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*Problem 1. Let Bk be a positive definite symmetric matrix. Prove the claims of
Lemma 3.1, Lecture 7:

(i) Show that the model function mk is strictly decreasing along the path y(τ).

(ii) Show that ‖y(τ)−xk‖ is strictly increasing along the path y(τ). Hint: consider
the space 2D = span{−∇f(xk), yqn

k − yu
k} and the strictly convex quadratic

function

φ : 2D → R

z 7→ mk(xk + z).

Show that if the conjugate gradient algorithm is applied to the minimisation
of φ(z) starting from z0 = 0, then d0 = −∇f(xk) and d1 = α−1(yqn

k − yu
k ) for

some α > 0. Then use the fact that in the proof of Theorem 3.4 of Lecture 7
we showed that dT

0 d1 > 0.

(iii) Show that if ∆ ≥ ‖B−1

k ∇f(xk)‖ then y(∆) = y
qn
k .

(iv) Prove that if ∆ ≤ ‖B−1

k ∇f(xk)‖ then ‖y(∆) − xk‖ = ∆.

(v) Derive the following limits:

lim
∆→0+

x(∆) − xk

∆
= −

∇f(xk)

‖∇f(xk)‖

lim
τ→0+

y(τ) − y(0)

τ
=

−‖∇f(xk)‖2

∇f(xk)TBk∇f(xk)
∇f(xk)

Hint: you may use the fact that a necessary condition for x = x(∆) is that
there exists λ ≥ 0 such that

−∇mk(x) = λ(x − xk). (0.1)

*Problem 2.

(i) Farkas’ lemma is the following result: let A ∈ R
m×n be a matrix and let

b ∈ R
m be a vector. Then exactly one of the following two situations occurs:

(I) ∃x ∈ R
n such that Ax ≤ b.

(II) ∃ y ∈ R
m
+ such that ATy = 0 and yTb < 0.
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Prove this result using the fundamental theorem of linear inequalities. Hint:
note that if A′ is the matrix

[

I A −A
]

then Ax ≤ b has a solution if and only
if A′x′ = b has a solution x′ ≥ 0. Use the fundamental theorem of linear
inequalities.

(ii) Sometimes the Farkas lemma is formulated in an equivalent form which says
that the following conditions are equivalent:

(I) ∃x ∈ R
n
+ such that Ax = b.

(II) ATy ≥ 0 implies that bTy ≥ 0.

Prove this result.

(iii) Let a0, . . . , am ∈ R
n. Using part (ii), show that the condition

{

x ∈ R
n : aT

i x ≤ 0, (i = 0, . . . , m)
}

=
{

x ∈ R
n : aT

i x ≤ 0, (i = 1, . . . , m)
}

(in other words: the inequality aT
0 x ≤ 0 is redundant) holds if and only if a0

lies in the cone cone(a1, . . . , am) generated by the ai (i 6= 0).

*Problem 3. Let a1, . . . , am ∈ R
n be linearly independent vectors and consider the

linear programme

(P) max
x∈Rn

cTx

s.t. Ax ≤ b,

where A =
[

a1 ... am

]

, and where b ∈ R
m and c ∈ R

n are given vectors. Consider also
the dual programme

(D) min
y∈Rm

bTy

s.t. ATy = c,

y ≥ 0.

We will be interested in the following set of equations:

ATy = c, y ≥ 0 (0.2)

Ax ≤ b (0.3)

cTx − bTy = 0. (0.4)

Points y that satisfy (0.2) are called dual feasible, whereas points x that satisfy (0.3)
are called primal feasible.

(i) Show that if x is primal feasible and y is dual feasible then

cTx ≤ bTy.

This property is called weak LP duality.
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(ii) Using part (i), show that if (x∗, y∗) satisfies (0.2)–(0.4) then x∗ is an optimal
solution for (P) and y∗ is an optimal solution for (D).

(iii) Now let x∗ be a maximiser of (P) and consider the set of indices J = {i :
aT

i x = bi}. Apply the fundamental theorem of linear inequalities to the vec-
tors {ai : i ∈ J} and c (playing the the role of b in the statement of the
theorem) and show that Alternative (I) must hold.

(iv) Conclude that there exists a vector y∗ representing a dual optimal solution
such that x∗, y∗ satisfy (0.2)–(0.4).

(v) From part (iv) conclude that strong LP duality holds: (P) has an optimal
solution x∗ if and only if (D) has an optimal solution y∗, and whenever this
is the case, the duality gap at x∗ and y∗ is zero. Hint: you may assume that
the roles of (P) and (D) can be exchanged, since the bidual is the primal.
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