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Solutions to exercises for Part 1.

1(a). The first-order optimality conditions are that there exist vectors of Lagrange
multipliers yg, and yz, such that

ce(zy) =0 and cz(x,) >0 (primal feasibility),
g(z.) — AL (2 )yes — AL(2.)yz. =0  and yz. >0 (dual feasibility) and
ci(x )y« =0 forall ieZ (complementary slackness).

1(b). The second-order optimality conditions are that necessarily
sTH(z,,y,)s >0 forall s € N,

where
sTa;(z,) =0if i €&
N, =seR"| sTai(x,)=0if i €Z & both ¢;(z,) =0& [y.]; >0and
sTa;(z,) > 0if i €T & both ¢;(z,) =0& [y.]i =0

and y. = (v&,, yr)l.

2(a). The problem might be non-differentiable because small perturbations in = may
cause different terms f;(x) to define the objective f(x). For example, suppose m = 2,
fi(r) =2+ 1 and fo(x) = —x + 1. Then for > 0, f(x) = z + 1 while for z <0,
f(z) = —x + 1, and there is a derivative discontinuity at x = 0. It might also be
non-differentiable because of the |- | term. For instance if m =1 and fi(z) = x, f(z)
is non-differentiable at x = 0.

2(b). Clearly |fi(z)| < u is equivalent to —u < f;(z) < w. Minimizing the largest
| fi(x)| is equivalent to minimizing the largest upper bound on | f;(x)|.

2(c). The constraints —u < f;(x) < u may be rewritten as f;(z) + v > 0 and u —
fi(x) > 0. Let y} and y;’ (respectively) be Lagrange multipliers for these constraints,
and let A(x) be the Jacobian of the vector of f;.

First-order necessary optimality conditions are that the y" and y satisfy

(3)-(4)o- ()

(f™ + fi(x))y; = 0 and (f™ — fi(x))y; =0,

where f™ is the optimal objective value. This is to say that

Az)(y* —y") =0
ey +yY) =1 and (y*y")>0"

and that

If f= > 0 only one of the pair (y},y%) can be nonzero.
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Solutions to exercises for Part 2.
1(a). The gradient of the objective function is ¢ = Hzx and g(z,) = Hz, = HO = 0,
so that z, is a stationary point which is a minimum, since H is positive definite.

1(b). Line-search in direction p from x gives
flx+ap) =3 (@ +ap)” H(z + ap)

=10®p"Hp+ap"Hx + 2" Ha.

d,
Hence, the exact line-search condition d—f =0, using g = g(z) = Hzx is equivalent to
o

prg

pTHp’

ap’ Hp+p'g=0 & a=—

where we have used the positive definiteness of H, which ensures that p” Hp > 0 for
all p # 0.

1(c). If x; is chosen as in the question, then the gradient
g = (0,0,...,0,1)" = —p,
is the steepest descent direction. Next, compute
—pigr=0>+1=2 and p{ Hp; = A1 + A,

and using the step-length from (b), it follows that

2
o = )
TN
Now compute the next iterate as
X —0 X
0 0 0
Ty = T1 T Q1P1 = : : = :
A+ A\, A+ Ay
0 ' 0 ' 0
1 1
" -1 A
: . . : . A — A\
Each subsequent iteration only differs from iteration 1 by the factor S Note
1 n
that the step-length is independent of this factor. Each iteration “adds” one factor

to the expression for xp,, giving the desired formula.
1(c) (i). If Ay = A, then o = 0 is optimal.
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L(c) (i1). If Ay > A, then steepest descent converges very slowly, since A\ — A\, ~ Ay,

1 n . .
the sequence ———— approaches zero very slowly. The rate of convergence is linear,

A+ A,
[P _ <>‘1 — >‘n>2 —
[EZAP A+ A, '

and the convergence constant, ¢, is close to 1.

since
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Solutions to exercises for Part 3.

1(a). The unconstrained minimizer —(1,0,1/2)” has fy-norm 1 < v/5/2 < 2. Thus,
since B is positive definite, the unconstrained minimizer solves the problem.

1(b). The unconstrained minimizer has too large a fy-norm, so the solution must
lie on the boundary of the constraint. The solution must be of the form —(1/(1 +
A),0,1/(24 X)T. To satisfy the trust-region constraint, we then must have

1 1 , 25

Tr0: @i = 14

which has a root A = 2. Thus the required solution is —(1/3,0,1/4)T.

1(c). The Hessian is indefinite so the solution must lie on the boundary of the
constraint. The solution is then of the form —(1/(—=2+X),0,1/(=1+X))T. To satisfy
the trust-region constraint, we then must have

(2102 (C1x A ° T 1w

1 1 N2 2

which has aroot A = 5 (c.f. the previous equation with a change of variables A= A+3)
at which B + A is positive semi-definite. Thus again the solution is —(1/3,0,1/4)%.

1(d). Again B is indefinite, and so the solution must be of the form —(w,0,1/(—1+
)T, where w = 0/(—2 + ) can only be nonzero if A\ = 2—mnote that B + \I is only
positive semi-definite when A\ > 2. Suppose that A > 2. To satisfy the trust-region
constraint, we then must have

1
R N4
(=14 X)?

1
4
which has roots 1 + 2. The desired root is A = 3, from which we deduce the solution
is —(0,0,1/2)T.

1(e). As in (d), if we guess that A > 2, we find that the roots of

1

- @ @ @ @ - 2:
(=1 + )2 A=

are 1+ 1/v/2 < 2. So A must be 2, and the solution is of the form —(w,0,1)”. To
satisfy the trust-region constraint, we then must have
W41=A*=2,

and hence w = #-1. Thus the required solution is —(=+1,0,1)7.
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Solutions to exercises for Part 4.

1(a). The first-order optimality conditions (Theorem 1.8) are that x5 > 0 (primal

feasibility),
T 0 .
(1) (5) =

and y > 0 (dual feasibility), and y-zo = 0 (complementary slackness). Dual feasibility
says that y = 1 and x; = 0, from which we deduce that x5 = 0 from complementary
slackness. Second-order optimality conditions are simply that

10
8%:(51,82)T<0 O)(;)ZO

for all s # 0 for which sy = 0 which are automatically satisfied. Thus the solution is
x = (0,0) with Lagrange multiplier y = 1.

1(b). The logarithmic barrier function is
Oz, 1) = 127 + 25 — plog zy.

The first-order optimality conditions for the unconstrained minimization of ® are

that
T 0 .
()-r(d)o

If we let z(11) be the desired minimizer, the optimality conditions indicate that z(u) =
(0, p), while the Lagrange multiplier estimates are y(u) = c(x(p))/n = 1. The
Hessian is positive definite

10\

0 qu2—2 )

at the minimizer of ®(x, ), the Hessian is

(é/ﬁl>’

The eigenvalues are 1 and p~t. As u goes to zero, one eigenvalue diverges to infinity,
while the other one stays fixed at 1.

1(c). The Hessian matrix is

1(d). The primal-dual system at z(u) is

(o) (3) =10 (%)
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Thus s; = 0, while sy = —p + . In particular z(u) + s = i = (1), the minimizer
of &(z, ) !

2(a). The logarithmic barrier function is
®(z, 1) = 27 g+ L2’ Bx — plog(A? — z7x).

Its gradient is
2
Vo @(z,pn) =g+ Br + A2 T

and its Hessian is
24

24 T
I .
A2 — Ty + (A% — xTx)Qxx

Ve ®(x, 1) = B+

2(b). The first-order optimality condition is that

24

If we define 5
o I
>\(:u> - A2 B ITZE7

(1) is precisely the requirement
(B+ Az = —g
from Theorem 3.9. Moreover, A(x) > 0. However,
Mp)(A? —aa) = 2u

and we need p to converge to zero to satisfy all of the first-order requirements in
Theorem 3.9.
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Solutions to exercises for Part 5.

1(a). We first need to check that s” Bs > 0 when As = 0, as otherwise the solution
lies at infinity. In all cases B is diagonal, so we write B = diag(by; bgs bs3). It is
easy to see that the columns of the matrix

1 0
N=| -10
0 1

form a basis for the null-space of A, so we need to check that

T [ bi+b O
NBN-( 0 by

is positive semi-definite. For our first example N7 BN has all its eigenvalues at 1, so
the minimizer is finite. The minimizer satisfies

2 0 01 1 1
0 -1 0 1 | |1
00 10 ||a | |1
1 1 00 y 2

which gives z = (—2,4,1) and y = 5.

1(b). In this case NT BN has eigenvalues 0 and 1, so there is a solution if and only if

1 0 01 ) 1
0 -1 0 1 | |1
0 0 10 s | |1
1 1 00 y 2

is consistent. The system gives x3 = 1, but then the remaining equations lead to
both —x9 +y =1 and —x5 + y = —1. Thus the problem is unbounded from below.

1(c). In this case NTBN has eigenvalues —1 and 1, so the problem is unbounded
from below, and the solution lies at infinity.

2. The gradient of the augmented Lagrangian function at zy, yg, px is
T Sk
V,@(x,) = g + Ay ( - ?Jk) :
M
The SQP search direction s; and its associated Lagrange multiplier estimates yx.1

satisfy
Bysy, — Agyk-i-l = —Gk (2)
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and
Aksk = —Cg. (3)

Premultiplying (2) by s; and using (3) gives that
Stk = —51 Bysy + szfka = —5. Bysy — CZka (4)

Likewise (3) gives

1

Lgage, = ol 5)
223

Combining (4) and (5), and using the positive definiteness of By, the Cauchy-Schwarz
inequality and the fact that s, # 0 if xy is not critical, yields

[\Gh v}

sEV,®(z,) = i [gk + A} <% — yk)]

e 3

= _SgBkSk - Cg(yk—i-l — Yk) —

el iy

c

_||Ck||2 < T2 ||yk;+1 - yk:“2>
Kk

0

because of the required bound on pi.



