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Solution to Problem 1: (i) Since x1 = x¢ 4+ apdp and dy = —V f(xg), we have

Vf(xl) =2Bx1 +b=2Bxy — Q(IOBVf(Z‘()) +b
=V f(z0) — 2a0BV f(z0) € span{V f(z0), BV f(z0)}-

(ii) We have shown this for k = 0, so we may assume it is true for k£ <[, and then

vf(xl—i-l) = 2Bz + b=2Bx; +2qBd; +b
= Vf(l‘[) + 20 Bdj. (01)

Because of

span{dp, ...,dr} = span{V f(xo),..., Vf(zx)}.

and the induction hypothesis we have d; € ;. Therefore, (0.1) shows
Vi(xi41) € span({Vf(ml)} U BICl) =K1

(iii) This follows from the identity

(144 = I+<]1)>A+ (22)),42 ++ (pf 1>A"—1 + AP

which is easily checked by induction on p.

(iv) Since rank(A) = r, the image space of A is of dimension r. Therefore, at most
r of the vectors AV f(xg),..., A*V f(xg) are linearly independent, and if V f(z) is
linearly independent of the image space of A, then Ky is at most r 4+ 1 dimensional.

(v) In the proof of Lemma 2.3 we have shown that Vf(z;) L Vf(zy) for all
j # k. Since Kj is at most r + 1 dimensional for all k, there are at most r + 1
mutually orthogonal nonzero vectors in this space, which shows that it must be the
case that V f(z) = 0 for some k < r. But since f is a strictly convex function, this
is the exact characterisation of the global minimiser (see Lecture 2).

Solution to Problem 3: If A;, < 15 for some k, then let

pr=max{qg € No: Ay >Ap_1>--->Ap_,}.

Since Ay > ﬁ, it is the case that K —p > 0 and Aj_, was obtained by shrinking
Aj_p—1 via the relation

1
Akfp = ZAkfpfl.
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But now Ag_, < Ap < ﬁ implies

2e
A}’c—p—l < 3

5,

and then Lemma 3.4 and equation (1.5) of Lecture 6 show that Ay_, > Ap_,_1. This
contradicts what we found above and proves our claim.

Solution to Problem 4: (i) If Vf(zx)T BV f(x1) < 0 then

Y = ox — A /|IV f () IV f(21)
and

Ay
IV f (@)l

(ii) Under these conditions we have

Prob.3 €2
Vf(:vk)> = Akva(xk)H > Age >

i) —mu(yg) > V fan)" ( e

() = ma(vg) = V Fon) " GV F () — 3 (o) V() BV f (o)

_1 IV f ()] 1V ()2 . e
2V f(xr)TBLV f(zr) — 2 B 20

>

where we have used the bound || Byl < .
(iii) Since V f(x1)TBrV f(z) > 0, the line-search objective function

042
¢la) = f(zx) = al|Vf(@r)l* + 7Vf(wk)TBka($k)

is strictly convex. Therefore, the fact that the Cauchy point can be written as the
convex combination

implies

and hence,

@1 V@l AWV ) BV ()

= 2V f(zx)" BV f (k) [V f ()2
_IVS@R) Ak _ eAg Probs &
- 2 ) - 280

(iv) The list of cases we considered is exhaustive because of formula (2.1) from
Lecture 6 and the formula for o} preceding it.
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(v) Because of the benchmarking of yr11 against the Cauchy point and parts
(i)—(iii), we have

€2

my(xr) — me(Yrs1) = mi(zr) — ma(yg) > 285"

On the other hand, since the step was accepted, formula (1.4) from Lecture 6 shows

€2

Fak) = Flynen) > n(milan) = milyien)) > 565



