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1. Constrained Optimisation and the Need for Optimality Conditions.
In the remaining part of this course we will consider the problem of minimising ob-
jective functions over constrained domains. The general problem of this kind can be
written in the form

/)
st gi(x)=0 (i€éf),
gij(x) >0 (ieI),

where € and 7 are the finite index sets corresponding to the equality and inequality
constraints, and where f, g; € C*(R™,R) for all (i € ZUE).

In unconstrained optimisation we found that we can use the optimality conditions
derived in Lecture 1 to transform optimisation problems into zero-finding problems
for systems of nonlinear equations. We will spend the next few lectures to develop a
similar approach to constrained optimisation: in this case the optimal solutions can
be characterised by systems of nonlinear equations and inequalities.

A natural by-product of this analysis will be the notion of a Lagrangian dual
of an optimisation problem: every optimisation problem - called the primal - has a
sister problem in the space of Lagrange multipliers - called the dual. In constrained
optimisation it is often advantageous to think of the primal and dual in a combined
primal-dual framework where each sheds light from a different angle on a certain
saddle-point finding problem.

2. The Fundamental Theorem of Linear Inequalities. Before we proceed
to developing these theories, we will take a closer look at systems of linear inequalities
and prove a theorem that will be of fundamental importance in everything that follows:

THEOREM 2.1 (Fundamental theorem of linear inequalities).
Let ai,...,am,b € R™ be a set of vectors. Then exactly one of the two following
alternatives occurs:

(I) 3y € R such that b= """ y;a;.

(II) 3d € R™ such that d*b < 0 and d"a; > 0 for all (i=1,...,m).

Note that Alternative (I) says that b lies in the convex cone generated by the
vectors a;:

i=1

b € cone(ay, ..., an) = {2/\1'(11 N> OVi} .

Alternative (II) on the other hand says that the hyperplane d* := {z € R" : dT2 = 0}

strictly separates b from the convex set cone(ar, ..., a;). Thus, Theorem 2.1 is a re-
sult about convex separation: either b is a member of cone(ay, ..., a,,) or there exists
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a hyperplane that strictly separates the two objects. See Figure 2.1 for an illustration
of the two cases.

Fic. 2.1. Illustration of the two alternative situations described by Theorem 2.1, where C =
cone(ay,...,am). On the left, Alternative (II) is depicted, and on the right, Alternative (I).

Actually, our proof of Theorem 2.1 will reveal the slightly stronger property that
when alternative (IT) holds then d can be chosen so that d¥a; = 0 for at least
rank(ay,...,am,) — 1 indices 4, a result that is useful in the theory of linear pro-
gramming. We break down the proof of Theorem 2.1 into a series of lemmas:

LEMMA 2.2. The two alternatives of Theorem 2.1 are mutually exclusive.

Proof. If this is not the case then we find the contradiction

m m
0< Zy,-(dTa,v) =dT (Z yia,i> =d"h < 0.

i=1 =1

LEMMA 2.3. W.lLo.g. we may assume that span{ay,...,a;,} = R".

Proof. If span{ai,...,an} # R™ then either b € span{ai,...,a,} and then we
can restrict all arguments of the proof to the linear subspace span{ai, ..., a;} of R"™.
Else, if b ¢ span{ai,...,an} then b cannot be written in the form b = 3" p;a;, so
Alternative (I) does not hold. It remains to show that Alternative (II) applies in this
case. Let 7 be the the orthogonal projection of R™ onto span{as,...,an,}, and let
d=7(b) —b. Then d L span{ai,...,an}, so that

dTb = d" (b —n(b)) +d"w(b) = —||d||* +0 < 0,
d%e; =0 Vi.
Therefore, Alternative (II) holds. O

Because of Lemma 2.3, we will henceforth assume that span{as,...,a,} = R™
We will next construct an algorithm that stops when a situation corresponding to
either Alternative (I) or (IT) is detected.



ALGORITHM 2.4.
S0 Choose J* C {1,...,m} such that span{a;} n = R", |J'| = n.
S1 Fork=1,2,... repeat
1. decompose b=, ;x yFa;
2. if y¥ > 0Vi € J* return y* and stop.
3. else begin
let j* .= min{i € J* : yF <0}
let 7 : R™ — span{a; : i € J*\ {j*}} orthogonal projection
let d* := [laje — 7% (az )|~ (a0 — 7 (az))
if (d*)Ta; >0 for (i=1,...,m) return d* and stop.
end
4. let 1¥ ;= min{i : (d*)Ta; <0}
5. let JEFL = JR\ {jF} U {1k}
end.

Algorithm 2.4 is in fact the simplex algorithm for LP with Bland’s rule in dis-
guised form. Let us make a few remarks about the different stages of the algorithm:

If the algorithm returns y* in Step 2, then Alternative (I) holds: let y; = 0
for i # J* and y; = y¥ fori € J. Theny € R7 and b= Y, y;a;.

If the algorithm enters Step 3, then {i € J* : y¥ < 0} # 0 because the
condition of Step 2 is not satisfied.

e The vector d* constructed in Step 3 satisfies
(@) =">" y¥(d") " a; = yhi (@) az <0, (2.1)
icJk

Therefore, if the algorithm returns d* then Alternative (II) holds with d = d*.
If the algorithm enters Step 4 then {i : (d*)Ta; < 0} # 0 because the
condition of the last “if” statement of Step 3 is not satisfied. Moreover, since

(dk)Ta]k = 1,
(@)Tai =0 (i€ J"\{j"},

we have {i: (d")Ta; <0} NJ* = 0. This shows that I* ¢ J*.
We have span{a; : i € J¥*1} = R", because (d*)Tap # 0 and (d¥)Ta; =0
(i € J*\{j*}) show that a;x ¢ span{a; : i € J*\{j*}}. Moreover, |J5+1| = n.

LEMMA 2.5. In Algorithm 2.4 it can never occur that J* = Jt for k < t.

Proof. Let us assume to the contrary that J* = J* for some iterations k < t. Let
Jma% = max{j® : k < s <t—1}. Then there exists p € {k,k+1,...,¢t — 1} such
that j™* = jP. Since J* = J*, there also exists ¢ € {k,k -+ 1,...,# — 1} such that
jmax =14, In other words, the index must have once left J and then reentered, or
else it must have entered and then left again.

Now j™a* = j7 implies that for all ¢ € JP such that ¢ < j™* we have y? > 0.
Likewise, for the same indices i we have (d9)%a; > 0, as

i< M =% = min{i : (d9)Ta; < 0}.
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Furthermore, we have yfma = 4}, < 0 and (d9)Tajmex = (d9)Tae < 0. And finally,
since J® N {j™* + 1,...,m} remains unchanged for s = k,...,t we have (d)%a; =0
for all 4 € JP such that i > j™**. Therefore,

@)= 3" 47 () a; > 0. 2.2)

i€JP

On the other hand, (2.1) shows (d?)Tb < 0, contradicting (2.2). Thus, indices k < ¢
such that J* = J* do not exist. O

We are finally ready to prove Theorem 2.1:

Proof. Since J*¥ C {1,...,m} and there are finitely many choices for these index
sets and Lemma 2.5 shows that there are no repetitions in the sequence J*', J?, ...,
the sequence must be finite. But this is only possible if in some iteration &£ Algorithm
2.4 either returns y*, detecting that Alternative (I) holds, or d*, detecting that Al-
ternative (II) holds. O

3. The Implicit Function Theorem. Another fundamental tool we will need
is the implicit function theorem. This is a standard results from multivariate analysis
and can be proven via a rather technical fixed point argument. For a proof see any ad-
vanced calculus book. Before stating the theorem, let us illustrate it with an example:

EXAMPLE 3.1. The function f(z1,72) = 23+ 3 — 1 has a zero at the point (1,0)
and % (1,0) = 1 # 0. In a neighbourhood of this point the level set {(xq,z2) :
f(z1,22) = 0} can be explicitly parameterised in terms of x2, that is, there exists a
function h(t) such that f(x1,x2) =0 if and only if (z1,22) = (h(t),t) for some value

of t.

Indeed, this level set is nothing else but the unit circle S*, and for (zy,z2) with
1 > 0 we have f(zq,22) =0 if and only if 21 = h(z2) where h(t) = /1 — ¢2. Thus,

S'n{z eR?*: z; >0} = {(h(t),t): t € (=1,1)},

as claimed. Another way to say this is that S! is a differentiable manifold with local
coordinate map

e:S8'N{zeR?: 21 >0} — (~1,1),
T T,

The parameterisation in terms of x5 was only possible because %f(l,O) # 0. To
illustrate this, note that we also have f(0,1) = 0, but now a—zlf(() 1) = 0 and we
cannot parameterise S by 5 in a neighbourhood of (0, 1). In fact, in a neighbourhood
of x5 = 1, there are two z; values +4/1 71‘% such that f(z1,22) = 0 when zo < 1
and none when x5 > 0.

These observations can be generalised. For another 2D example, see Figure 3.1.
To describe the general case, for f € CH(RPT RP), let fi(x) be the leading p x p
block of the Jacobian matrix f’(z) = [ f4(=) f4(=)], and fj(z) the trailing p x g block.
Let zp be the first p x 1 block of the vector z and zy the trailing ¢ x 1 block. The
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following theorem generalises the above made observations:

THEOREM 3.2. [Implicit Function Theorem]
Let f € C*(RPT9,RP) and let 7 € RPH9 be such that f(z) = 0 and f5(Z) nonsingular.
Then there exist open neighbourhoods Ugp C RP of zp and Uy C R? of Ty and a
function h € C*(Un,Up) such that for all (xp,zN) € Up x Uy,
i) f(xp,zn) =0< 25 = h(zn),
it) fg(x) is nonsingular,

iii) W (zn) = — (fp(z) " fi(@).
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F1G. 3.1. The first window shows the Matlab built-in sample function peaks(30) and some of its
level sets. The second window shows the level sets corresponding to the level zero. Windows 3 and
4 are zooms of window 2. In the di in of window 8 the x-coordinate can be used to locally express
the level set as the graph of a function y = y(x). In the domain of window 4 this is not possible.




