Part 3: Trust-region methods
for unconstrained optimization

Nick Gould (RAL)

minimize  f(x)
zelR"

LINESEARCH VS TRUST-REGION METHODS

© Linesearch methods
o pick descent direction py
o pick stepsize ay, to “reduce” f(zy + apy)
© Tyl = T + Ok
® Trust-region methods
o pick step s; to reduce “model” of f(zj + )
o accept L1 = x)+s;, if decrease in model inherited by f(xy+sy)

o otherwise set xp 1 = xp, “refine” model

UNCONSTRAINED MINIMIZATION

minimize f(z)
z€R"

where the objective function f : IR" — IR

© assume that f € C! (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary

TRUST-REGION MODEL PROBLEM

Model f(zy, + s) by:
® linear model

mi(s) = fr+s" g
© quadratic model — symmetric By,

3%@ = fr+ s gp + Wmﬂm»m

Major difficulties:
© models may not resemble f(z; + s) if s is large
© models may be unbounded from below

o linear model - always unless g, = 0

o quadratic model - always if By, is indefinite,
possibly if By is only positive semi-definite



THE TRUST REGION

Prevent model my(s) from unboundedness by imposing a

trust-region constraint
[Isll < A

for some “suitable” scalar radius A, > 0
= trust-region subproblem

approx minimize my(s) subject to ||s]| < Ag
sEIR™

© in theory does not depend on norm || - ||

® in practice it might!

BASIC TRUST-REGION METHOD

Given k =0, Ay > 0 and z, until “convergence” do:
Build the second-order model m(s) of f(xy + s).
“Solve” the trust-region subproblem to find s
for which m(sy) “<” fi and ||sg]] < Ay, and define

PR AR
fr—mu(se)

If pr > 1, [very successful]

set Tpy1 = T + 5 and Ap = 1Ay

Otherwise if p; > 1, then [successful] |0 <n, <7, <
set Tp1 = xp + sp and Apy = Ay

Otherwise [unsuccessful]

set k1 = xp and Ap 1 = A 0<y <

Increase k by 1
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OUR MODEL

For simplicity, concentrate on the second-order (Newton-like) model
my(s) = Smﬁmv = fr+ mﬂ@a + wmﬂmwm
and any trust-region norm || - || for which
Bl T <A M2 < sl -l
for some k; > kg >0
Note:
o By = Hj is allowed
® important norms in IR"
ol M-l < -1l (M)
_1
en2l[- [ <[l -k
ol Moo < M-Iz < nll - oo

“SOLVE” THE TRUST REGION SUBPROBLEM?

At the very least

® aim to achieve as much reduction in the model as would an iteration

of steepest descent
® Cauchy point: si = —ajg;, where

af = arg min my(—ag;,) subject to allg;ll < A,
a>0

= arg min my,(—ag;,)
0<a<Ap/lgkl

o minimize quadratic on line segment = very easy!
© require that

my(s.) < my(sg) and [[s; ]| < A,

® in practice, hope to do far better than this



ACHIEVABLE MODEL DECREASE

Theorem 3.1. If my(s) is the second-order model and sf is its
Cauchy point within the trust-region [|s| < Ay,

fr = mi(si) = 3llge]l2 min

Case (i)

gIB.g, <0& a>0=

my(—agy) = fr. — allgill3 + 129 Bugr < fr — allgill3 (1)

Cauchy point lies on boundary of the trust region =

) A,
af = —k (2)
llgll
(1) +(2) =
(¢} 2 D\ﬁ 1
fo —my(sy) > __Sa__m_g: > KllgrllaAr > skl gkl Ak

since ||gkll2 > Ksl|gk]|-

PROOF OF THEOREM 3.1

mi(—agy) = fi — allgill3 + 1o’ gi By,
Result immediate if g = 0.
Otherwise, 3 possibilities

(i) curvature gf B,.g, < 0= my(—agy) unbounded from below as «
increases = Cauchy point occurs on the trust-region boundary.

(i) curvature gf By.g; > 0 & minimizer my(—agy) occurs at or beyond
the trust-region boundary = Cauchy point occurs on the trust-
region boundary.

(iii) the curvature g} B,g, > 0 & minimizer my(—agy), and hence
Cauchy point, occurs before trust-region is reached.

Consider each case in turn;

Case (ii
ap @ arg min my(—ag) = fi — allgill3 + 1’9l Bug,  (3)
- loxl3 A
* 9klla c k
Qw = T N Qw = AR.C
Q\ka.@w :.S,:
—
afgt Brgr, < llgrll3- (5)

(3) + (@) + 5) & llgell2 = rsllgell =

Je —my(sy) = Qm.__mw__w - ﬁ@m@mm»,ﬁ. > WQNZQL_W
2 A
— 1
= 89,13

Toell > 3R llgrlla A



Case (iii

llgkll3
mmm»mw

aillgell3 + 3(ai)*gi Brgy
lgellz —, llgxllz
ﬂmﬁm M,Swm»_,sﬂ
__$__
m»m
Tlals
L+ (1Bl

a
=~
Il

Je — my(s),

Vv

where
195 Brgil < Nlgill3l1Billa < Ngill3(1 + [1Byll2)

because of the Cauchy-Schwarz inequality.

DIFFERENCE BETWEEN MODEL AND FUNCTION

Corollary 3.2. If my(s) is the second-order model, and sy, is an
improvement on the Cauchy point within the trust-region ||s||
Ap,

[lgrll2

. — my(se) > MHlgr|ls min |[—F——
fre = mu(sk) > llgrlle T (Bl

ZmDL .

Lemma 3.3. Suppose that f € C?, and that the true and model
Hessians satisty the bounds || H (x)||2 < &y, for all 2 and || Byl < &y
for all k and some x;, > 1 and k; > 0. Then

|f (@), + 51,) — my(sp)| < KalAF,

where kg = 1k} (K), + k), for all k.

PROOF OF LEMMA 3.3
Mean value theorem =—-

fr+ i) = flan) + spVaf (k) + b5t Ve f (Ex) sk
for some & € [z, x) + sg]. Thus

| f(r+ s1) — my(sp)| = 3|sEH (E)se — sf Bsi| < 3|sEH(E)sk] + st Brsk
Ykn + ko)l|skll3 < 37k + mo)llsill3 < wa}

IN

using the triangle and Cauchy-Schwarz inequalities.



ULTIMATE PROGRESS AT NON-OPTIMAL POINTS

Lemma 3.4. Suppose that f € C?, that the true and model Hes-
sians satisfy the bounds [|Hy|l2 < kp, and || By||2 < &y for all k& and
some K, > 1 and k, > 0, and that kg = k7 (k, + K;). Suppose
furthermore that g; # 0 and that

1 Emﬁ - ch
Ks(kn+ Kp) 2kqg

A < | gk |2 min

Then iteration k is very successful and

D\T: > Dk.

RADIUS WON’T SHRINK TO ZERO AT NON-OPTIMAL
POINTS

Lemma 3.5. Suppose that f € C2, that the true and model Hes-
sians satisfy the bounds || Hy||2 < kp, and || Bg||2 < &y for all k& and
some K, > 1 and k, > 0, and that kg = k7 (k, + K;). Suppose
furthermore that there exists a constant € > 0 such that ||gx|[2 > €
for all k. Then

1 1—mn,
A > ke def €Yg Min , fis( )
Ks(Kp + Kp) 2K4

for all k.

PROOF OF LEMMA 3.4
By definition,

L+ ||Billz < ki + K
+ first bound on A, =

lowl: ol

WAVIES .
s=h = Ky + Ky HuT__.W\ﬁ__w
Corollary 3.2 =

[|gk|2
1+ || Bgl2
+ Lemma 3.3 + second bound on A, =
(1 + sx) — mu(si) KA} _ 264 Ay

Jie = mu(sk) Bsllgrll2Ae K [lgkll2

= pi > 1Ny = iteration is very successful.

& — mi(Sk) = §||gk||2 min s KsQp| = 5Ks|| k|2
f (sk) > 8llgsll Ag| = 3ks grll2A

=1 = <2

MH|Q\?.

PROOF OF LEMMA 3.5
Suppose otherwise that iteration k is first for which

D»{I < Re.

Ay > Ay = iteration k unsuccessful = v;A, < Agpy1. Hence

1 (1—m,
Ay < mba:ﬁ , Fis( 5&
Ks(kp + Kp) ww&A v
. 1 Ks(1 —my u
< ¢||2 MIN ,
< llgll> hm%? + Kp) 2K4

But this contradicts assertion of Lemma 3.4 that iteration & must be
very successful.



POSSIBLE FINITE TERMINATION

Lemma 3.6. Suppose that f € C?, and that both the true and
model Hessians remain bounded for all k. Suppose furthermore that
there are only finitely many successful iterations. Then x} = z, for
all sufficiently large k and g(z,) = 0.

GLOBAL CONVERGENCE OF ONE SEQUENCE

Theorem 3.7. Suppose that f € C?, and that both the true and
model Hessians remain bounded for all £. Then either

g1 =0 for some [ >0

or
lim fr = —o0

k—o0

or
liminf || gx|| = 0.

k—o00

PROOF OF LEMMA 3.6
md.\ﬁo‘__vw = .\Hwo‘__yH = Ty

for all 7 > 0, where kg is index of last successful iterate.
All iterations are unsuccessful for sufficiently large k = {A;} — 0

+ Lemma 3.4 then implies that if ||gp,+1]] > 0 there must be a successful
iteration of index larger than ko, which is impossible == ||gp,+1]| = 0.

PROOF OF THEOREM 3.7

Let S be the index set of successful iterations. Lemma 3.6 => true
Theorem 3.7 when |S] finite.

So consider |S| = oo, and suppose f bounded below and

lgkll2 > € (6)

for some € > 0 and all £, and consider some k € S.
+ Corollary 3.2, Lemma 3.5, and the assumption (6) =

. €
\.\A - .\.kt N dmtﬁa - Skmm\av_ W %m nWm dem min |———, Kgke
1+ Ky
— A
Jo— 1= Wocm. — fir1] = oude,
JES

where oy, is the number of successful iterations up to iteration k. But

lim o} = 4o00.

k—o00

= fi unbounded below = a subsequence of the ||gg|l2 — 0



GLOBAL CONVERGENCE

Theorem 3.8. Suppose that f € C?, and that both the true and

)

model Hessians remain bounded for all £. Then either

g1 =0 for some [ >0

or
lim fr, = —o0
k—o00
or
lim g, = 0.
k—o00
llgxl
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L]
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Figure 3.1: The subsequences of the proof of Theorem 3.8

PROOF OF THEOREM 3.8
Suppose otherwise that fj is bounded from below, and that there is a
subsequence {t;} C S, such that

lgt;ll2 = 2¢ >0 (7)
for some € > 0 and for all ¢. Theorem 3.7 = 3{¢;} C S such that
llgrll > € for t; <k < {; and g2 <e. (8)
Now restrict attention to indices in

\ﬂﬁm\am%_ﬁm\@A@w

As in proof of Theorem 3.7, (8) =

€
LAY 9
1+ k) & L A )

forall k€ K= LHSof (9) — 0 as k — 0o =

fr = fes1 = 05l fi — mu(si)] > Ingemin

»:5 Ar=0
ek
— M
A < e = fre)-
€Nshis
for k € IC sufficiently large =
SIH N\NIH M
e, =zl < X log— 2l £ X Ay < [fi, = fel- (10)
Jj=t; J=t; €TsKs
jex Jje

for 4 sufficiently large.
But RHS of (10) — 0 = ||z, — x¢,|| — 0 as i tends to infinity
+ continuity = ||, — g4,|| — 0.



Impossible as ||g:, — gs,|| > € by definition of {¢;} and {¢;} = no II: SOLVING THE TRUST-REGION SUBPROBLEM
subsequence satisfying (7) can exist.

(approximately) minimize ¢(s) = s*g + 1sT Bs subject to ||s|| < A
selR"

AIM: find s, so that

q(se) < q(s%) and [|s.]| <A

Might solve
© exactly = Newton-like method

© approximately = steepest descent/conjugate gradients

THE /,-NORM TRUST-REGION SUBPROBLEM PROOF OF THEOREM 3.9
Problem equivalent to minimizing q(s) subject to 1A? — 1sTs > 0.
minimize q(s) = s'g + 1s" Bs subject to ||s]la < A Theorem 1.9 —>
selR q + m%% = |v/*%* AH_,HV
Solution characterisation result: for some Lagrange multiplier A, > 0 for which either A\, = 0 or ||s.|]2 =

A (or both). It remains to show B + \.I is positive semi-definite.

If s, lies in the interior of the trust-region, A, = 0, and Theorem 1.10
= B+ M\ = B is positive semi-definite.

If ||sill2 = A and A\, = 0, Theorem 1.10 = vTBv > 0 for all

(B+Ad)s. = —g, veN; ={v|slv>0}. Ifo ¢ Ny = —veN, = vIBv>0for

where B+ \. [ is positive semi-definite, A\, > 0 and A\ (]|s.|l2—A) = all v. o .

Only remaining case is where [|s.]|2 = A and A, > 0. Theorem 1.10
= vI(B+\1)v >0 forallv € Ny = {v|slv =0} = remains to
consider v Bv when s'v # 0.

Theorem 3.9. Any global minimizer s, of q(s) subject to ||s||2 <
A satisfies the equation

0. If B 4 A\ is positive definite, s, is unique.
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Figure 3.2: Construction of “missing” directions of positive curvature.

ALGORITHMS FOR THE /,-NORM SUBPROBLEM
Two cases:
© B positive-semi definite and Bs = —g satisfies ||s]|s < A =
Sy =5
© B indefinite or Bs = —g satisfies ||s]]s > A
In this case
o (B4+M\I)s, = —gand s''s, = A?
o nonlinear (quadratic) system in s and A

o concentrate on this

Let s be any point on the boundary § R of the trust-region R, and let
w =8 — S,. Then

—w's, = (5, — 8)7s, = 1(s, — 5)7 (5, — 5) = lw'w (12)
since [|s]l2 = A = [[si]]2- (11) + (12) =

q(s) — q(s.) = wl(g + Bs.) + lw! Bw
= —Aaw!s, + lw! Bw = Wgﬂmm + AN J)w,

= w! (B + M\.J)w > 0 since s, is a global minimizer. But

(13)

sty

vEIR

S=8,—2

vl
= (for this s) w|jv = vI(B+ A\1)v > 0.

When B + A, is positive definite, s, = —(B + M) lg. If s, € 0R
and s € R, (12) and (13) become —w’s, > Llww and ¢(s) > q(s.) +
1wT(B + A\)w respectively. Hence, g(s) > q(s,) for any s # s,. If
Sy 1s interior, A, = 0, B is positive definite, and thus s, is the unique
unconstrained minimizer of ¢(s).

EQUALITY CONSTRAINED ¢,-NORM SUBPROBLEM

Suppose B has spectral decomposition
B=U"AU
o U eigenvectors
© A diagonal eigenvalues: A\ < X < ... < A,
Require B + Al positive semi-definite = A > —\;

Define
s(\)=—(B+Al)g
Require
D) E [ls(V)][3 = A7
Note (vi = e/ Ug)

2
—WUTA 2D Uall2 = 3 Vi
V) = T Al = &



CONVEX EXAMPLE

A
b(A
s 100 0
251 B= 0200
0030
000 4
20]
solution curve
15] 1
1
10{ 9=11
1
5
0 . . . . . ( " >
-6 -5 -4 -3 -2 -1 0 1 2 3 4 A
THE “HARD” CASE
-2 000
B= 0 -1 00
0 00O
0 001
~—— minus leftmost eigenvalue
0
|1
9711
no root larger than 2 1
L root near 2.2

NONCONVEX EXAMPLE

A

B=

minus leftmost eigenvalue

SUMMARY

For indefinite B,
Hard case occurs when ¢ orthogonal to eigenvector uy
for most negative eigenvalue A

o OK if radius is radius small enough

©® No “obvious” solution to equations ...but
solution is actually of the form

Slim + oU1
where
° Stim = lim, 4 A s(\)

_,

© :m:E + Q::;__w =A

—os e e

o o o O

= o O O



HOW TO SOLVE |s(\)[]z = A

DON'T!
Solve instead the secular equation
1 1
BN
[s(M]l2 A

® 1o poles

© smallest at eigenvalues (except in hard case!)

© analytic function = ideal for Newton

© global convergent (ultimately quadratic rate except in hard case)

® need to safeguard to protect Newton from the hard & interior
solution cases

NEWTON’S METHOD FOR SECULAR EQUATION
Newton correction at A is —@(A)/¢'(N). Differentiating

1 1 1 1
%T__mcz_w AT (sT(Ws(A)2 - A

sT(AN)Vas(N) sT(N)Vas(\)

N == st = sl

Differentiating the defining equation
(B+M)s(\) = —g = (B +M)Vys(\) +s(\) = 0.
Notice that, rather than Vs(X), merely
sTNVAs(A) = —sT(N)(B + AN 's(N)
required for ¢/()\). Given the factorization B + A = L(A\)LT()\) =

sTO)(B + A1) Ls(A\) = sT(AN)LT(A) L1 (A)s(A)
= (L7 Ns)) (L N)s(N) = [lw(M]3

where L(A)w(X) = s(\).

THE SECULAR EQUATION

>

NEWTON’S METHOD & THE SECULAR EQUATION

Let A > —A; and A > 0 be given
Until “convergence” do:
Factorize B + Al = LL"
Solve LL"s = —g
Solve Lw = s
Replace A by

e =) (118
A |
A el




SOLVING THE LARGE-SCALE PROBLEM

® when n is large, factorization may be impossible
© may instead try to use an iterative method to approximate

o Steepest descent leads to the Cauchy point
o obvious generalization: conjugate gradients ... but

> what about the trust region?

> what about negative curvature?

CRUCIAL PROPERTY OF CONJUGATE GRADIENTS

CONJUGATE GRADIENTS TO “MINIMIZE” q(s)

Given s =0, set g =¢,d" = —gand i = 0
Until ¢° “small” or breakdown, iterate

o’ = |lg|3/a T Ba

sl = ¢ 4 il

g+l = ¢ + o' Bd’

8 = g3/}

&il _ |QN+H + Qs&s

and increase ¢ by 1

Theorem 3.10. Suppose that the conjugate gradient method is
applied to minimize q(s) starting from s° = 0, and that d’ ¥ Bd’ > 0
for 0 <4 < k. Then the iterates s/ satisfy the inequalities

Is7ll2 < lls”*l2

for0<j<k—-1

Important features
© g/ =Bs +gforal j=0,... i
o dTgtt =0forallj=0,...,i

o g lgtl=0foralj=0,...,3

PROOF OF THEOREM 3.10
First show that

dTg — :,QN__W:%__M >0 (14)
lg?ll3" 2
for all 0 < 57 < ¢ < k. For any 4, (14) is trivially true for j = 4.

&Tl

Suppose it is also true for all ¢+ <. Then, the update for gives

Ig'*'15, ¢

19'l13
Forming the inner product with d’, and using the fact that &/ 7 ¢'*! = 0

forall 7 =0,...,1, and (14) when j = [, reveals

&IVH _ |.QN+H +

j
dTg = g Tgi lg +:_W&N T i

iz B g
B i 1 A e i PV

19'115 1197113 197(13
Thus (14) is true for ¢ <[+ 1, and hence for all 0 < j <17 < k.




Now have from the algorithm that
= U
s=s+ ¥ dd =% odd
j=0 j=0
as, by assumption, s' = 0. Hence
R A U A R
s Td = N_MD JTd = @,Mo & Td >0 (15)
Jj= Jj=

as each o/ > 0, which follows from the definition of o/, since &/ " Hd’ >

0, and from relationship (14). Hence

573 = s Tt = (s +o\.%vﬂ (s + aid’)
= s Tsi 420051 Td + ol 2d' Td > ' st = |12

follows directly from (15) and o’ > 0 which is the required result.

HOW GOOD IS TRUNCATED C.G.?

In the convex case . .. very good

Theorem 3.11. Suppose that the truncated conjugate gradient
method is applied to minimize ¢(s) and that B is positive definite.
Then the computed and actual solutions to the problem, s, and s},
satisfy the bound

q(s+) < a(s)

In the non-convex case ... maybe poor

© eg., if g =0 and B is indefinite = ¢(s.) =0

TRUNCATED CONJUGATE GRADIENTS

Apply the conjugate gradient method, but terminate at iteration 4 if
1. d"TBd’ < 0 = problem unbounded along d'
2. ||s' 4+ a’d'||ls > A = solution on trust-region boundary

In both cases, stop with s, = s’ + a®d’, where o® chosen as positive

root of
:% + Qm%__w =A

Crucially
als.) < q(s9) and [s.]ls < A

= TR algorithm converges to a first-order critical point

WHAT CAN WE DO IN THE NON-CONVEX CASE?

Solve the problem over a subspace

© instead of the B-conjugate subspace for CG, use the equivalent
Lanczos orthogonal basis

o Gram-Schmidt applied to CG (Krylov) basis D
o Subspace Q' = {s | s = Q's, for some s, € IR'}
o @' is such that
Qﬁ. HQ& — 7 and QN. HmQ& _ \.Né
where T" is tridiagonal and Q' Tg = ||g||2 €1
o Q' trivial to generate from CG D’



GENERALIZED LANCZOS TRUST-REGION METHOD

s' = arg min ¢(s) subject to ||s[s < A
seQl
— s' = Q's}, where
s, = arg min [|g|, Sﬁwg + meﬂm

p subject to [|s ][, < A
memmua

q

© advantage T has very sparse factors = can solve the problem
using the earlier secular equation approach

© can exploit all the structure here = use solution for one problem
to initialize next

© until the trust-region boundary is reached, it is conjugate gradients
= switch when we get there



