Part 4: Interior-point methods
for inequality constrained optimization

Nick Gould (RAL)

minimize  f(z) subject to ¢(z) >0
zelR"

> On non

CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:
© minimize the objective function f(z)

© satisfy the constraints

Overcome this by minimizing a composite merit function &(z,p)
for which

© p are parameters

© (some) minimizers of ®(x, p) wrt & approach those of f(x) subject
to the constraints as p approaches some set P

® only uses unconstrained minimization methods

CONSTRAINED MINIMIZATION

Vv

minimize f(z) subject to c¢(x)
zeR"

where the objective function f :IR" — IR
and the constraints ¢ : [R" — IR"

© assume that f, ¢ € C' (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary

AN EXAMPLE FOR EQUALITY CONSTRAINTS

minimize f(z) subject to c(x) =0
z€lR"

Merit function (quadratic penalty function):
Oz, 1) = f(z) + ()3

© required solution as p approaches {0} from above

® may have other useless stationary points



A MERIT F* FOR INEQUALITY CONSTRAINTS CONTOURS OF THE BARRIER FUNCTION

minimize f(z) subject to ¢(x) >0
r€IR"
Merit function (logarithmic barrier function):
bz, p) = f(z) — p X logei(w)
© required solution as p approaches {0} from above

©® may have other useless stationary points

® requires a strictly interior point to start

© consequent points are interior

Barrier function for min 2} + 23 subject to 1 + 23 > 1

CONTOURS OF THE BARRIER FUNCTION (cont.) BASIC BARRIER FUNCTION ALGORITHM

Given g > 0, set k=0
Until “convergence” iterate:
Find af for which ¢(z}) > 0
Starting from 7, use an unconstrained
minimization algorithm to find an
“approximate” minimizer xy of ®(x, py)
Compute pg.1 > 0 smaller than gy, such
that limy_. pp+1 = 0 and increase k by 1

© often choose g1 = 0.1y or even g1 = p2

w=0.1 w=0.01

Barrier function for min 22 + 22 subject to z1 + 2 > 1
1+ a3 3

© might choose 2}, = 7,



MAIN CONVERGENCE RESULT

The active set A(x) = {i | ¢;(x) =0}

%m

Theorem 4.1. Suppose that f, ¢ € C?, that (yx); <= ui/ci(zr)

fori=1,...,m, that
IVa®(ap, )2 < €k

where €), converges to zero as k — 0o, and that x converges to x,
for which {a;(z+)}ic () are linearly independent. Then . satisfies
the first-order necessary optimality conditions for the problem

minimize f(z) subject to c(z) >0
r€R"

and {yx} converge to the associated Lagrange multipliers ..

+ (1) = {yx} — y». Continuity of gradients + (2) =
g(z) — AT(z)y. = 0

c(zy) > 0, defs. of yr and y, + ci(xp)(yr)i = iy =
c(zy) >0,y > 0 and ¢j(zy)(ys); = 0.

= (., ) satisfies the first-order optimality conditions.

PROOF OF THEOREM 4.1
Let MY {1 om}, AY i | e(z,) =0} and T M\ A
Generalized inv. A%(z) % (Au(x VKAMAHVVL A(z) bounded near .

Define
()i = i€ M, (y)a = Af(x)g(x.) and (3.)7 = 0.
@.AHS
I(we)zllz < 2y1Z1/ min fe;(2. )| (1)

(if Z # () for all sufficiently large k. (1) + inner-it. termination =
(i) — Ad(@e) i) alla < llalze) — AT (@R)yells + 1AL (@) (w2l

def 21N Azll2
minger |ci(x,)|

(2)
AL () g(xy) = (i) alla = 1AL () (g(ay) — Al(an) () 2l
2[| A% () |26

IN

= [Wr)a = W) alls

[A% () g(w,) — Aldzp)g(@)lly + 1 AL(z)g(zy) = (Yy)alls

ALGORITHMS TO MINIMIZE &(x, i)

Can use
® linesearch methods
o should use specialized linesearch to cope with singularity of log
© trust-region methods

o need to reject points for which c(xy + s5) # 0
o (ideally) need to “shape” trust region to cope with contours of

the singularity



GENERIC BARRIER NEWTON SYSTEM

Newton correction s from z for barrier function is
(H(z,y(x)) + pA" (2)C 7% (x)Alz))s = —g(z,y())
where
o C(z) = diag(ci(x), . .., cn(x))
© Lagrange multiplier estimates: y(z) = uC~1(x)e
where e is the vector of ones

o g(z,y(r)) = g(z) — AT(x)y(z): gradient of the Lagrangian
© H(z.y(x) = H(z) = ¥ yi(x)Hi(x)
Sometimes written as
(H(z,y) + AT(x)C ()Y (2)A(z)) s = —g(x,y(z))
or (H(w,y) + AT (2)Y*(2)A(z)) s = —g(z, y(x))
where
© Y(z) = diag(yi(2), ..., ym(z))

POTENTIAL DIFFICULTIES II

Value z}  , = z; is a poor starting point: Suppose

Vo Pk, ) = g(ar) — AT (2) O~ ap)e
glar) — A (1) Cq (2 )e

0

Q&

Roughly speaking (non-degenerate case) Newton correction satisfies

f 1 AL (@) CP (@) A g(p)s & (g — ) ALz O (e
= (full rank)

Aulmy)s ~ ﬁ — PR ey
Hk+1
= (Taylor expansion)
calzy +8) = calay) + Aalzy)s =~ h - Eau calzy) <0
He+1

if pp1 < iy, => Newton step infeasible = slow convergence

POTENTIAL DIFFICULTIES I

Ill-conditioning of the Hessian of the barrier function:

roughly speaking (non-degenerate case)
© m, eigenvalues ~ (ALY A 4)/pk
© n —m, eigenvalues ~ N\(NYH (2., y.)N )

where
m, = number of active constraints
A = active set at z.
Y = diagonal matrix of Lagrange multipliers
N 4 = orthogonal basis for null-space of A 4

= condition number of V., ®(xy, ux) = O(1/ )
= may not be able to find minimizer easily

PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize f(x) subject to ¢(z) >0

z€R"
are:
gx) — AT(2)y =0 dual feasibility
Clx)y=0 complementary slackness

e(x) >0 and y >0

Consider the “perturbed” problem

glx) — AT(2x)y =0 dual feasibility
C(z)y = pe perturbed comp. slkns.
c(z) >0 and y >0

where p > 0



PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of
glz) — AT(z)y =0 and C(x)y — pe =0
as 0 < g — 0, while maintaining ¢(z) > 0 and y > 0

© nonlinear system = use Newton’s method

H(z,y) —A"(z)
YA@) Cl(x)

gla) — AT(z)y
C(x)y — pe

Newton correction (s,w) to (z,y) satisfies
s
w

Eliminate w =
(H(x,y) + AT (2)C 7 (2)Y A(z)) s = — (g(x) — pAT (z)C e)

c.f. Newton method for barrier minimization!

POTENTIAL DIFFICULTY II ... REVISITED

Value z;  ;, = x;, can be a good starting point:
© primal method has to choose y = y(z3) = 10~z )e
o factor pg41/pr too small for a good Lagrange multiplier estimate

© primal-dual method can choose y = urC~ 1 (z)e — v

Advantage: roughly (non-degenerate case) correction s™ satisfies
1 AL (@) C P () A ()™ & (pyy — ) Al(y)C 1 (g e

= (full rank)

N e
Fore
= (Taylor expansion)
Q\A&“» + .wmuv ~ Q\»A&»v + \w\»@.wvm@ ~ %Q\AA&S >0
k
=> Newton step allowed = fast convergence

PRIMAL VS. PRIMAL-DUAL

Primal:
(H(z,y(x)) + AT (2)C7(2)Y (2)A(2)) 8" = —g(x, y(z))
Primal-dual:
(H(z,y) + AT (2)C~ (@)Y A(z)) 8™ = —g(x, y(x))

where
y(z) = pC\(z)e

What is the difference?

® freedom to choose y in H(x,y) + AT (z)C~'(2)Y A(z) for
primal-dual . .. vital

PRIMAL-DUAL BARRIER METHODS

Choose a search direction s for ®(z, uy,) by
(approximately) solving the problem

E:MH%WNm g(z,y(2)'s + 1s" (H(z,y) + AT(2)C 7 (2)Y A(z)) s

possibly subject to a trust-region constraint
o y(z) = pC(z)e = g(x,y(x)) = V. 0(z, 1)
Oy=...
o y(x) = primal Newton method

o occasionally (p—1/p)y(x) = good starting point

o Yo' + " = primal-dual Newton method

<

max(y° + w°®; e(py)e) for “small” e(p;) > 0
(e.g., €(ug) = p}?) = practical primal-dual method



POTENTIAL DIFFICULTY I ... REVISITED

Il-conditioning #=we can’t solve equations accurately:
roughly (non-degenerate case, Z = inactive set at z,)

H —AT)\ (s g— ATy
YA C w) Cy — ue —
H A —A7\( s 9= Alya— Atyr
YA C4 O wy | =— C Ly — e =
Y7Ar 0 Cr wz Cryr — pe
H+ATCT'YrAr —AL | s | _ _[9—Alya—nA7Cr'le
Ay C ¥ J\wy) cp—pYy'e
© potentially bad terms C7' and Y ;! bounded
® in the limit becomes well-behaved
H AL (s 9= ALya

>L 0 W » 0

FAST ASYMPTOTIC CONVERGENCE

Theorem 4.2. Suppose that f, ¢ € C?, that a subsequence
{(zr,yr)}, k € K, of the practical primal-dual method converges to
(24, ys) satisfying second-order sufficiency conditions, that A 4(x.)
is full-rank, and that (y,)4 > 0. Then the starting point satisfies the
inner-minimization termination test (i.e., (zx,yr) = (23,4})) and
the whole sequence {(zx, yr)} converges to (x4, ys) at a superlinear
rate (Q-factor 1.9998).

PRACTICAL PRIMAL-DUAL METHOD

Given gy > 0 and feasible (x7, y;), set k =0
Until “convergence” iterate:
Inner minimization: starting from (2}, y}), use an
unconstrained minimization algorithm to find (z, yx) for which
IC(@)yr — el < pr and ||g(zx) — AT (@p)yel| < ™"
Set 41 = min(0. 1y, pi ™)
Find (2}, yj..1) using a primal-dual Newton step from (zy, yi)
If (2} 1, Y1) is infeasible, reset (3,1, yi41) to (k, Yr)
Increase k by 1

OTHER ISSUES

® polynomial algorithms for many convex problems
o linear programming
o quadratic programming
o semi-definite programming . ..
® excellent practical performance
© globally, need to keep away from constraint boundary until near
convergence, otherwise very slow
© initial interior point:

minimize e’

(2,0)

¢ subject to ¢(z)+¢ >0



