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Solution to Problem 1: Let g1(x1, x2) = 2 − (x1 − 1)2 − (x2 − 1)2, g2(x1, x2) =
2−(x1−1)2−(x2 +1)2, and g3(x1, x2) = x1. Then all three constraints gi(x1, x2) ≥ 0
(i = 1, 2, 3) are active at (0, 0). Moreover, ∇g1(0, 0) =

(

2
2

)

, ∇g2(0, 0) =
(

2
−2

)

, and

∇g3(0, 0) =
(

1
0

)

are linearly dependent. However, w =
(

1
0

)

satisfies wT∇g1(0, 0) =
wT∇g2(0, 0) = 2wT∇g3(0, 0) = 2 > 0, and there are no equality constraints. There-
fore the Mangasarian–Fromowitz constraint is satisfied.

Solution to Problem 2: (i) Let fmin = inf{f(x) : x ∈ K}. Then there exists a
sequence of points (xk)N ⊂ K such that

f(xk) ≤ fmin +
1

k
, (k ∈ N).

The Bolzano-Weierstrass theorem implies that there exists a subsequence (xki
)N such

that x∗ := limi→∞ xki
∈ K. Since f is continuous, this implies

fmin ≤ f(x∗) = lim
i→∞

f(xki
) ≤ fmin + lim

i→∞

1

k
= fmin,

and hence, f(x∗) = fmin.

(ii) We have f(x1, x2) = x2
1 + x2

2 ≥ 0 on R
2. Moreover, the feasible domain is

closed and (5, 0) is feasible with finite objective value 25. Therefore, the minimiser
can be searched in the intersection of the closed disk of radius 5 with the feasible
domain. This intersection is a closed and bounded subset of R

n, and hence it is also
compact. It now follows from part (i) that f achieves its global minimum at some
point in this compact set.

(iii) The constraints can be rewritten in standard form as g1(x1, x2) = 2x1 +x2 −
10 ≥ 0 and g2(x1, x2) = x1 ≥ 0. The Lagrangian of this problem is

L(x1, x2, λ1, λ2) = x2
1 + x2

2 − λ1(2x1 + x2 − 10) − λ2x1.
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The KKT conditions are the following:

2x1 − 2λ1 − λ2 = 0, (0.1)

2x2 − λ1 = 0, (0.2)

2x1 + x2 − 10 ≥ 0, (0.3)

x1 ≥ 0, (0.4)

λ1(2x1 + x2 − 10) = 0, (0.5)

λ2x1 = 0, (0.6)

λ1 ≥ 0, (0.7)

λ2 ≥ 0. (0.8)

If λ1 = 0, then it follows from (0.1) that 2x1 = λ2, and then (0.6) implies that
x1 = 0. Moreover, (0.2) implies that x2 = 0. But g1(0, 0) < 0, and hence this is
not a solution. Therefore, λ1 > 0 and by (0.5), g1 is active. If x1 = 0 then (0.1)
implies that λ2 = −2λ1 < 0, contradicting (0.8). Therefore, x1 > 0 and then λ2 = 0
because of (0.6). By (0.1), x1 = λ1, and then x2 = x1/2 because of (0.2). Since
g1 is active, it follows that (x1, x2) = (4, 2). Since this is the only point satisfying
the KKT conditions, and since the LICQ holds everywhere on the boundary of the
feasible domain and in particular at the minimiser of the problem, (x1, x2) = (4, 2)
must be the solution of the problem.

Solution to Problem 3: (i) Note that

(d + δw) 6= 0,

(d + δw)T∇gi(x
∗) = 0 (i ∈ E),

(d + δw)T∇gj(x
∗) > 0 (j ∈ A(x∗)),

(0.9)

the first inequality following from the last set of inequalities. Therefore, (d + δw)
satisfies the required conditions.

(ii) Since {∇gi(x
∗) : i ∈ E} are linearly independent, there exists Z ∈ R

(n−p)×n

such that

M =

[

g′
E
(x∗)
Z

]

is a nonsingular n × n matrix. Let h : R
n × R → R

n be defined by

(x, t) 7→

[

gE(x) − tg′
E
(x∗)(d + δw)

Z(x − x∗ − t(d + δw))

]

.

Then

h′(x∗, 0) =
[

M −M(d + δw)
]

and Dxh(x∗, 0) = M is nonsingular. The Implicit Function Theorem implies that
there exists a map x ∈ Ck

(

(−ε̃, ε̃), Rn
)

and a neighbourhood V(x∗) of x∗ such that
for (x, t) ∈ V(x∗) × (−ε̃, ε̃) we have

h(x, t) = 0 ⇔ x = x(t).
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The claim now follows as in the proof of Lemma 2.3.

(iii) The same argument as in Lemma 2.3 shows that there exists ε̄ ∈ (0, ε) such
that gj(x(t)) > 0 for all t ∈ (−ε̄, ε̄). If j ∈ A(x∗), then Taylor’s theorem shows

gj(x(t)) = gj(x
∗) + t∇gj(x

∗)T(d + δw) + O(t2).

But since ∇gj(x
∗)T(d + δw) > 0, there exists tj ∈ (0, t̃) such that the right-hand

side is strictly larger than gj(x
∗) = 0 for all t ∈ (0, tj). It suffices now to choose

ε ≤ min({tj : j ∈ A(x∗)} ∪ {ε̄}).

Solution to Problem 4. (i) The objective function is unbounded along the line
x2 = 0, x1 → ∞. Thus, no global solution exists, but we can find a local minimum
with the method of Lagrange multipliers.

(ii) We have

∇xL(x, λ) =

[

−0.2(x1 − 4) − 2λx1

2x2 − 2λx2

]

,

∇xxL(x, λ) =

[

−0.2− 2λ 0
0 2 − 2λ

]

.

The point x∗ = (1, 0)T satisfies the KKT conditions with λ∗ = 0.3.

(iii) The active set at x∗ is A(x∗) = {1}, and since ∇g1(x
∗) = (2, 0)T 6= 0, the

LICQ is satisfied.

(iv) Since the LICQ is satisfied, Conditions (1.3) from Lecture 10 are an exact
characterisation of the feasible exit directions from x∗. The set of vectors that satisfy
these conditions is {d ∈ R

2 : 2d1 ≥ 0, d2
1 + d2

2 > 0}.

(v) The set of feasible exit directions that also satisfy Equation λ∗
j d

T∇gj(x
∗) = 0

for all j ∈ A(x∗) is {d ∈ R
2 : d1 = 0, d2 6= 0}. For any d from this set we have

dT∇xxL(x∗, λ∗)d =
[

0 d2

]

[

−0.4 0
0 1.4

] [

0
d2

]

= 1.4d2
2 > 0.

Therefore, the second order sufficient optimality conditions are satisfied and x∗ is a
local minimiser our problem.
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