Part 4: Interior-point methods
for inequality constrained optimization

Nick Gould (RAL)

minimize  f(x) subject to c(x) > 0
relR"

MSc course on nonlinear optimization




CONSTRAINED MINIMIZATION

Vv

minimize f(x) subject to c(x) 0
reR"

where the objective function f : IR" — IR
and the constraints ¢ : IR" — IR

® assume that f, ¢ € C' (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary



CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:
® minimize the objective function f(x)

® satisfy the constraints

Overcome this by minimizing a composite merit function ®(x,p)
for which

® p are parameters

® (some) minimizers of ®(x, p) wrt x approach those of f(x) subject
to the constraints as p approaches some set P

® only uses unconstrained minimization methods



AN EXAMPLE FOR EQUALITY CONSTRAINTS

minimize f(z) subject to c(x) =0
r€IR"

Merit function (quadratic penalty function):

1
O, p) = flz) + wt__%qi_w
® required solution as p approaches {0} from above

® may have other useless stationary points



A MERIT F* FOR INEQUALITY CONSTRAINTS

minimize f(x) subject to c(x) >0
relR"

Merit function (logarithmic barrier function):
Oz, p) = flx) = :M log ¢;(x)
® required solution as y approaches {0} from above
® may have other useless stationary points

® requires a strictly interior point to start

® consequent points are interior



CONTOURS OF THE BARRIER FUNCTION

Barrier function for min 2% + 3 subject to x1 + x5 > 1



CONTOURS OF THE BARRIER FUNCTION (cont.)
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BASIC BARRIER FUNCTION ALGORITHM

Given po > 0, set k =0
Until “convergence” iterate:
Find zj for which ¢(x}) > 0
Starting from 3, use an unconstrained
minimization algorithm to find an
“approximate” minimizer xj of ®(x, u)
Compute 1 > 0 smaller than py such
that limy_ ..o 1 = 0 and increase k by 1

® often choose jup1 = 0.1p or even pyq = ps

® might choose z},; = z,



MAIN CONVERGENCE RESULT

The active set A(z) = {i | ¢;(x) =0}

Theorem 4.1. Suppose that f, ¢ € C2, that (yu); < p/ci(zy)
fori=1,...,m, that

|V P (g, ) |]2 < €

where €;, converges to zero as k — oo, and that xj converges to x,
for which {a;(+) }ic (z,) are linearly independent. Then ., satisfies
the first-order necessary optimality conditions for the problem

minimize f(x) subject to c(x) >0
reR"

and {y;} converge to the associated Lagrange multipliers y,.




PROOF OF THEOREM 4.1

Let M {1, .. om}, AY {i | ¢(z,) =0} and T M\ A
Generalized inv. A%(z) ¥ A;\g@vxﬁ@va A 4(x) bounded near x,.
Define

()i = ——— i€ M, (y)a = A}(z)g(x.) and (y.)z=0.

ci(xy)
(yi)zll2 < 2121/ min [e;(2.) (1)

€L
(if Z # () for all sufficiently large k. (1) + inner-it. termination —>

lg(zy) = Aulee) (W) ally < Nlglzy) = AT (@r)yelly + 1AL (2) ()2l

2/1Z1|| Az]|2

BWS&mN _QN. Amﬁ*v _

< &Y+

(2)
1AL (2)g(2r) = () alla = N1 AA(z) (g(2)) — Adlzi) () 2
2| A () €

IA

= [(Wi)a — W) alls
[AG(z)g(z,) — Al(zp)g(z)lle + | A (@) g(zy) — (yi) allo



+ (1) = {yr} — y.. Continuity of gradients + (2) =
g(xs) — \»%A&L@% =0

c(xy) > 0, defs. of yp and y. + ¢;(x)(yp)i = o =
c(xy) >0, y, > 0 and ¢;(x4)(y«); = 0.

—> (T, ys) satisfies the first-order optimality conditions.



ALGORITHMS TO MINIMIZE ®(x, )

Can use
® linesearch methods

o should use specialized linesearch to cope with singularity of log
® trust-region methods

o need to reject points for which c(xy + s5) # 0

o (ideally) need to “shape” trust region to cope with contours of
the singularity



GENERIC BARRIER NEWTON SYSTEM

Newton correction s from x for barrier function is

(H(z,y(x)) + pA" (2)0 () A(z))s = —g(z,y(z))

where

o C(x) = diag(ci(x), ..., cn(T))

® Lagrange multiplier estimates: y(z) = uC~!(z)e

where e is the vector of ones

o glz,y(x)) = g(x) — AT(z)y(z): gradient of the Lagrangian

o H(z,y(x) = H(x) = 5 yi(a)Hi(x)

Sometimes written as

(H(x,y) + AT (2)C7H2)Y (2) Az)) s = —g(z, y(x))
or (H(z,y) + JAT(2)Y(x)A(z)) s = —g(.y(x))

where
© Y(x) = diag(y1(), ..., ym())



POTENTIAL DIFFICULTIES 1

Il1l-conditioning of the Hessian of the barrier function:
roughly speaking (non-degenerate case)

© m, eigenvalues ~ \;(ALY3A ,)/

© n — m, eigenvalues & \( N4 H (2, ys) N )
where

m, = number of active constraints

A = active set at z,

Y = diagonal matrix of Lagrange multipliers
N 4 = orthogonal basis for null-space of A4

—> condition number of V., ®(xy, pr) = O(1/ )
—> may not be able to find minimizer easily



POTENTIAL DIFFICULTIES II

Value z;_ , = x, is a poor starting point: Suppose

V(g ) = g(ar) — A" (2x)C~ g )e
g(wr) — AL (2)Cy' (21 )e

0

&

Roughly speaking (non-degenerate case) Newton correction satisfies

P A Ca(wp) Aglay)s & (g — p) Ad(ep)Co' (e
—> (full rank)
Ay(xy)s ~ ﬂ — \Eﬂv e
—> (Taylor expansion)

Mk
Hk+1
if ppy1 < ipr = Newton step infeasible => slow convergence

calzr + s) &~ calxr) + Aglxp)s =~ ﬁw — v calzy) <0



PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize f(x) subject to c(x) >0

reR"
are:
glz) — Al(x)y =0 dual feasibility
C(x)y =0 complementary slackness

c(r)>0 and y >0

Consider the “perturbed” problem

g(z) — Al (z)y =0 dual feasibility
C(x)y = pe perturbed comp. slkns.
c(x) >0 and y >0

where > 0



PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of
glx) — A (x)y =0 and C(z)y — pe =0
as 0 < p — 0, while maintaining ¢(z) > 0 and y > 0

® nonlinear system = use Newton’s method

H(z,y) —A'(z)
YA(x) C(x)

g(z) — A (z)y
Cla)y — pe

Newton correction (s, w) to (z,y) satisfies
s
w

Eliminate w =
(H(z,y) + A" (2)C~ 1 (2)Y A(x)) s = — (9(x) — pA (2)Ce)

c.f. Newton method for barrier minimization!



PRIMAL VS. PRIMAL-DUAL

Primal:
(H(z,y(x)) + AT (z)C7 (@)Y () Az)) 8" = —g(z, y(x))
Primal-dual:
(H(z,y) + A (2)C™H(2)Y A(z)) s = —g(,y(z))

where

What is the difference?
© freedom to choose y in H(x,y) + Al (x)C~(z)Y A(x) for

primal-dual .. .vital



POTENTIAL DIFFICULTY II ... REVISITED

Value z; ;, = x; can be a good starting point:

® primal method has to choose y = y(2}) = pp1C Hxp)e
k H
o factor pgy1/ g too small for a good Lagrange multiplier estimate

® primal-dual method can choose y = 1,C~Hxp)e — v,
Advantage: roughly (non-degenerate case) correction s satisfies
AU Ca () A () s™ = (pypr — ) Au(z) Cy () )e
—> (full rank)

Aq(zy)s™ ~ AEE - Hu calzy)
Hk
—> (Taylor expansion)
QLASALﬂmSVRQLA&SL:»L@%SR t\wi
\,\m

—> Newton step allowed = fast convergence

calzy) >0



PRIMAL-DUAL BARRIER METHODS

Choose a search direction s for ®(x, ux) by
(approximately) solving the problem

BWMHM@E@ g(z,y(x))'s +is" (H(x,y) + AT (2)C (2)Y A(z)) s

possibly subject to a trust-region constraint
o y(z) = nC~ (z)e = g(z,y(z)) = V. 0(z, p)

OYy=...
o y(x) = primal Newton method
o occasionally (ux—1/pr)y(xr) = good starting point
o Yo" 4+ w"” = primal-dual Newton method

o max(y°"® + w°™, e(ug)e) for “small” e(pug) > 0
(e.g., €(ur) = pj.°) = practical primal-dual method



POTENTIAL DIFFICULTY I... REVISITED

Il1l-conditioning #/=we can’t solve equations accurately:
roughly (non-degenerate case, Z = inactive set at x,)

H —A")[s g— Aly
- —
YA C w Cy — e
H —Ay —A7)\( s g — Ala— ATyr
Yady Cqp 0 Jlwg| ==  Cays—pe —
Y74z 0 (7 Wz Czyr — pe
H+A7CT'Y7Ar =AY V[ s | _ [9— Ahys—nAzCrle
\w\ﬁ Q«AM\.\MH S«A N O.\A — tM\\ﬂH®

© potentially bad terms C7! and Y ;! bounded

® 1n the limit becomes well-behaved

A



PRACTICAL PRIMAL-DUAL METHOD

Given py > 0 and feasible (zf, y;), set k=0
Until “convergence” iterate:
Inner minimization: starting from (z}, y}), use an

unconstrained minimization algorithm to find (xy, ) for which

|C(xr)yr — pre|| < px and ||g(xg) — k»ﬂ@i@i_ < t\woooom

Set g1 = min(0.1py, py ")
Find (2}, ¥j+,) using a primal-dual Newton step from (xy, yx)
If (2}, y;.,) is infeasible, reset (2}, v}.1) to (Tk, i)

Increase k by 1




FAST ASYMPTOTIC CONVERGENCE

Theorem 4.2. Suppose that f, ¢ € C? that a subsequence
{(zk,yr)}, k € K, of the practical primal-dual method converges to
(4, yx) satisfying second-order sufficiency conditions, that A 4(z,)
is full-rank, and that (y.)4 > 0. Then the starting point satisfies the
inner-minimization termination test (i.e., (xx,yr) = (z},;)) and
the whole sequence {(zy, yx)} converges to (., ys) at a superlinear
rate (Q-factor 1.9998).




OTHER ISSUES

® polynomial algorithms for many convex problems

o linear programming
o quadratic programming

o semi-definite programming . .
® excellent practical performance

© globally, need to keep away from constraint boundary until near
convergence, otherwise very slow

® initial interior point:
Ce . T
minimize e

(7,¢)

¢ subject to ¢(x)+¢ >0



