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Algorithm 1 Choose a starting point zg € R™ and a tolerance
parameter ¢ > 0. Set k= 0.

S1 If ||Vf(z)|| < e then stop and output z; as an approximate
minimiser.

S2 Choose a search direction dj, € R™ such that (Vf(xz}),d;) < 0.
S3 Choose a step size ai, > 0 such that f(z, + ardy) < f(zr).

S4 Set x4 =z + aidy, replace k by £+ 1, and go to S1.

We continue to consider the unconstrained minimisation problem

LIRS

In Lecture 2 we considered line-search descent methods:

We proved a convergence result which only required that
e d; is a descent direction; (V f(z),d;) <O,
e a line-search has to be used.

Since we already discussed the issue of choosing a step length
ay, (remember the Wolfe conditions?), we can now concentrate
on methods to compute good search directions dj,.



Steepest Descent: This choice of search direction was already
motivated and discussed in Example 2 of Lecture 2:

dr, = =V f(zp).
e Intuitively appealing.
e Easy to apply, —Vf(z) "cheap” to compute.

e 0(—Vf(xy),dr) =0 in this case, and Theorem 2 of Lecture 2
implies convergence.

The second condition implies that the ordered eigenvalues of
D2f(z*) satisfy

The ratio k 1= % is called the condition number of D2f(z*). If

Kk is large, then z* lies in a ""long narrow valley” of f.

Once the steepest descent method enters this valley, it just
bounces back and forth without making much progress when
Kk is large:

Regrettably, the method has major disadvantages:
e Badly affected by round-off errors.

e Badly affected by ill-conditioning, convergence can be excru-
ciatingly slow due to excessive zig-zagging.

To illustrate this, let z* be a strict local minimiser of f and sup-
pose that the sufficient first and second order optimality condi-
tions hold, i.e.,

Vf(z*) =0, D2 f(z*) > 0.

Proposition 1: Let xg be a starting point and let the sequence
(z)N be produced by

Tp41 = o — . Vf(xg),

where «y, corresponds to an exact line-search (see Lecture 2).
Then

k—1
|zpp1 — 2" =~ H—Ilka; —

for all k large.



Coordinate Search: This method is even simpler, as the search
direction cycles through the coordinate axes:

dkzei, i1=14+k modn.
e Even cheaper, as d; does not have to be computed at all.

e Convergence even worse than steepest descent.

e Therefore, if zj, is close to z*, then it is reasonable to expect
that the solution

-1
Thp1 =k — (D?f(wp)) ~ VI(zp)
of the linearised system of equations ¢(x) = O lies even closer
to z*.

o ny(xy) = —(DQf(mk))_lvﬂxk) is called the Newton direc-
tion.

Newton Methods: This approach is motivated by the first or-
der necessary optimality condition Vf(z*) = 0 and works when
D2f(z) is non-singular for z in a neighbourhood of z*.

e Idea: replace the nonlinear root-finding problem Vf(z) = 0
by a sequence of linear problems which are easy to solve.

e Linearisation: given xp, the first order Taylor approximation

v o(z) = Vf(x) + D2 flap) (@ — z1),
approximates the nonlinear (vector valued) function z —
Vf(x) well in a neighbourhood of zy.

Newton-Raphson method: given a starting point xzq, apply exact
Newton steps

Tp41 = T + nyg(zg).

e n¢(z) is a descent direction when D2f(z) - O:

(np(@), V(@) = ~(Vi@) T (D2 (ap)) Vf(zp) <0,

since D2f(z) = 0 = (D2f(z))~! = 0. In particular, this
happens when f is strictly convex (see Lecture 1).

o If D2f(x) O then ny(z) may not be a descent direction and
the method may converge to any point where Vf(z) = 0O,
which could be a minimiser, maximiser or saddle point.



e Examples can be constructed on which the method cycles
through a finite number of points, that is, zy4; = =z for
some k,j € N, and the method does not converge.

e However, when xq is chosen sufficiently close to x* where the
first and second order optimality conditions for a minimiser
hold, then the convergence is Q-quadratic, see Theorem 1
below.

Dampened Newton method:

e Uses the following search direction in Algorithm 1,

4= {nfm) if (ny(ap), VF(21)) <0,
—nys(zy)  otherwise.

e the line-search step length o should asymptotically become
1 (i.e., full Newton step taken) if the fast convergence rate
of the Newton-Raphson method is to be picked up.

Conclusions:

e Newton’'s method is great for the minimisation of convex
problems (or the maximisation of concave problems).

e Since f is typically strictly convex in a neighbourhood of a
local minimiser z*, it is great to switch to Newton's method
in the final phase of an algorithm that otherwise relies on a
line-search descent method.

Example 1: Linear Programming. Consider the linear pro-
gramming problem

max CTZL'

zER”™
s.t. Ax <b,

xz > 0.

Here A € R™*" (a m x n matrix with linearly independent rows),
b € R™ and ¢ € R™ are all given, and z € R"™ is the vector of
decision variables.

T
Let 4 >0 and e = [1 1] .



At the heart of interior-point methods for linear programming
lies the solution of the nonlinear system of equations

Ar =1b (1)

ATy +s=c¢ (2)
XSe = pe 3)
x,s > 0, (4)

where z,s € R", y € R™, X = Diag(xz) and S = Diag(s) are the
diagonal matrices with = and s on their diagonals, and where
z,s > 0 means that both vectors have to be component-wise
strictly positive.

In order to guarantee that (4) continues to be satisfied, we use
(Az, Ay, As) as a search direction and determine an updated
approximate solution (z4,y4,s4) as follows:

o =sup{a>0: x4+ alAzx >0, s+ als > 0},
(x_|_,y_|_, S+) = (I,y,S) + min(la 0990[*)(A$, Ay) AS)

It can be shown that the resulting sequence of intermediate so-
lutions converges very efficiently to (z*, y*, s*).

It can be shown that the system (1)-(4) has a unique solution
(=*, %, s%).

Given a current approximate solution (z,¥,s) such that z,s > 0,
we can compute a Newton step (Az, Ay, As) for the uncon-
strained system (1)-(3) which is obtained by solving the linearised
system of equations

AAx =0b— Ax
ATAy—l—As:c—ATy—s
SAzx + XAs = pe — XSe.

Theorem 1: Convergence of Newton-Raphson.

Let f € C2(R™ R) with A-Lipschitz continuous Hessian. Let
z* € R™ be such that Vf(z*) = 0 and D2f(z*) nonsingular. Then
there exists a neighbourhood B,(z*) with the property that zg €
By(z*) implies zj € By(a*) for all k, and zp, — =* Q-quadratically.



Proof:

e D2f(z*) nonsingular, z — D2f(z) continuous = 35 > 0 such
that D2f(x) nonsingular for all = € Bz(z*) and ng(z) well-
defined.

e Moreover, z — (D2f(z))~1 is continuous, thus can choose p
sufficiently small so that

(D2 f(2)) 7t < 2| (D2 f (=) =: 8. (5)

e The Newton update implies

(zp1 — %) = (z), — ) — (D3 f(23)) "V f(p). (6)

e Lipschitz continuity of D2f implies
1
181 < [ IDf(ex) = D2f(ta + (1 = )t

< [2 Al — 2l = 2l 2%
T — X = — [T — X ||.
= Ji—o k 2 k

e Substituting this and (5) in (8),

BA
lzgn = ol < g — 2|2 (9)

e Finally, for p := min(p,2(8A)~1), (9) shows that

z) € Bp(z™) = z € Bp(az™),

so that the entire sequence (zj)y is well defined as long as
zo € Bp(x™*).

e Using Vf(z*) =0, find

Vi) = Vi@ -G = [L D[ (1 n) (e

e Substituting into (6),

(g1 — ) = (D2 () 7S (ay, — a*), )
where

1
S = D2f(x}) — /t:o D2f(ta* 4+ (1 — t)a)dt

1
= /t—O D?f(xy) — D?f(ta* + (1 — t)zp)dt.

e Taking norms on both sides of (7),
lzkg1 — 2% < 1D @) % [1S] % lzg — ¥ (8)

Reading Assignment: Download and read Lecture-Note 3.

Note: From now on all lectures are in Comlab 147.



