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2 Sketches of proofs for Part 2

2.1 Proof of Theorem 2.1

From Taylor’s theorem (Theorem 1.1), and using the bound
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2.2 Proof of Corollary 2.2

Theorem 2.1 shows that the linesearch will terminate as soon as o < aquax. There are two
cases to consider. Firstly, it may be that «j,;; satisfies the Armijo condition, in which case
ap = ajpjt- If not, there must be a last linesearch iteration, say the Ith, for which a® > apax
(if the linesearch has not already terminated). Then ay > o) = 700 > ramax. Combining
these two cases gives the required result.

2.3 Proof of Theorem 2.3
We shall suppose that g # 0 for all £ and that
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From the Armijo condition, we have that
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for all k, and hence summing over the first j iterations
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Since the left-hand side of this inequality is, by assumption, bounded below, so is the sum on
right-hand-side As this sum is composed of negative terms, we deduce that

lim oy |pf gi| = 0.
k—o0

Now define the two sets
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where ~y is the assumed uniform Lipschitz constant. For k € K1,
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in which case
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Combining (2.1) and (2.2) gives the required result.

2.4 Proof of Theorem 2.4

Follows immediately from Theorem 2.3, since
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implies that limy_. o g = 0.

2.5 Proof of Theorem 2.5

Let Amin(Bg) and Amax(Bg) be the smallest and largest eigenvalues of By. By assumption, there
are bounds Apin > 0 and Apax such that
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and thus that
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for any nonzero vector s. Thus
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implies, as before, that limg_,~, gx = 0.

2.6 Proof of Theorem 2.6

Consider the sequence of iterates zp, k € K, whose limit is x,. By continuity, Hy is positive
definite for all such k sufficiently large. In particular, we have that there is a kg > 0 such that
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for all k € £ > ko, where A\pin(H,) is the smallest eigenvalue of H(z.). We may then deduce
that
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for all such k, and also that
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since Theorem 2.5 implies that at least one of the left-hand sides of (2.3) and
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converges to zero for such k.
From Taylor’s theorem, there is a z; between zp and xjp + pi such that

F(@y + i) = fr + Ph gy + 50k H(21)py.
Thus, the Lipschitz continuity of H gives that
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since Hypr + g = 0. Now pick k sufficiently large so that

’YHpkHQ < )\min(H*)(l — 2,3)

In this case, (2.3) and (2.4) give that

Flar+ ) = Fr < 30k gk + $Amin(H) (1= 20)[pll3 < 51— (1 = 20)pi 91 = Bpi 91
and thus that a unit stepsize satisfies the Armijo condition, which proves (i).
To obtain the remaining results, note that ||H, |l < 2/Amin(Hx) for all sufficiently large
k € K. The iteration gives
T+l — T = Tl — Tx — Hk_lgk =Tk — Tx — Hk_l (gk - g(l‘*)) = Hk_l (g(l'*) — 9k — Hk(l'* - xk)) .
But Theorem 1.3 gives that
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which is (iii) when k = 2v/Amin (Hs). Result (ii) follows since once an iterate becomes sufficiently
close to x,, (iii) implies that the next is even closer.

2.7 Conjugate Gradient methods

All of the results given here are easy to verify, and may be found in any of the books of suggested
background reading material. The fact that any p;, = p’ is a descent direction follows immediately
since the identity
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