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1. The Augmented Lagrangian Method. In Lecture 13 we saw that the
quadratic penalty method has the disadvantage that the penalty parameter µ has to
be reduced to very small values before xk becomes feasible to high accuracy. Moreover,
we pointed out that reducing µ to very small values can lead to numerical instabilities
if the method is not implemented very carefully.

We will now see a related method that does not require µk to converge to zero,
and yet in a neighbourhood of a KKT point x∗ of the nonlinear optimisation problem

(NLP) min
x∈Rn

f(x)

s.t. gE(x) = 0

gI(x) ≥ 0,

the iterates xk still converge to x∗ if the LICQ and the second order sufficient opti-
mality conditions hold at this point. In fact, µ can even be held constant after a while
and the convergence of xk continues!

1.1. Motivation. The method is motivated by the observation that if we knew
the Lagrange multipliers λ∗ such that (x∗, λ∗) is a KKT point for (NLP), then we
could find x∗ by solving the unconstrained problem

min
x∈Rn

L(x, λ∗). (1.1)

Indeed, as already remarked in Lemma 1.2 i) of Lecture 12, the first set of KKT
conditions ∇xL(x∗, λ∗) = 0 amount to the first order necessary optimality conditions
for (1.1).

Of course, λ∗ is not known, but we know from Lecture 13 that one can obtain
estimates λ[k] which can be used to set up the problem

min
x∈Rn

L(x, λ[k]).

as an approximation of (1.1).

If the estimates λ[k] can be iteratively improved and made to converge to λ∗, then
this can form the basis of an algorithmic framework for solving (NLP).
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1.2. The Merit Function. The merit function used by this algorithm is the
augmented Lagrangian of (NLP), defined as follows,

LA(x, λ, µ) = L(x, λ) +
1

2µ

∑

i∈I∪E

g̃2
i (x)

= f(x) −
∑

i∈I∪E

λigi(x) +
∑

i∈I∪E

g̃i(x)

2µ
gi(x)

= f(x) +
∑

i∈I∪E

( g̃i(x)

2µ
− λi

)

gi(x),

where g̃i is defined as in Lecture 13,

g̃i(x) =

{

gi(x) (i ∈ E)

min(gi(x), 0) (i ∈ I).

LA is thus nothing else but the Lagrangian “augmented” by the quadratic penalty
term introduced in Lecture 13, ensuring that x becomes gradually more feasible as
the homotopy parameter µ is reduced.

1.3. The Algorithm.

Algorithm 1.1 (AL).
S0 Initialisation: choose the following,

x0 ∈ R
n (starting point, not necessarily feasible)

λ[0] ∈ R
|E∪I| (initial ”guestimate” of Lagrange multiplier vector)

µ0 > 0 (initial value of homotopy parameter)
(τk)N0

↘ 0 (error tolerance)
S1 For k = 0, 1, 2, . . . repeat

y[0] := xk, l := 0
until ‖∇xLA(y[l], λ[k], µk)‖ ≤ τk repeat

compute y[l+1] such that LA(y[l+1], λ[k], µk) < LA(y[l], λ[k], µk)
(using unconstrained minimisation method)

l← l + 1
end
xk+1 := y[l]

λ
[k+1]
i := λ

[k]
i −

g̃i(xk+1)
µk

, (i ∈ E ∪ I),

λ
[k+1]
i ← max(0, λ

[k+1]
i ), (i ∈ I)

choose µk+1 ∈ (0, µk)
end

A quick argument gives insight into why this method can be expected to converge
before µk reaches very small values. We have

∇xLA(xk+1, λ
[k], µk) = ∇f(xk+1)−

∑

i∈E∪I

(

λ
[k]
i −

g̃i(xk+1)

µk

)

∇gi(xk+1).

Using ‖∇xLA(xk+1, λ
[k], µk)‖ ≤ τk, we find

∑

i

(

λ
[k]
i −

g̃i(xk+1)

µk

)

∇gi(xk+1) = ∇f(xk+1) + O(τk).
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Arguments similar to those given in the proof of Theorem 2.2 in Lecture 13 show that

λ
[k]
i −

g̃i(xk+1)

µk

' λ∗
i , (i ∈ E ∪ I).

Therefore, we have

g̃i(xk+1) ' µk

(

λ
[k]
i − λ∗

i

)

, (i ∈ E ∪ I),

which suggests that if λ[k] → λ∗ then all constraint residuals converge to zero like a
function o(µk), where

lim
µ→0

o(µ)

µ
= 0.

That is, the convergence is much faster than the O(µk) convergence obtained in the
quadratic penalty function method.

This argument can be made precise in a neighbourhood of a point at which the
sufficient second order optimality conditions hold. In fact, the following theorem in-
dicates that µ does not have to be reduced to zero at all.

Theorem 1.2. Let x∗ be a local minimiser of (NLP) where the LICQ and the
first and second order sufficient optimality conditions are satisfied for some Lagrange
multiplier vector λ∗. Then there exists a constant µ̄ > 0 such that x∗ is a strict local
minimiser of

min
x∈Rn

LA(x, λ∗, µ)

for all µ ∈ (0, µ̄].

For a proof see e.g. Nocedal–Wright, Theorem 17.5. Furthermore, this theorem
can be strengthened to show that if (xk, λ[k]) ever enters a sufficiently small neighbour-
hood of (x∗, λ∗) and µk ≤ µ̄, then it is the case that (xk, λ[k])→ (x∗, λ∗) irrespective
of whether µk is further decreased or not.

Theorem 1.3. For (x∗, λ∗) and µ̄ as in Theorem 1.2 there exist constants
M, ε, δ > 0 such that the following is true:

i) if µk ≤ µ̄ and

‖λ[k] − λ∗‖ ≤
δ

µk

, (1.2)

then the constrained minimisation problem

min
x
LA(x, λ[k], µk) (1.3)

s.t. ‖x∗ − x‖ ≤ ε

has a unique minimiser xk+1 and

‖x∗ − xk+1‖ ≤Mµk‖λ
[k] − λ∗‖, (1.4)
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ii) if µk and λ[k] are as in part i) and if λ[k+1] is chosen as in Algorithm (AL),
then

‖λ[k+1] − λ∗‖ ≤Mµk‖λ
[k] − λ∗‖. (1.5)

We conclude with a few comments on why this result is interesting.
• Without loss of generality, we may assume that µ̄ ≤ (2M)−1. Note that if

(λ[k], µk) satisfy the conditions of part i) of the theorem and if xk ∈ Bε(x
∗),

then xk is a good starting point for solving the problem (1.3) and we have

xk+1 ∈ Bε(x
∗)

‖λ[k+1] − λ∗‖
(1.2),(1.5)

≤ Mµk

δ

µk

= δM <
δ

µ̄
≤

δ

µk+1
,

where the last inequality follows from µk+1 ≤ µk. Thus, the same conditions
hold again, and by induction they hold for all subsequent iterations.

• Let k0 be the iteration where (1.4) and (1.5) first hold. Induction on k shows
that

‖λ[k] − λ∗‖, ‖xk − x∗‖ ≤ (Mµ̄)k−k0‖λ[k0] − λ∗‖ ≤
1

2k−k0
‖λ[k0] − λ∗‖.

This shows that xk → x∗ and λ[k] → λ∗ at a Q-linear rate if µ ≤ µ̄ is held
fixed.

Additional Recommended Reading: Section 17.4, Nocedal–Wright.
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