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3 Sketches of proofs for Part 3

3.1 Proof of Theorem 3.1
Firstly note that, for all a > 0,
_ 2, 1.2T
my(—agr) = fr — allgrlls + 3o g; Brgy.- (3.1)

If gy, is zero, the result is immediate. So suppose otherwise. In this case, there are three possibil-
ities:

(i) the curvature gf B, g, is not strictly positive; in this case my(—ag) is unbounded from below
as « increases, and hence the Cauchy point occurs on the trust-region boundary.

(ii) the curvature g} B, g, > 0 and the minimizer of m(—agg) occurs at or beyond the trust-
region boundary; once again, the the Cauchy point occurs on the trust-region boundary.

(iii) the curvature gi B,g, > 0 and the minimizer of my(—agy), and hence the Cauchy point,
occurs before the trust-region is reached.

We consider each case in turn;
Case (i). In this case, since gi B,g, <0, (3.1) gives

mi(—agy) = fi — llgell3 + 20’9l Begy < fr — allgill3 (3.2)

for all @ > 0. Since the Cauchy point lies on the boundary of the trust region

A
af = —k (3.3)
195l
Substituting this value into (3.2) gives
] 2 Ak 1
i = my(sp) = ||ng2—”g 2 RsllgullaAr = 555 gxll2 Ak (34)
k

since [|grl2 = sl grll
Case (ii). In this case, let o, be the unique minimizer of (3.1); elementary calculus reveals that

gk |3

. (3.5)
91{ B,.gy,

af, =

1



Since this minimizer lies on or beyond the trust-region boundary (3.3) and (3.5) together imply

that
o gt Brar < llorll3-

Substituting this last inequality in (3.1), and using (3.3) and ||gx|l2 > ksl|gk, it follows that

Ay

T
fe = my(s5) = aillgwll3 — 3[ok)ak Brgr = 1aillgil3 = Sllgell3 TPl > 3hsllgrll2A%-
k
Case (iii). In this case, af = aj, and (3.1) becomes
4 4 4 2
Fo— my(sS) = 9 1l 1 llgx I3 _ llgx[I2 . gkl

— 1 1 1
9 Brg,  ’9FBug,  *9iBhg. ~ 21+ Bkl

where

19k Brgel < gk 131 Bl < lgkl3(1 + 1By l,)

because of the Cauchy-Schwarz inequality.

The result follows since it is true in each of the above three possible cases. Note that the

“14” is only needed to cover case where By = 0, and that in this case, the “min” in the theorem

might actually be replaced by ksAp.

3.2 Proof of Corollary 3.2

Immediate from Theorem 3.1 and the requirement that m(s;) < my(s})

3.3 Proof of Lemma 3.3

The mean value theorem gives that

Flag+sk) = flan) + sk Vaof (1) + 155 Vaaf () sk

for some ¢, in the segment [z, xy + si]. Thus

|f (v + sk) —mi(sk)| = L[stH(Ek)sk — sk Brsk| < 3|t H(Ek)sk| + 3|st Brsk|

IN

L(kn + mp)llskll3 < La7(kn + rp)llskll3 < kAR

using the triangle and Cauchy-Schwarz inequalities.

3.4 Proof of Lemma 3.4
By definition,
L+ || Bkll2 < kn + K,

and hence for any radius satisfying the given (first) bound,

llgr |2 llgr |2
ke A < < .
° k_/ih+/€b_1+!!3k\\2

As a consequence, Corollary 3.2 gives that

g% |l2 A

—mg(sE) > L min |———=— K =1k Ayg.
fi= (i) = el min | 2 k] = b o
But then Lemma 3.3 and the assumed (second) bound on the radius gives that
T + Sk) — Mp(Sk IidA2 2kq A
lpr — 1] = Al ) o) =2 = =27
fie — mi(sk) wsllgrll2Ak ks llgrll2

Therefore, pr > 1, and the iteration is very successful.



3.5 Proof of Lemma 3.5

Suppose otherwise that Ay can become arbitrarily small. In particular, assume that iteration k
is the first such that
Ak+1 S Re. (38)

Then since the radius for the previous iteration must have been larger, the iteration was unsuc-
cessful, and thus v4A; < Agy1. Hence

A, < emin ( 1 ks(1— 1) 1 ks(1 — 77v))

, < min ,
ks(Kp + Kp) 2kKq ) - ”ng2 (RS(H}L + Kp) 2K4

But this contradicts the assertion of Lemma 3.4 that the k-th iteration must be very successful.

3.6 Proof of Lemma 3.6

The mechanism of the algorithm ensures that z. = x,41 = g4 for all j > 0, where kg is the
index of the last successful iterate. Moreover, since all iterations are unsuccessful for sufficiently
large k, the sequence {Ay} converges to zero. If ||gx,+1]| > 0, Lemma 3.4 then implies that there
must be a successful iteration of index larger than ko, which is impossible. Hence ||gg,+1]| = 0.

3.7 Proof of Theorem 3.7

Lemma 3.6 shows that the result is true when there are only a finite number of successful it-
erations. So it remains to consider the case where there are an infinite number of successful
iterations. Let S be the index set of successful iterations. Now suppose that

lgkll2 > € (3.9)

for some ¢ > 0 and all k, and consider a successful iteration of index k. The fact that k is
successful, Corollary 3.2, Lemma 3.5, and the assumption (3.9) give that

o
h

€

. €
fk - fk-l—l > ns[fk - mk(sk)] > 0e = %7786 min [1 7“5’%} . (310)
+ Kp

Summing now over all successful iterations from 0 to k, it follows that

k

fo— fry1= Z[fj — fj+1] > orde,

where o is the number of successful iterations up to iteration k. But since there are infinitely
many such iterations, it must be that

lim o = +o0.
k—o00

Thus (3.9) can only be true if fi; is unbounded from below, and conversely, if fi; is bounded
from below, (3.9) must be false, and there is a subsequence of the ||gx||2 converging to zero.



3.8 Proof of Theorem 3.8

Suppose otherwise that fi is bounded from below, and that there is a subsequence of successful
iterates, indexed by {t;} C S, such that

llgt;ll2 > 26 >0 (3.11)

for some € > 0 and for all . Theorem 3.7 ensures the existence, for each t;, of a first successful
iteration ¢; > t; such that ||gs,|l2 < €. That is to say that there is another subsequence of S
indexed by {¢;} such that

llgrl| > € for t; <k < ¥¢; and |ge,l2 <e. (3.12)

We now restrict our attention to the subsequence of successful iterations whose indices are in the

set

K (keS| |ti<k<i),

where t; and ¢; belong to the two subsequences defined above.

The subsequences {¢;}, {¢;} and K are all illustrated in Figure 3.1, where, for simplicity, it is
assumed that all iterations are successful. In this figure, we have marked position j in each of the
subsequences represented in abscissa when j belongs to that subsequence. Note in this example
that ¢y = 1 = by = l3 = €4 = £5 = 8, which we indicated by arrows from ty =0, t; = 1, to = 2,
t3=3,ty =4 and t5 =7 to k=9, and so on.
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Figure 3.1: The subsequences of the proof of Theorem 3.8

As in the previous proof, it immediately follows that

. €
fu= o 2 mf ()] 2 dneemin |-y (313)
+ Kp

holds for all k € K because of (3.12). Hence, since {fj} is, by assumption, bounded from below,
the left-hand side of (3.13) must tend to zero when k tends to infinity, and thus that
lim A = 0.

k—o0

ke



As a consequence, the second term dominates in the minimum of (3.13) and it follows that, for

k € K sufficiently large,
2

Ag < k— Jr+1]-
(i fus
We then deduce from this bound that, for ¢ sufficiently large,
0;i—1 £;i—1 9
e, — 2| < Y llag — il < D0 A; < [ft; — fo.l- (3.14)
i=t; i=t; ENstos
jeX jex

But, because {f;} is monotonic and, by assumption, bounded from below, the right-hand side
of (3.14) must converge to zero. Thus ||z, — xy,|| tends to zero as i tends to infinity, and hence,
by continuity, ||g:, — ge,|| also tend to zero. However this is impossible because of the definitions
of {t;} and {/;}, which imply that ||g;, — ge,|| > €. Hence, no subsequence satisfying (3.11) can
exist.

3.9 Proof of Theorem 3.9
The constraint ||s||2 < A is equivalent to

1A? — 1sTs > 0. (3.15)
Applying Theorem 1.9 to the problem of minimizing ¢(s) subject to (3.15) gives

g+ Bs. = — A5y (3.16)

for some Lagrange multiplier A, > 0 for which either A, = 0 or ||s«|l2 = A (or both). It remains
to show that B + \.[I is positive semi-definite.

If s, lies in the interior of the trust-region, necessarily A\, = 0, and Theorem 1.10 implies
that B + \.I = B must be positive semi-definite. Likewise if ||s.|[2 = A and A, = 0, it follows
from Theorem 1.10 that necessarily vT Bv > 0 for all v € Ny = {v|sTv > 0}. If v ¢ N, then
—v € Ny, and thus v Bv > 0 for all v. Thus the only outstanding case is where |[s.|2 = A and
A« > 0. In this case, Theorem 1.10 shows that v (B + A\ I)v > 0 for all v € Ny = {v|sTv = 0},
so it remains to consider v7 Bv when sTv # 0.

Let s be any point on the boundary of the trust-region, and let w = s — s,. Then

—wl sy = (8¢ — 8) 50 = L(s54 — 8)T (52 — 8) = Lww (3.17)
since ||s]|2 = A = ||s«||2. Combining this with (3.16) gives
q(s) — q(s«) = w (g + Bsy) + 2w? Bw = —M\aw” s, + Lw” Bw = Lw’ (B + \1)w, (3.18)

and thus necessarily w’ (B + A\.I)w > 0 since s, is a global minimizer. It is easy to show that

T
S,

S =84 — 2 v

vTy
lies on the trust-region boundary, and thus for this s, w is parallel to v from which it follows that
v (B + M\I)v > 0.

When B + M. is positive definite, s, = —(B + A\.I)"'g. If this point is on the trust-region

Tw and

boundary, while s is any value in the trust-region, (3.17) and (3.18) become —w7's, > Lw
q(s) > q(s.) + twT (B + A\ I)w respectively. Hence, q(s) > q(s.) for any s # s,. If s, is interior,

A« = 0, B is positive definite, and thus s, is the unique unconstrained minimizer of ¢(s).



Figure 3.2: Construction of “missing” directions of positive curvature.

3.10 Newton’s method for the secular equation
Recall that the Newton correction at A is —¢(\)/¢’()). Since
ot
[s(Mllz A (sT(A)s(N))

=
| -

it follows, on differentiating, that

o) = — sT(A)Vas(h) _ _ST(‘)\)V,\S()\)'

(sTVsA)E
In addition, on differentiating the defining equation
(B + Al)s(A) = —g,

it must be that
(B+ A)Vs(A) + s(A\) = 0.

Notice that, rather than the value of Vs(\), merely the numerator
T _ _ T -1
5T (A)Vas(A) = —=s" (A\)(B+ A)(N) " s(A)

is required in the expression for ¢’(\). Given the factorization B 4+ A\l = L(A)LT()\), the simple
relationship

sTA(B + AN 's(V) = sT(NLTTNLTH s = (L)) (LTHN)s(A) = w(N)13

where L(A)w(\) = s(A) then justifies the Newton step.



3.11 Proof of Theorem 3.10

We first show that

2

for all 0 < j <1 < k. For any i, (3.19) is trivially true for j = i. Suppose it is also true for all
i < I. Then, the update for d*t! gives

+11|12
[

l
dHt = _ g+l 4 lg

d.
llgt113

Forming the inner product with d’, and using the fact that d/ T¢!*t =0 for all j = 0,...,1, and
(3.19) when j = [, reveals

A Tgi — _ 1 Tgi 4 HQIHH% 1T 75 _ HQIHH% HQIIH% de||2 _ ||9l+.1\|%deH2 >0
9 12 2 |lgd)2 197112 T2 2 > U
19413 lg'll5 llg’113 19713

Thus (3.19) is true for i <1+ 1, and hence for all 0 < j <1 < k.
We now have from the algorithm that

i—1 i—1

s'=s"+ Zajdj = Zajdj
§=0 j=0
as, by assumption, s = 0. Hence
sTd =" ddTd =Y oldTd >0 (3.20)
=0 §=0

as each o/ > 0, which follows from the definition of a?, since & THd? > 0, and from relationship
(3.19). Hence
|siH]2 = sitl Tgitl = (g +aidi)T (s' + aid)
=51 Tsi 420751 Tdi + o 2di Tdi > s Ts7 = |73

follows directly from (3.20) and o’ > 0 which is the required result.

3.12 Proof of Theorem 3.11

The proof is elementary but rather complicated. See

Y. Yuan, “On the truncated conjugate-gradient method”, Math. Programming, 87
(2000) 561:573

for full details.



