Part 5: SQP methods for
equality constrained optimization

Nick Gould (RAL)

minimize  f(x) subject to ¢(x) =0
xemﬂ

MSc course on nonlinear optimization

EQUALITY CONSTRAINED MINIMIZATION

minimize f(z) subject to ¢(x) =0
z€R"

where the objective function f: IR" — IR
and the constraints ¢ : [R" — IR™ (m < n)

© assume that f, ¢ € C! (sometimes C?) and Lipschitz
® often in practice this assumption violated, but not necessary

© easily generalized to inequality constraints ...but may be
better to use interior-point methods for these




OPTIMALITY AND NEWTON’S METHOD

1st order optimality:
g(a,y) = glz) — AT(@)y = 0 and cfx) =0

nonlinear system (linear in y)
—
use Newton’s method to find a correction (s, w) to (z,y)

(H(@zy) —AT(x))(S):_(g(w,y))
A(x) 0 w

ALTERNATIVE FORMULATIONS

unsymmetric:

(H(@:y) —AT(x))(S):_(g(:v,y))
A(x) 0

or symmetric:

(H(fay) AT(SC))( s j:_(g(x,y))
A(x) 0 —w

or (with 4™ = y + w) unsymmetric:

(H@,y) —AT(SL‘))( s ):_(g(ﬂf))
A(x) 0 y* c(x)

or symmetric:

(H@,y) AT(?C))( s ):_(9(@)
A(x) 0 —yt c(x)



DETAILS

© Often approximate with symmetric B ~ H(z,y) = e.g.

L "7 (5} =52
Alx) 0 —y™ c(x)

® solve system using
B —Al(x) )
A(x) 0
B Al(x) )
Alx) 0

o unsymmetric (LU) factorization of (

o symmetric (indefinite) factorization of (

o symmetric factorizations of B and the
Schur Complement A(x)B~tAT (z)

o iterative method (GMRES(k), MINRES, CG within N'(A),...)

AN ALTERNATIVE INTERPRETATION

QP : minimize g(x)’s+ 1s” Bs subject to A(x)s = —c()
selR"

® QP = quadratic program
© first-order model of constraints c(z + s)

© second-order model of objective f(x + s) ...but
B includes curvature of constraints

solution to QP satisfies

PNt (S R )
Alz) 0 —y* c(x)



SEQUENTIAL QUADRATIC PROGRAMMING - SQP

or successive quadratic programming
or recursive quadratic programming (RQP)

Given (zg,yo), set k=0
Until “convergence” iterate:
Compute a suitable symmetric By using (z, yx)

Find
Sp = arg min g,{s + %STBk,S subject to Aps = —cy.
seIR"

along with associated Lagrange multiplier estimates yx.1
Set 1.1 = x1 + s and increase k by 1

ADVANTAGES

© simple
o fast

o quadratically convergent with By = H (z, yx)
o superlinearly convergent with good By ~ H (xy, yr)

> don’t actually need B, — H (., yi)

PROBLEMS WITH PURE SQP

® how to choose B}.?
© what if QP, is unbounded from below? and when?

© how do we globalize this iteration?



QP SUB-PROBLEM

minimize gTs + 1sBs subject to As = —c
seR”

® need constraints to be consistent
o OK if A is full rank

© need B to be positive (semi-) definite when As = 0
<~

NT BN positive (semi-) definite where the columns of N
form a basis for null(A)
<~

B Al(x)
(A(:c) 0 )

(is non-singular and) has m —ve eigenvalues

LINESEARCH SQP METHODS

Sk = arg min g,zs + %STBkS subject to Aps = —c;.
seIR"
Basic idea:

© Pick xp1 = 2 + apsg, where

o @ 1s chosen so that

O(xp + sy, pr) < P(xk, pr)
o ®(z,p) is a “suitable” merit function
° pg are parameters

© vital that s is a descent direction for ®(x, py) at xy

© normally require that Bj, is positive definite



SUITABLE MERIT FUNCTIONS. I

The quadratic penalty function:

M%Mzﬂ@+i%@%

Theorem 5.1. Suppose that By is positive definite, and that
(Sk, yr+1) are the SQP search direction and its associated Lagrange
multiplier estimates for the problem
minimize f(x) subject to ¢(x) =0
zeIR”
at xj. Then if x; is not a first-order critical point, sj is a descent
direction for the quadratic penalty function ®(x, u) at z whenever

< Nl
 Nykslle

PROOF OF THEOREM 5.1
SQP direction s; and associated multiplier estimates yj.1 satisfy

Bysy, — Afym = — 0k (1)
and
Apsp = —cy. (2)
(1) + (2) = 8195 = =51 Bysy + 55 Apypr = =4 Bisy, — iy
(3)
@ — LsfaTe, - ol )
Mk 2%

(3) + (4), the positive definiteness of By, the Cauchy-Schwarz inequal-
ity, the required bound on gy, and s # 0 if x; is not critical =

1 o |2
S;{qu)(xk) = S%(Qk 4 _Alzck) — _SlszSk _ ngkatl . ekl

el H
C
<4mm(k%w%m@so



NON-DIFFERENTIABLE EXACT PENALTIES

The non-differentiable exact penalty function:

O(x, p) = f(x) + plle(@)|

for any norm || - || and scalar p > 0.

Theorem 5.2. Suppose that f,c € C?, and that x, is an isolated
local minimizer of f(z) subject to ¢(x) = 0, with corresponding
Lagrange multipliers y,. Then x, is also an isolated local minimizer
of ®(x, p) provided that

p > |lyslp,

where the dual norm T
Yy x
lyllp = sup 5.
0 |||

SUITABLE MERIT FUNCTIONS. II

The non-differentiable exact penalty function:

O(x, p) = f(x) + plle(@)|

for any norm || - || (with dual norm || - ||p) and scalar p > 0.

Theorem 5.3. Suppose that By is positive definite, and that
(Sk, Yr+1) are the SQP search direction and its associated Lagrange
multiplier estimates for the problem
minimize f(z) subject to ¢(x) =0
r€IR"

at xp. Then if xj is not a first-order critical point, s; is a descent
direction for the non-differentiable penalty function ®(x, pi) at xy
whenever g > lysillp




PROOF OF THEOREM 5.3
Taylor’s theorem applied to f and ¢ + (2) = (for small «)

Oy + asy, pp) — Py, o) = asgy, + py (llog + adys, || — H%”) +0(a?)
= asig, + o (11— a)ey]l = lleyll) + O(a?)
= a(spgr — prlleill) + 0 (a?)

+ (3), the positive definiteness of By, the Holder inequality, and sy # 0

if x;, is not critical =

O(ay + asy, pr,) = Py, pp) = = (sEBysy + iy + pillerll) + O(?)
< —a(=lleglllyellp + pellerll) + O(e?)
= —allc (Pk - ||yk+1||D> +0(e?) <0
because of the required bound on pyg, for sufficiently small a. Hence
sufficiently small steps along s from non-critical zj reduce ®(z, p,.).

THE MARATOS EFFECT

¢; non-differentiable exact
penalty function (p = 1):
flz) =222 +23—1)—x
and c(z) = 2% + 23 — 1
solution: x, = (1,0), y, = 3

Maratos effect: merit function may prevent acceptance of the
SQP step arbitrarily close to x, = slow convergence



AVOIDING THE MARATOS EFFECT

The Maratos effect occurs because the curvature of the constraints is
not adequately represented by linearization in the SQP model:

c(zx + 1) = O([lsel*)

— need to correct for this curvature
— use a second-order correction from x; + s;:

ey + si + s5) = ol|sil*)
also do not want to destroy potential for fast convergence =—-

s = 0(sk)

POPULAR 2ND-ORDER CORRECTIONS

© minimum norm solution to c¢(xy + si) + A(xy + sx)sp = 0

I AT (), + 1)
A(:Bk + Sk) 0

sy, L 0
~Yit1 c(k + si)
© minimum norm solution to c¢(xy + sx) + A(xy)sf =0

( I AT(xk)

S5, L 0
~Yis1 (@ + i)
© another SQP step from xj + sy

H(xy + sp,yh) AT (2 + sp)
A(xk + Sk) 0

( sy, ):_(g(xk+sk)

~Yii1 c(xy, + si)

© etc., ete.



2ND-ORDER CORRECTIONS IN ACTION

¢1 non-differentiable exact
penalty function (p = 1):
flz) =222 +23—1)—x
and c(z) = 2% + 23 — 1
solution: z, = (1,0), yx = 3

© (very) fast convergence

® x, + 5, + s; reduces ¢ = global convergence

TRUST-REGION SQP METHODS

Obvious trust-region approach:

S = arg min g,{s + %STBkS subject to Ayps = —¢c;, and |[|s|| < Ay
selR”

® do not require that B} be positive definite
—> can use B, = H(zy, yi)

o if Ay < AT where

AT in ||s|| subject to Aps = —cy,

—> no solution to trust-region subproblem
— simple trust-region approach to SQP is flawed if ¢; # 0 =
need to consider alternatives



INFEASIBILITY OF THE SQP STEP

/ The linearized constralnt

<— The trust region —>\

\ /

The nonlinear constraint

ALTERNATIVES

® the S,QP method of Fletcher
® composite step SQP methods

o constraint relaxation (Vardi)
o constraint reduction (Byrd-Omojokun)

o constraint lumping (Celis-Dennis-Tapia)

© the filter-SQP approach of Fletcher and Leyffer



THE S/(,QP METHOD

Try to minimize the ¢,-(exact) penalty function

Oz, p) = flz) + plle@)ll,

for sufficiently large p > 0 and some ¢, norm (1 < p < 00), using a
trust-region approach

Suitable model problem: /,QP

minimize (fi+) gi s + is' Bys + pller + Aps||, subject to ||s|| < Ay
selR”

© model problem always consistent
© when p and Ay are large enough, model minimizer = SQP direction

© when the norms are polyhedral (e.g., ¢; or l« norms), (,QP is
equivalent to a quadratic program . ..

THE /;QP SUBPROBLEM

¢1QP model problem with an £, trust region

minimize gi s + 1s' Bys + pller + Ags|li subject to ||s]lee < A
selR”

But

¢t + Aps = u—v, where (u,v) >0
— (1 QP equivalent to quadratic program (QP):

minimize g} s+ 18T B.s + p(eTu + eTv)
s€R", u,velR™
subject to  Aps —u+v = —c¢p
u>0, v>0
and —Ape < s < Age
® good methods for solving QP

® can exploit structure of u and v variables



PRACTICAL S/;QP METHODS

© Cauchy point requires solution to £;LP model:

minimize g; s + p||cx + Aps|y subject to ||s]|ee < Ag
selR"

® approximate solutions to both ¢/;LP and ¢;QP subproblems suffice
® need to adjust p as method progresses
® easy to generalize to inequality constraints

© globally convergent, but needs second-order correction for fast
asymptotic convergence

o if ¢(x) = 0 are inconsistent, converges to (locally) least value
of infeasibility ||c(x)|

COMPOSITE-STEP METHODS

Aim: find composite step
S = Ny + tk
where

the normal step n; moves towards feasibility of the linearized
constraints (within the trust region)

[ Ak + cil| < [[cxl]
(model objective may get worse)

the tangential step t; reduces the model objective function (within
the trust-region) without sacrificing feasibility obtained from ny,

Ak(nk + tk;) =Ain, — At =0



NORMAL AND TANGENTIAL STEPS

/ The linearized constraint \

Nearest point on linearized constraint

Close to nearest point

T~
~
.~

~<— The trust region —

Points on dotted line are all potential tangential steps

CONSTRAINT RELAXATION — VARDI

normal step: relax
Ags = —c and ||s]| < Ag
to
Akn = —O0LCk and HnH S Ak

where o, € [0, 1] is small enough so that there is a feasible ny,

tangential step:

(approximate) arg min  (gx + Byny) 't + 3t Byt
telR"
subject to Ayt =0 and |ng +t]] < Ay

Snags:
® choice of o}

© incompatible constraints



CONSTRAINT REDUCTION — BYRD-OMOJOKUN

normal step: replace
Ags = —c and ||s]| < Ag
by

approximately minimize [[Agn + ¢x|| subject to ||n| < Ay

tangential step: as in Vardi

® use conjugate gradients to solve both subproblems
— Cauchy points in both cases

© globally convergent using 5 merit function

© basis of successful KNITRO package

CONSTRAINT LUMPING — CELIS-DENNIS-TAPIA

normal step: replace
Ars = —c and ||s]| < Ay
by
|Akn + ci|| < op and ||n|| < Ay
where o, € [0, ||cg||] is large enough so that there is a feasible ny,
tangential step:

(approximate) arg min (g + Byny)Tt + 3T Bt
telR"
subject to  [|Agt + Axng + cil| < o and ||t 4+ ngl] < Ay

Snags:
® choice of o}

© tangential subproblem is (NP?7) hard



FILTER METHODS — FLETCHER AND LEYFFER

Rationale:

© trust-region and linearized constraints compatible if ¢ is small
enough so long as c¢(x) = 0 is compatible
— if trust-region subproblem incompatible, simply move closer to
constraints

© merit functions depend on arbitrary parameters
—> use a different mechanism to measure progress

Let 6 = [[e(a)]

A filter is a set of pairs {(0, fr)} such that no member dominates
another, i.e., it does not happen that

91C£<779] a/1,1(:1 fz (C<77 fj

for any pair of filter points ¢ # 5

A FILTER WITH FOUR ENTRIES

/()




BASIC FILTER METHOD

© if possible find

s, = arg min g s + 1s' Bys subject to Aps = —c; and |[[s]| < Ay
selR"

otherwise, find sj:

O(zy + sp)“<”6; forall i <k

o if xp + si is “acceptable” for the filter, set xr 1 = 1 + sp
and possibly increase Ay and “prune” filter

© otherwise reduce Ay and try again

In practice, far more complicated than this!



