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Trust region methods constitute a second fundamental class of
algorithms.

e In iteration k, replace f(x) by a locally valid quadratic model
function my(z) (recall that we already encountered this idea
in the context of quasi-Newton methods).

e Choose a neighbourhood Ry, of the current iterate z; in which
my(xz) can be trusted to approximate f well (we do not care
about how well m;, approximates f outside Ry).

e The next iterate x4, is found by approximately minimising
the model function over the trust region,

Tp4q A arg ;rgigk my(x).

All unconstrained optimisation methods we discussed so far in
this course are based on line-searches

min f(zg + ady),

where d;, is a descent direction.

In each iteration one replaces the n-dimensional minimisation
problem

min f(x
min f(z)
by a simpler one-dimensional minimisation problem.

Note: we replace the unconstrained optimisation problem

min f(x)

IER”
by the constrained trust region subproblem (to be approximately
solved)

Tpy1 R argw@g‘kmk(w) (1)

This is worthwhile because (1) can be solved cheaply when

my(z) = f(zp) + V(zp) (@ —25) + %(1 — ) "Bz —z3) (2)

is a quadratic function, see Lecture 7.



The linear part of m;(x) coincides with the first order Taylor
approximation of f(z).

my(x) will closely match the second order Taylor approximation
of f(z) when By, ~ D2f(xy,).

To make the method work, we will thus have to worry about
how to update Bj cheaply.

But note that the quasi-Newton Hessian approximations dis-
cussed in Lecture 5 are perfect for this job!

Trust-region methods therefore accept y;4; only if the decrease
achieved in f is at least a fixed proportion of the decrease
"promised” by my,

e flr)—fypy1)
Yk 1T mi(@ ) —m ey ~ (3)
x otherwise,

Tp+1
where n € (0,1/4) is fixed.

Note that rejecting the update does not imply that the algorithm
will stall, because we can still shrink the trust region so that

Ykd2 7 Ykt1-

Accepting and Rejecting Updates:

Let yi41 be the approximate minimiser of the trust region sub-
problem.

In principle, this is the point we would like to select as our next
iterate xp4 1.

However, y;41 is computed on the basis of the model function
my, and it could happen that moving to y;4 1 leads to an increase
rather than decrease in of the true objective function f.

Updating the Trust Region:

The easiest way to define a trust region Ry is to choose the
closed ball of radius A, around z; in some norm || - ||,

Ry ={z €R": |lz —zg| < Ag}.

For simplicity, we will assume that || - || is the Euclidean norm.
Ay is called the trust region radius.

In order to define a new trust region Ry around x4, it suffices
to fix a rule on how to select Ay ;.



The following rule is a popular choice, where y;_ 1 is as above:

By i _Sl) = fWrt1) 1
my(z)—mp(yp1) 4

a

Apt1 = {min(2Ay, Amax) if m’;gz;:ﬁafﬁ >3

A otherwise.

Algorithm 1: Generic Trust region Method. Choose

Amax >0, Ag € (0, Amax), ne (0, 1/4), xg € R™, Bg, € > 0.

While ||V f(z)|| > € repeat

Compute yi41 as the approximate minimiser of (1).

Determine x4 1 via (3).
Compute Ay q using (4).
Build a new model function myy1(x).

k—k+4+1.

end

(4)

e A\, never exceeds Amax.

e If the actual decrease f(xy) — f(yr+1) was below our expec-
tations my(zy) — my(yr41), this indicates that my, should be
regarded as a more local model than before. We thus find a
reasonable Ay 1 by shrinking Ay.

e If the actual decrease was above our expectations, we feel
confident to expand the trust region by selecting A1 as an
expansion of Ay.

e If there is neither reason for gloom nor euphoria, we stick to
the previous value Ay 1 = Ay.

The Cauchy Point:

In step S1 of the algorithm, the approximate minimiser y,41 can
be computed in many different ways. Some of these methods
will be discussed in Lecture 7.

To derive a convergence result for Algorithm 1, we need to as-
sume that the method chosen for computing yi4; compares
favourably to a specific benchmark.

The Cauchy point is obtained when a steepest descent line-
search is applied to my at zj and is restricted to Ry.



An unrestricted line-search in the direction —V f(z;) yields the
step-length multiplier

ap = argminmg(zp — aV f(zg))
a>0

2
=argmin f(ey) —aV(a) " Vf () + 5 V@) "BV S ()

+oo if Vf(zp) T ByVf(zg) <O,

=\ Vi) V() _
Ve T BN (e OLhErwise.

Theorem 1: Global Convergence of Algorithm 1. Let Algo-
rithm 1 be applied to the minimisation of f € C2(R",R), and for
all k let y;41 be computed such that my(yr41) < my(yg) holds.

Let there exist 3 > 0 such that for all k, || B, ||D?f(z)| < B,
and finally, let Ag > €¢/(143).

Then exactly one of two following alternatives occurs:

(i) The algorithm does not terminate, but lim_,., f(z}) = —©
and f is unbounded below.

(ii) The algorithm terminates in finite time, returning an approx-
imate minimiser.

If we want to stay within R, we have to " clip” a}; to a constrained
step-length multiplier af.

Note that a + my(zy, —aV f(x})) is strictly decreasing on [0, a}).

Moreover, the radius ||z — aV f(xy)|| is strictly increasing over
the same interval.

Therefore, the correct clipping rule is given by

: Ay
af = min <—,a“> (5)
g NZIC
and the Cauchy point is

yp =z — oV f(xg).

Proof: If ||V f(x)|| < e occurs for some k € N then (ii) occurs.

We may therefore assume that ||V f(z)| > € for all k£ and need
to show that f(z;) — —cc.

The following claims will be proven in the notes and exercises.

C1: The updateis accepted, i.e., xp41 = yr41 in (3), for infinitely
many k.

C2: Whenever x4 1 = yp41 OCcurs, we have

flzppr) — flap) < —ne?/(286).



Furthermore, the updating rule (3) guarantees that

f(zpy1) — flzp) <0 Lemma 1: Let [|[Vf(zp)| > € and Ay < 2¢/(78). Then

for all k. fpy1) — fl@p) 1
my(Ypg1) — mp(zg) ~ 4

Therefore, Claim 1 and 2 imply

[ee)
. Proof: See Lecture Note 6.
k“ngof(wk) = > f(@gy1) — f(zg) = —co. [
- k=0

Lemma 2: There are at most LIog;;%fﬂJ rejected updates
between successive accepted updates.

Proof: Suppose to the contrary that all updates y,4; for k =
ko, ko + 1,...,kg + [logs A%Eﬂﬁ} =: k1 are rejected.

Th
en Reading Assignment: Lecture-Note 6.
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Ay, = Ako4_(k1_k0) =75

By Lemma 1 Yk +1 is not rejected, contradicting the above as-
sumption. L]

Claim 1 is an immediate consequence of Lemma 2.



