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Solutions to exercises for Part 1.

1(a). The first-order optimality conditions are that there exist vectors of Lagrange
multipliers yE∗ and yI∗ such that

cE(x∗) = 0 and cI(x∗) ≥ 0 (primal feasibility),
g(x∗) − AT

E
(x∗)yE∗ − AT

I
(x∗)yI∗ = 0 and yI∗ ≥ 0 (dual feasibility) and

ci(x∗)[y∗]i = 0 for all i ∈ I (complementary slackness).

1(b). The second-order optimality conditions are that necessarily

sT H(x∗, y∗)s ≥ 0 for all s ∈ N+,

where

N+ =











s ∈ <n

∣

∣

∣

∣

∣

∣

∣

sT ai(x∗) = 0 if i ∈ E
sT ai(x∗) = 0 if i ∈ I & both ci(x∗) = 0 & [y∗]i > 0 and
sT ai(x∗) ≥ 0 if i ∈ I & both ci(x∗) = 0 & [y∗]i = 0











,

and y∗ = (yT

E∗
, yT

I∗
)T .

2(a). The problem might be non-differentiable because small perturbations in x may
cause different terms fi(x) to define the objective f(x). For example, suppose m = 2,
f1(x) = x + 1 and f2(x) = −x + 1. Then for x ≥ 0, f(x) = x + 1 while for x ≤ 0,
f(x) = −x + 1, and there is a derivative discontinuity at x = 0. It might also be
non-differentiable because of the | · | term. For instance if m = 1 and f1(x) = x, f(x)
is non-differentiable at x = 0.

2(b). Clearly |fi(x)| ≤ u is equivalent to −u ≤ fi(x) ≤ u. Minimizing the largest
|fi(x)| is equivalent to minimizing the largest upper bound on |fi(x)|.
2(c). The constraints −u ≤ fi(x) ≤ u may be rewritten as fi(x) + u ≥ 0 and u −
fi(x) ≥ 0. Let yL

i
and yU

i
(respectively) be Lagrange multipliers for these constraints,

and let A(x) be the Jacobian of the vector of fi.
First-order necessary optimality conditions are that the yL and yU satisfy

(

0
1

)

−
(

A(x)
eT

)

yL −
(

−A(x)
eT

)

yU = 0

and that
(fmax + fi(x))yL

i
= 0 and (fmax − fi(x))yU

i
= 0,

where fmax is the optimal objective value. This is to say that

A(x)(yL − yU) = 0
eT (yL + yU) = 1 and (yL, yU) ≥ 0

.

If fmax > 0 only one of the pair (yL

i
, yL

u
) can be nonzero.
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Solutions to exercises for Part 2.

1(a). The gradient of the objective function is g = Hx and g(x∗) = Hx∗ = H0 = 0,
so that x∗ is a stationary point which is a minimum, since H is positive definite.

1(b). Line-search in direction p from x gives

f(x + αp) = 1

2
(x + αp)T H (x + αp)

= 1

2
α2pT Hp + αpTHx + 1

2
xT Hx.

Hence, the exact line-search condition
df

dα
= 0, using g = g(x) = Hx is equivalent to

αpT Hp + pT g = 0 ⇔ α = − pT g

pT Hp
,

where we have used the positive definiteness of H, which ensures that pT Hp > 0 for
all p 6= 0.

1(c). If x1 is chosen as in the question, then the gradient

g1 = (σ, 0, . . . , 0, 1)T = −p1

is the steepest descent direction. Next, compute

−pT

1 g1 = σ2 + 1 = 2 and pT

1 Hp1 = λ1 + λn,

and using the step-length from (b), it follows that

α1 =
2

λ1 + λn

.

Now compute the next iterate as

x2 = x1 + α1p1 =



















σ

λ1

0
...
0
1

λn



















+
2

λ1 + λn



















−σ
0
...
0
−1



















=
λ1 − λn

λ1 + λn



















σ

λ1

0
...
0
1

λn



















.

Each subsequent iteration only differs from iteration 1 by the factor
λ1 − λn

λ1 + λn

. Note

that the step-length is independent of this factor. Each iteration “adds” one factor
to the expression for xk+1 giving the desired formula.
1(c) (i). If λ1 = λn, then x2 = 0 is optimal.



Nick Gould — Solutions to exercises for M.Sc. course on nonlinear optimization 3

1(c) (ii). If λ1 � λn, then steepest descent converges very slowly, since λ1 −λn ' λ1,

the sequence
λ1 − λn

λ1 + λn

approaches zero very slowly. The rate of convergence is linear,

since
‖xk+1‖2

‖xk‖2

=

(

λ1 − λn

λ1 + λn

) 1

2

=: c

and the convergence constant, c, is close to 1.
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Solutions to exercises for Part 3.

1(a). The unconstrained minimizer −(1, 0, 1/2)T has `2-norm 1 <
√

5/2 < 2. Thus,
since B is positive definite, the unconstrained minimizer solves the problem.

1(b). The unconstrained minimizer has too large a `2-norm, so the solution must
lie on the boundary of the constraint. The solution must be of the form −(1/(1 +
λ), 0, 1/(2 + λ))T . To satisfy the trust-region constraint, we then must have

1

(1 + λ)2
+

1

(2 + λ)2
= ∆2 =

25

144

which has a root λ = 2. Thus the required solution is −(1/3, 0, 1/4)T .

1(c). The Hessian is indefinite so the solution must lie on the boundary of the
constraint. The solution is then of the form −(1/(−2+λ), 0, 1/(−1+λ))T . To satisfy
the trust-region constraint, we then must have

1

(−2 + λ)2
+

1

(−1 + λ)2
= ∆2 =

25

144

which has a root λ = 5 (c.f. the previous equation with a change of variables λ̂ = λ+3)
at which B + λI is positive semi-definite. Thus again the solution is −(1/3, 0, 1/4)T .

1(d). Again B is indefinite, and so the solution must be of the form −(ω, 0, 1/(−1 +
λ))T , where ω = 0/(−2 + λ) can only be nonzero if λ = 2—note that B + λI is only
positive semi-definite when λ ≥ 2. Suppose that λ > 2. To satisfy the trust-region
constraint, we then must have

1

(−1 + λ)2
= ∆2 =

1

4

which has roots 1± 2. The desired root is λ = 3, from which we deduce the solution
is −(0, 0, 1/2)T .

1(e). As in (d), if we guess that λ > 2, we find that the roots of

1

(−1 + λ)2
= ∆2 = 2

are 1 ± 1/
√

2 < 2. So λ must be 2, and the solution is of the form −(ω, 0, 1)T . To
satisfy the trust-region constraint, we then must have

ω2 + 1 = ∆2 = 2,

and hence ω = ±1. Thus the required solution is −(±1, 0, 1)T .
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Solutions to exercises for Part 4.

1(a). The first-order optimality conditions (Theorem 1.8) are that x2 ≥ 0 (primal
feasibility),

(

x1

1

)

− y

(

0
1

)

= 0

and y ≥ 0 (dual feasibility), and y·x2 = 0 (complementary slackness). Dual feasibility
says that y = 1 and x1 = 0, from which we deduce that x2 = 0 from complementary
slackness. Second-order optimality conditions are simply that

s2

1 = (s1, s2)
T

(

1 0
0 0

)(

s1

s2

)

≥ 0

for all s 6= 0 for which s2 = 0 which are automatically satisfied. Thus the solution is
x = (0, 0) with Lagrange multiplier y = 1.

1(b). The logarithmic barrier function is

Φ(x, µ) = 1

2
x2

1 + x2 − µ log x2.

The first-order optimality conditions for the unconstrained minimization of Φ are
that

(

x1

1

)

− µ

(

0
x−1

2

)

= 0.

If we let x(µ) be the desired minimizer, the optimality conditions indicate that x(µ) =
(0, µ), while the Lagrange multiplier estimates are y(µ) = c(x(µ))/µ = 1. The
Hessian is positive definite

1(c). The Hessian matrix is
(

1 0
0 µx−2

2

)

;

at the minimizer of Φ(x, µ), the Hessian is

(

1 0
0 µ−1

)

.

The eigenvalues are 1 and µ−1. As µ goes to zero, one eigenvalue diverges to infinity,
while the other one stays fixed at 1.

1(d). The primal-dual system at x(µ) is

(

1 0
0 µ−1

)(

s1

s2

)

= −
[(

0
1

)

− µ̄

(

0
µ−1

)]
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Thus s1 = 0, while s2 = −µ + µ̄. In particular x(µ) + s = µ̄ = x(µ̄), the minimizer
of Φ(x, µ̄) !

2(a). The logarithmic barrier function is

Φ(x, µ) = xT g + 1

2
xT Bx − µ log(∆2 − xT x).

Its gradient is

∇xΦ(x, µ) = g + Bx +
2µ

∆2 − xT x
x,

and its Hessian is

∇xxΦ(x, µ) = B +
2µ

∆2 − xT x
I +

2µ

(∆2 − xT x)2
xxT .

2(b). The first-order optimality condition is that

(B +
2µ

∆2 − xT x
I)x = −g. (1)

If we define

λ(µ) =
2µ

∆2 − xT x
,

(1) is precisely the requirement

(B + λ(µ)I)x = −g

from Theorem 3.9. Moreover, λ(µ) > 0. However,

λ(µ)(∆2 − xT x) = 2µ

and we need µ to converge to zero to satisfy all of the first-order requirements in
Theorem 3.9.
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Solutions to exercises for Part 5.

1(a). We first need to check that sT Bs ≥ 0 when As = 0, as otherwise the solution
lies at infinity. In all cases B is diagonal, so we write B = diag(b11 b22 b33). It is
easy to see that the columns of the matrix

N =







1 0
−1 0
0 1







form a basis for the null-space of A, so we need to check that

NT BN =

(

b1 + b2 0
0 b3

)

is positive semi-definite. For our first example NT BN has all its eigenvalues at 1, so
the minimizer is finite. The minimizer satisfies











2 0 0 1
0 −1 0 1
0 0 1 0
1 1 0 0





















x1

x2

x3

y











=











1
1
1
2











which gives x = (−2, 4, 1) and y = 5.

1(b). In this case NT BN has eigenvalues 0 and 1, so there is a solution if and only if











1 0 0 1
0 −1 0 1
0 0 1 0
1 1 0 0





















x1

x2

x3

y











=











1
1
1
2











is consistent. The system gives x3 = 1, but then the remaining equations lead to
both −x2 + y = 1 and −x2 + y = −1. Thus the problem is unbounded from below.

1(c). In this case NT BN has eigenvalues −1 and 1, so the problem is unbounded
from below, and the solution lies at infinity.

2. The gradient of the augmented Lagrangian function at xk, yk, µk is

∇
x
Φ(x

k
) = g

k
+ AT

k

(

c
k

µk

− yk

)

.

The SQP search direction sk and its associated Lagrange multiplier estimates yk+1

satisfy

B
k
s

k
− AT

k
y

k+1 = −gk (2)
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and
Aksk = −ck. (3)

Premultiplying (2) by sk and using (3) gives that

sT

k
g

k
= −sT

k
B

k
s

k
+ sT

k
AT

k
y

k+1 = −sT

k
B

k
s

k
− cT

k
y

k+1 (4)

Likewise (3) gives
1

µk

sT

k
AT

k
c
k

= −‖c
k
‖2

2

µk

. (5)

Combining (4) and (5), and using the positive definiteness of Bk, the Cauchy-Schwarz
inequality and the fact that sk 6= 0 if xk is not critical, yields

sT

k
∇

x
Φ(x

k
) = sT

k

[

g
k
+ AT

k

(

c
k

µk

− yk

)]

= −sT

k
B

k
s

k
− cT

k
(y

k+1 − yk) −
‖c

k
‖2

2

µk

< −‖c
k
‖2

(

‖c
k
‖2

µk

− ‖y
k+1 − yk‖2

)

≤ 0

because of the required bound on µk.


