizer of f(x). Then
g(z.) = 0.

Second-order necessary optimality:

Theorem 1.5. Suppose that f € C?, and that x, is a local mini-
mizer of f(x). Then g(x.) = 0 and H(z,) is positive semi-definite,
that is

s'H(z,)s >0 forall s € IR"

PROOF OF THEOREM 1.5
Suppose otherwise that s” H (x,)s < 0.
Taylor expansion in the direction s gives

flz. +as) = f(x,) + 1a’s"H(z,)s + O(a?),

since g(w,) = 0. For sufficiently small o, —1a?s"H(z,)s > O(a?),
and thus

flr.+as) < flz.) + 1o  H(z,)s < f(x,).

This contradicts hypothesis that x, is a local minimizer.

PROOF OF THEOREM 1.4
Suppose otherwise, that g(z.) # 0.
Taylor expansion in the direction —g(x,) gives

flaw = ag(a)) = f(z.) - allg(z.)|* + O(a?).
For sufficiently small o, a|g(x.)|*> > O(a?), and thus

flae = ag(ay) < flz.) = jallgl@)? < fla).

This contradicts hypothesis that x, is a local minimizer.

UNCONSTRAINED MINIMIZATION (cont.)

Second-order sufficient optimality:

Theorem 1.6. Suppose that f € C? that x, satisfies the con-
dition g(z,) = 0, and that additionally H(z,) is positive definite,
that is

s"H(z.)s >0 forall s#0¢cIR"

Then z, is an isolated local minimizer of f.




PROOF OF THEOREM 1.6
Continuity = H(z) positive definite Y in open ball A around ..

z,+5 € N + generalized mean value theorem = 3z between z, and
., + s for which

floa+s)= flz.)+g(z)" s +1sTH(2)s
= flz) +1sTH(2)s
> f(z.)

Vs # (0 = x, is an isolated local minimizer.

PROOF OF THEOREM 1.7
Constraint qualification = 3 vector valued C? (C? for Theorem 1.8)
function z(«) of the scalar v for which
z(0) =z, and c(z(a)) =0
and
z(a) =z, + as + aPp + O(a?)

+ Taylor’s theorem =—>

0 = ci(z(a)) = c(zs + as + 1a’p + O(a?))
ci(zs) + al (z,) (as + 1ap) + }a?s" Hy(z,)s + O(a?)

= aa] (z.)s + so? (af (z.)p + s"Hi(z.)s) + O(a?)

Matching similar asymptotic terms =

Az,)s =0 (1)

and
al(z)p+ s Hi(x,)s =0 Vi=1,...,m (2)

EQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.7. Suppose that f, ¢ € C!, and that z, is a local
minimizer of f(z) subject to ¢(x) = 0. Then, so long as a first-
order constraint qualification holds, there exist a vector of Lagrange
multipliers y, such that

¢(z,) =0 (primal feasibility) and
g(x.) — AT (z.)y. = 0 (dual feasibility).

Now consider objective function

fla(@)) = flz.+as+ia’p+0(a?))

f(ze) + glza) (as + 1a?p) + Ja?s"H(z,)s + O(a?)

= flz.) + ag(z.,) s+ 1a? (g(z.)"p+ sTH(z.)s) + O(a?)

f(x) unconstrained along x(a) =

g(z,)Ts =0 for all s such that A(z,)s =0. 4)
Let NV be a basis for null space of A(z,) =

glz.) = AT(z)y. + Nz, ()
for some y, and z,. (4) = ¢ (. )N =0 + A(z,)N =0 =
0= NTg(x,) = N'AT(2,)y. + N'Nz, = N'Nz,.
= NTNz, =0+ N full tank = 2, =0+ (5) =
gl.) = A(z,)y. = 0.



EQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

Theorem 1.8. Suppose that f, ¢ € C?, and that z, is a local
minimizer of f(z) subject to ¢(z) = 0. Then, provided that first-
and second-order constraint qualifications hold, there exist a vector
of Lagrange multipliers y, such that

sTH(z,,y.)s >0 forall s € N/

where

N ={seR"| A(z,)s = 0}

INEQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.9. Suppose that f, ¢ € C!, and that z, is a local
minimizer of f(x) subject to ¢(x) > 0. Then, provided that a first-
order constraint qualification holds, there exist a vector of Lagrange
multipliers g, such that

¢(z,) > 0 (primal feasibility),

g(x.) — A (z,)y. =0
and y, >0
¢i(z4)[y«)i = 0 (complementary slackness).

(dual feasibility) and

PROOF OF THEOREM 1.8
gl.) = A(z.)y. = 0. (6)
while (3) =
fla(@)) = f(x.) + 5o’ (pTg(x.) + s"H(w.)s) + O(@®)  (7)
for all s and p satisfying A(z,)s = 0 and
al (z)p+s"Hi(z)s =0 Vi=1,...,m. (8)
Hence, necessarily,

prg(w.) +s"H(z,)s 2 0 (9)

But (6) + (8) =

plylx.) = MH@L,%QSQL =— MH@L@.%E@.@L%
= (9) is equivalent to

 (HG) = 2 it

for all s satisfying A(z.)s = 0.

mﬂm@f@*vm >0

PROOF OF THEOREM 1.9

Consider feasible perturbations about z.. ¢(z.) > 0= ¢;(z) > 0
for small perturbations = need only consider perturbations that are
constrained by ¢;(z) > 0 for i € A {i: ¢i(x,) = 0}

Consider z(a): z(0) = @y, ¢;i(x(a)) > 0 for i € A and

r(a) =z, + as + aPp + O(a?)

_—
0 < ¢(z(a)) = clz, + as+ sa?p + O(a?))
= ci() + ai(z) as + 1o2p + 1a2sTHy(z,)s + O(a?)
= aa(z.)" s + 1o AS.AHL%@ + mﬂbﬁ@*vmv +O(a?)
Vie A=
staj(z,) >0 Vie A (10)
and

plai(z,) + sTHy(z,)s > 0 when sTa;(z,) =0 Vie A (11)



Expansion (3) of f(z(«))
f(@(e) = f(z) + ag(e.)Ts + o2 (g(a)Tp+ TH(2.)s) + O(a”)
=— x, can only be a local minimizer if
S=1{s|s"g(x.) <0 and s"a;(x,) >0 for i € A} = 0.

Result then follows directly from Farkas™ Lemma:

Farkas’ Lemma. Given any vectors ¢ and a;, i € A, the set
S={s]s'g<0 and s'a; >0 for i € A}

is empty if and only if
= M QL
g 2 Yia;

for some y; > 0,7 € A

PROOF OF THEOREM 1.10
Expansion

fla(a)) = f(2.) + agle)"s + jo® (g(z)p + 5" H(z.)s) + O(c”)

for change in objective function dominated by as’g(z,) for feasible
perturbations unless s” g(z,) = 0, in which case the expansion

fla(a)) = flx.) + 107 (pTg(x.) + s" H(z.)s) + O(0?)
is relevant =
prglw.) + s H(z)s >0 (12)

holds for all feasible s for which s g(z,) = 0 =

= mﬂQAHL = .ML@LBHS@L = either (y,); = 0 or SAHLQM = 0.
1€
= second-order feasible perturbations characterised by s € N/.

INEQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

Theorem 1.10. Suppose that f, ¢ € C?, and that z, is a local
minimizer of f(z) subject to ¢(x) > 0. Then, provided that first-
and second-order constraint qualifications hold, there exist a vec-
tor of Lagrange multipliers y, for which primal/dual feasibility and
complementary slackness requirements hold as well as

sTH(x,,y.)s >0 forall s € N,

where
sTai(z,) = 0if ci(z.) =0 & [y > 0 &

— R"
Ni=selR sTai(z,) > 0if ¢(2,) =0 & [y.]i = 0

Focus on subset of all feasible arcs that ensure ¢;(z(a)) = 0if (y.); > 0
and ¢;(z(a)) > 0if (y.); =0fori € A = s € N|.
When ¢;(z(a)) =0 =

al (z.)p + sT Hy(z.)s =0

=
plg(z) = ¥ ()i a(z) = X (y)p"ai(z.)
icA icA
G\L&Vo
= — ¥ (y)is"THi(z)s = — X (ys)is" Hi(w,)s
€A €A
(y+)i>0

+(12) = §TH(zs,p.)s = 8T AES - M@%Eé s
pg(x.) + sTH(z,)s > 0.

for all s € N,



INEQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order sufficient optimality:

Theorem 1.11. Suppose that f, ¢ € C?, that x, and a vector of
Lagrange multipliers y, satisfy

c(zy) >0, g(xy,) — \»QAHL@* =0,y >0, and c¢;(x.)[ysi =0

and that
sTH(y,1.)s > 0
for all s in the set
staj(z,) =0if ci(z,) =0 & [y]; > 0 &

Ne=|s€lR stai(z,) > 0if ¢i(z,) = 0 & [y.]; = 0.

Then z, is an isolated local minimizer of f(x) subject to ¢(z) > 0.

PROOF OF THEOREM 1.11
Consider any feasible arc x(«). Already shown

sTajz,) >0 Vie A (13)
and
plai(z,) + sTHy(z,)s > 0 when sTa;(z,) =0 Vie A (14)

and that second-order feasible perturbations are characterized by ANo.
(14) = plg(z.) = ¥ (ya)ip"ai(z.) = > (y)p ail.)

icA icA
sTa;(x,)=0
> =¥ (y)is" Hi(za)s = = X (ya)is” Hi(x.)s,
r m.ﬁmkvlo i€ A

and hence by assumption that

Pyl + 5 Hws > " (Hiw) = ¥ ()iHi(a)|
= sTH(x,,y.)s >0

VseNi + (3) + (13) = f(z(a)) > f(x.) V sufficiently small c.



