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Solution to Problem 1.

(i) The second order Taylor development of t 7→ f(x + tu) around t = 0 is

f(x + tu) = f(x) + t∇f(x)Tu +
1

2
t2uTH(x)u + o(t2), (0.1)

where o(t2) is a function such that

lim
t→0

o(t2)

t2
= 0.

(ii) Theorem 2.4 (ii) shows

f(x + tu) ≥ f(x) + t∇f(x)Tu.

Therefore, (0.1) shows that

1

2
t2uTH(x)u + o(t2) = f(x + tu) − f(x) − t∇f(x)Tu ≥ 0.

Dividing by t2 and taking limits, we obtain

uTH(x)u = uTH(x)u + 2 lim
t→0

o(t2)

t2
= 2 lim

t→0

1
2
t2uTH(x)u + o(t2)

t2
≥ 0.

Since u ∈ R
n was arbitrary, this shows that H(x) is positive semidefinite.

(iii) The fundamental theorem of differential and integral calculus shows

f(x + tu) = f(x) +

∫ 1

0

∇f(x + ϑtu)Ttudϑ (0.2)

and

∇f(x + ϑtu)Tu = ∇f(x)Tu +

∫ 1

0

ϑtuTH(x + τϑtu)udτ. (0.3)

The claim follows by substitution of (0.3) into (0.2).
(iv) The assumption H(y) � 0 (pos. semidefinite) implies

uTH(x + τϑtu)u ≥ 0 (0.4)

for all τ, ϑ, t such that x + τϑtu ∈ D. In particular, this holds when x + tu ∈ D and
τ, ϑ ∈ [0, 1], because D is convex. Therefore,

f(x + tu) = f(x) + t∇f(x)Tu + t2
∫ 1

0

∫ 1

0

ϑuTH(s + τϑtu)udτdϑ

≥ f(x) + t∇f(x)Tu, (0.5)
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where the inequality holds because an integral of a nonnegative function is nonneg-
ative. By virtue of Theorem 2.4 (ii), (0.5) shows that the function t 7→ f(x + tu) is
convex in t. That is to say, for any y of the form y = x + tu and any λ ∈ [0, 1] we
have

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). (0.6)

But this holds true for all u ∈ R
n, so in particular any y ∈ D is of this form with

u = y − x. Therefore, f is convex on D.
(v) The argument is the same as in (iv), except that the inequalities in (0.5) and

(0.6) change to strict inequalities.

Solution to Problem 2.

(i) f ′′(x) = C for all x, and since C � 0, part (v) of Problem 1 shows that f is
strictly convex.

(ii) φ(α) = (a + bTxk + 1
2
xT

k Cxk) + α × (bTdk + xT
k Cdk) + α2 ×

(

1
2
dT

k Cdk

)

is a
polynomial of degree 2 in α. Moreover, φ′′(α) = dT

k Cdk > 0, since C � 0 and dk 6= 0.
Part (v) of Problem 1 therefore shows that φ is strictly convex.

(iii) φ′(α) = (bTdk + xT
k Cdk) + α × (dT

k Cdk). Since φ is strictly convex, it has
a unique local minimiser α∗ (which is also the global minimiser). The first order
optimality condition φ′(α∗) = 0 implies

α∗ = −
bTdk + xT

k Cdk

dT
k Cdk

.

(iv) We have α∗ > 0, because dT
k Cdk > 0 and

bTdk + xT
k Cdk = φ′(0) = ∇f(xk)Tdk < 0

by the assumption that dk is a descent direction. Moreover,

φ(α∗) = (a + bTxk +
1

2
xT

k Cxk) −
(bTdk + xT

k Cdk)2

2dT
k Cdk

< (a + bTxk +
1

2
xT

k Cxk) − c1

(bTdk + xT
k Cdk)2

dT
k Cdk

= φ(0) + c1α
∗φ′(0),

where the inequality follows from the assumption that c1 < 1/2. This shows that
the first Wolfe condition holds. The second Wolfe condition holds trivially, because
φ′(0) = ∇f(xk)dk < 0, and hence,

φ′(α∗) = 0 > c2φ
′(0).

Solution to Problem 3.

(i) Since φ′(α) < 0 for all α ∈ [0, αk), it is true that

f(xk+1) = f(xk) +

∫ β

0

φ′(α)dα +

∫ αk

β

φ′(α)dα

< f(xk) +

∫ β

0

φ′(α)dα ∀β ∈ [0, αk). (0.7)
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(ii) We have

φ′(α) = ∇f(xk + αdk)Tdk

=
(

∇f(xk) + ∇f(xk + αdk) −∇f(xk)
)T

dk

C.S.

≤ ∇f(xk)Tdk + ‖dk‖ × ‖∇f(xk + αdk) −∇f(xk)‖

Lip.

≤ ∇f(xk)Tdk + αΛ‖dk‖
2. (0.8)

(iii) It follows from (0.8) that

∇f(xk)Tdk + αΛ‖dk‖
2 < 0 (0.9)

implies φ′(α) < 0. But (0.9) is equivalent to

α < β̂ := −
∇f(xk)Tdk

Λ‖dk‖2

Since therefore φ′(α) < 0 for all α < β̂, it must be true that β̂ ∈ [0, αk]. Using this in
Equation (0.7), we find

f(xk+1) − f(xk) ≤

∫ β̂

0

(

∇f(xk)Tdk + αΛ‖dk‖
2
)

dα

= ‖dk‖ × ‖∇f(xk)‖ cos θk × β̂ +
β̂2

2
Λ‖dk‖

2

=
‖dk‖

2 × ‖∇f(xk)‖2 cos2 θk

Λ‖dk‖2

(

−1 +
1

2

)

,

which proves the required formula.
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