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Definition 1: Let z* € R™ be a feasible point for (NLP) and let
x € C2<(—e,e),R"> be a path such that
z(0) = z¥,
d:=2a(0) # 0
=—x ,
dt

gi(z(t)) =0 (i € &t € (—¢,€)),
gi(z(t)) >0 (i eZ,tel0,e)).

(1)

Thus, we can imagine that z(t) is a smooth piece of trajectory
of a point particle that passes through z* at time ¢t = 0 with
nonzero speed d and moves into the feasible domain.

We call z(t) a feasible exit path from z* and the tangent vector
d= %x(o) a feasible exit direction from z*.

We again consider the general nonlinear optimisation problem

(NLP) min f(x)
reER"
s.t. gi(z) =0 (1€&),
9i(z) >0 (i €I).

We will now derive second order optimality conditions for (NLP).

For that purpouse, we assume that f and the g; (1 € EUZI) are
twice continuously differentiable functions.




The second order optimality analysis is based on the following
observation:

If z* is a local minimiser of (NLP) and z(t) is a feasible exit path
from z* then z* must also be a local minimiser for the univariate
constrained optimisation problem

min f(z(t))
st. t>0

Before we start looking at such problems more closely, we de-
velop an alternative characterisation of feasible exit directions
from z*.

On the other hand, if the LICQ holds at z* then Lemma 1 of
Lecture 9 shows that (2) implies the existence of a feasible exit
path from z* such that

%x(O) =d, (3)
gi(z() = td"Vgi(z*) (i € EUA(zY). (4)

Thus, when the LICQ holds then (2) is also a sufficient condition
and hence an exact characterisation for d to be a feasible exit
path from z*.

Definition 1 implies

dg — ;
dTVg(a*) = %gi(zc(t))hzo = {dto 0 (i€é),

Therefore, the following are necessary conditions for d € R" to
be a feasible exit direction from z*:

d#0,
dTVgi(z*) =0 (i€é), (2)
d"Vgi(x*) >0 (j € A@M)).

Second Order Necessary Optimality Conditions

Let z* be a local minimiser of (NLP) where the LICQ holds. The
KKT conditions say that there exists a vector A\* of Lagrange
multipliers such that
DL L(z*,\*) =0,
N>0 (el
Ma(@) =0 (ieEuD), (5)
g;(z*) >0 (j €I,
9/(z") =0 (i€é),
where L(z,\) = f(x) — 3 ; N\;g; is the Lagrangian associated with
(NLP).

lim,_, oy 2&t)=0 > g (i € A(z*)).



Now let z(t) be a feasible exit path from z* with exit direction
d, and let us consider the restricted problem

min f(z(t))
s.t. t>0 (6)

Since z* is a local minimiser of (NLP), ¢ = 0 must be a local
minimiser of (6).

By Taylor's theorem and the KKT conditions,
f@@®) = f(a*) + td " Vf(z*) + O(t?)
=f(@*) +t Y AfdTVg;(z*) + O(#?).

=1

Case 1: there exists an index j € A(z*) such that dTVg;(z*) > 0.

Then forall 0 <tk 1,

fl@@®) =f@@*) +t Y Njd Vgi(a*) + O(t?)

i=1
> f(z*) 4 tAjd" Vg;(a*) + O(t?)
> f(z*).

Thus, in this case f strictly increases along the path z(t) for

2
small positive ¢t even if C‘é—zf(m(o)) was negative. Because of the

constraint g;, nothing can be said about the D2 f(z*)d.

We thus wish to show that for small t > 0O,

+3° MdTVgi(") + 0(%) > 0. (7)

=1

Note that
MdTVgi(z*) =0 (ie&UT\ A(?)),

so that these terms can be omitted from (7).

But what about indices j € A(z*)? We have to distinguish two
different cases:

Case 2:
MNdTVgi(z*) =0 (GieZUE). (8)

In this case the above argument fails to guarantee that f locally
increases along path z(t). We only know that d/dt f(«(0)) = 0,
that is, =* is a stationary point of (6).

But this might very well be a Iocalzmaximiser of the restricted
problem. Second order derivatives %f(x(o)) now decide whether
t = 0 is a local minimiser of the restricted problem (6), vielding

additional necessary information in this case!



Theorem 1: 2nd Order Necessary Optimality Conditions.
Let z* be a local minimiser of (NLP) where the LICQ holds. Let
A* € R™ be a Lagrange multiplier vector such that (z*, \*) satisfy
the KKT conditions. Then we have

d" Dy l(z*, X )d >0 (9)

x2

for all feasible exit directions d from z* that satisfy (8).

x1

e Therefore, Taylor's theorem implies

Proof: fx(t)) = L(z*,\*) + tDg L(x*, \*)d
t2 d?
+ —(dTDmL‘(az*, M)d + DoL(z*, )\*)—Qac(O)) + 03
e Let d # 0 satisfy (2) and (8), and let z € 02((—6, e),R”) be 2 ) dt
a feasible exit path from z* corresponding to d. KKT f(z*) + t_dTDmxﬁ(x*’A*)d+ o).
2
e Then e If it were the case that d Dy, L(z*, \*)d < 0 then f(z(t)) <
(4) m (8) * .. . . .
E(x(t),)\*) 2 f((t)) — Z )\;ﬁthvgi(x*) 2 r(a(D)). f(z*) for all t sufficiently small, contradicting the assumption

i=1 that z* is a local minimiser. Therefore, it must be the case
that d ' DypL(z*, \*)d > 0. O



Sufficient Optimality Conditions:

In unconstrained minimisation we found that strengthening the
second order condition D2f(z) > 0 to D2f(z) > O led to sufficient
optimality conditions.

Does the same happen when we change the inequality in (9) to
a strict inequality? Our next result shows that this is indeed the
case.

Theorem: Sufficient Optimality Conditions.
Let (z*,2*) € R®" xR™ be such that the KKT conditions (5) hold,
the LICQ holds, and

d" DpaL(z*,\)d > 0
for all feasible exit directions d € R™ from z* that satisfy
NdTVgi(z*) =0 (GieZU&).

Then z* is a strict local minimiser.

There are two issues that need to be addressed in the proof:

e The first is that z* is a strict local minimiser for the restricted
problem (6). This is easy to prove using Taylor expansions.

e The second, more delicate issue is to show that it suffices to
look at the univariate problems (6) for all possible feasible
exit paths from z*.

Proof:

e Let us assume to the contrary of our claim that z* is not a
local minimiser.

e Then there exists a sequence of feasible points (z};)y such
that limy_ .z, = =* and

flp) < f(@") VEkeN. (10)

e The sequence Hz:i:ii\l lies on the unit sphere which is a com-
pact set. The Bolzano—Weierstrass theorem therefore im-
plies that we can extract a subsequence (zy)ien, ki < kj



(i < ), such that the limiting direction d := lim_, d, ex-
ists, where and hence is a feasible exit direction:

J— * . . —_ . *
4, = kT dTVg(«*) = lim 9;(@i) — 9;(=") g{k(x )
b ey — 2| i—oo ||z — ¥
lim; .00 =0 (J € &),
=9 g;(z;)—0 :
e Since d lies on the unit sphere we have d # 0. Replacing the iMoo Yz =z 2 O (j € A(z")).

old sequence by the new one we may assume without loss of

generality that k; = i. e By Taylor's theorem,

F@®) > fzp) = f@) + llog — ¥V f(2*) Tdy + Oz, — =*||?).

Therefore,

e Let us check that d satisfies the conditions

d# 0,
dTVgi(z*) =0 (i€é), (11) Vi) Td= lim Vf(z")"d; <. (12)

dTVg;(z*) >0 (j € A@")).

e On the other hand,

e On the other hand, the KKT conditions and (11) imply F@*) > ()
T * & * 3T KKT L * . * .
d'Vf(@*) = > Ad'Vg(z*) > 0. (13) > flzr) — Y. Afgi(wg) (since A\f >0 forieZ
i=1 i=1
and z;, is feasible)
—_ *
e But (12) and (13) can be jointly true only if = L(zp, ")
= L(z*,\*) + ||z, — «*|| Do L(a*, A*)d,]
MNd Vg (z*) =0 (ieZuf). 2, — ]2 +
+ ] D £, )y + Oz — o)1)
. o KKT 40 ey llzg—2*)1 1 3
e The assumption of the theorem therefore implies that = f(z*) + di Doz L(z*, X*)dg, + O(||lzy, — z*|°),

2
dT Dgal(z*, \*)d > 0. (14) or
df Daa £(z*, X*)dy, < |O(|lz), — 2*|)].



e Taking limits, we obtain
AT DpaL(z*, X\ )d = Jim dff Dyz L(z*, X\*)dy, < 0.
— 00
Reading Assignment: Lecture-Note 10.

e Since this contradicts (14), our assumption about the exis-
tence of the sequence (z;)y must have been wrong. [l



