Part 5: SQP methods for
equality constrained optimization

Nick Gould (RAL)

minimize  f(z) subject to ¢(x) =0
zelR"

MSc course on nc

OPTIMALITY AND NEWTON’S METHOD

1st order optimality:

g9(z,y) = g(x) = AT(z)y =0 and c(z) =0

nonlinear system (linear in y)

—
use Newton’s method to find a correction (s, w) to (z,y)
— .

A(z) 0 w c(z)

EQUALITY CONSTRAINED MINIMIZATION

minimize f(z) subject to ¢(x) =0
r€IR"

where the objective function f:IR" — IR
and the constraints ¢ : IR" — IR™ (m < n)

© assume that f, ¢ € C*' (sometimes C?) and Lipschitz
® often in practice this assumption violated, but not necessary

® easily generalized to inequality constraints . ..but may be
better to use interior-point methods for these

ALTERNATIVE FORMULATIONS

unsymmetric:
.m.m&.uﬁv |\wﬂAHv S - _ ,QA.H;&V
A(z) 0 w c(z)
or symmetric:
H(z,y) AT) | s ) _ [g(z.y)
Alx) 0 —w c(z)
or (with y™ =y + w) unsymmetric:
Hiz,y) —AT@)\( s | __(9)
Alz) 0 y* c()

or symmetric:



DETAILS

® Often approximate with symmetric B ~ H(x,y) = e.g.

B ATx)\[ s )\ _ (gl
A) 0 Jl=yt) e
© solve system using
AT
o unsymmetric (LU) factorization of x:mmn v bo (x)
T
o symmetric (indefinite) factorization of km, v A OAHV

o symmetric factorizations of B and the
Schur Complement A(z)B~1AT(x)

o iterative method (GMRES(k), MINRES, CG within N'(4),...)

SEQUENTIAL QUADRATIC PROGRAMMING - SQP

or successive quadratic programming
or recursive quadratic programming (RQP)

Given (zo,yo), set k=0
Until “convergence” iterate:
Compute a suitable symmetric By using (xy, yx)
Find
Sk = arg min Qm,w + Wmﬂm»m subject to Aps = —¢;
selR"
along with associated Lagrange multiplier estimates yy1
Set x41 = ) + s and increase k by 1

AN ALTERNATIVE INTERPRETATION
QP : minimize g(z)’s + 1s” Bs subject to A(z)s = —c(z)
seIR"
© QP = quadratic program
© first-order model of constraints ¢(x + )

© second-order model of objective f(x +s) ...but
B includes curvature of constraints

solution to QP satisfies

B Af@)|( s |__[9)
Alx) 0 —yt ) c(z)
ADVANTAGES
© simple
© fast

o quadratically convergent with By, = H (xy, yi)
o superlinearly convergent with good By, ~ H (z, yx)

> don’t actually need By — H (xy, yr)

PROBLEMS WITH PURE SQP

® how to choose B}?
© what if QP is unbounded from below? and when?

® how do we globalize this iteration?



QP SUB-PROBLEM

minimize ¢’ + $sBs subject to As = —c¢
sER™

® need constraints to be consistent
o OK if A is full rank

® need B to be positive (semi-) definite when As =0
—

NTBN positive (semi-) definite where the columns of N
form a basis for null(A)
—
B Al(z)
A(z) 0

(is non-singular and) has m —ve eigenvalues

SUITABLE MERIT FUNCTIONS. I

The quadratic penalty function:

(o, ) = fr) + %_%V__w

Theorem 5.1. Suppose that Bj is positive definite, and that
(s, yp+1) are the SQP search direction and its associated Lagrange
multiplier estimates for the problem
minimize f(z) subject to c¢(x) =0
z€R"
at xp. Then if xj is not a first-order critical point, s is a descent
direction for the quadratic penalty function ®(x, uy) at z; whenever

lle(ze) 2

e <
:Sﬁl__m

LINESEARCH SQP METHODS
Sk = arg min Sﬁ.m + Wmﬁm»m subject to Aps = —ci
seIR"

Basic idea:
o Pick xp1 = xp + oSy, where

o @y, is chosen so that

Oz + apsy, pp) ‘< O(xg, pr)

o ®(z,p) is a “suitable” merit function

© py are parameters
© vital that s is a descent direction for ®(z, py) at xy,

© normally require that By, is positive definite

PROOF OF THEOREM 5.1
SQP direction s; and associated multiplier estimates vy, 1 satisfy

Bysy — ALy = — 0 (1)
and
Apsp = —cg. (2)
(1) + (2) = sigp = —si Bys + 5L AL yper = =L Bysy — €Ly
(3)
() = LoTare, — N 12, (4)
Mk Mk

(3) 4+ (4), the positive definiteness of By, the Cauchy-Schwarz inequal-
ity, the required bound on gy, and s # 0 if xy is not critical =
lexl13
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NON-DIFFERENTIABLE EXACT PENALTIES SUITABLE MERIT FUNCTIONS. II

The non-differentiable exact penalty function: The non-differentiable exact penalty function:
D(z,p) = f(x) + plle(@)] O(z,p) = f@) + plle(z)|
for any norm || - || and scalar p > 0. for any norm || - || (with dual norm || - || p) and scalar p > 0.

Theorem 5.3. Suppose that Bj is positive definite, and that

Theorem 5.2. Suppose that f,c € C?, and that x, is an isolated
(Sk, yp+1) are the SQP search direction and its associated Lagrange

local minimizer of f(x) subject to ¢(z) = 0, with corresponding

Lagrange multipliers y,. Then x, is also an isolated local minimizer multiplier estimates for the problem

of ®(z, p) provided that minimize f(z) subject to c(x) =0
P> |y, eR"
where the dual norm at xp. Then if xj is not a first-order critical point, s is a descent
lyllo = sup @ﬂ|& . direction for the non-differentiable penalty function ®(x, py) at xy
a0 ||| whenever pr > ||yrs1]|p
PROOF OF THEOREM 5.3 THE MARATOS EFFECT

Taylor’s theorem applied to f and ¢ 4+ (2) = (for small «)

Day + asy, pr) — Play, p,) = astg + pp ([lep + adys,ll — __Q__V +0(?)
ast g+ i (11 = @)yl = llexll) + O(a?)
a(sigr — pllell) + 0 (o)

+ (3), the positive definiteness of By, the Holder inequality, and s # 0

if ;. is not critical =

¢ non-differentiable exact
penalty function (p = 1):
flz)=2@t+23—1) —
and ¢(z) = 23 + 23 — 1

O(xy + asy, pp) — Px), p) = —a Amwm»m» + Yy + Pﬂ__@ﬂ__v +0(a?) solution: 2. = (1,0), y. = §

—a (=lleellyriallp + pellell) + Ola?)
—aflel AEG - __@»i__bv +0(a?) <0

because of the required bound on py, for sufficiently small a. Hence

A

sufficiently small steps along s; from non-critical z; reduce (z, py). Maratos effect: merit function may prevent acceptance of the

SQP step arbitrarily close to z, = slow convergence



AVOIDING THE MARATOS EFFECT
The Maratos effect occurs because the curvature of the constraints is
not adequately represented by linearization in the SQP model:

c(ar + s) = O(llse]l?)

— need to correct for this curvature
— use a second-order correction from xj; + s;:

c(zx + s+ i) = ol[|si]l?)
also do not want to destroy potential for fast convergence =

sj, = o(sk)

2ND-ORDER CORRECTIONS IN ACTION

{1 non-differentiable exact
penalty function (p = 1):
flz)=2(@t+23—-1) -z
and ¢(z) = 23 + 23 — 1
solution: z, = (1,0), y, = 3

® (very) fast convergence

© 2, + 55, + sj, reduces & = global convergence

POPULAR 2ND-ORDER CORRECTIONS

© minimum norm solution to ¢(zy + si) + A(xy + sp)sf =0

I ATz + s) s% 0
Al + sp) 0 /! c(n + i)

© minimum norm solution to ¢(xy + sj) + A(xg)sg =0

I AT(xy) s 0
Alzy) 0 —Y c(xy + sp)
© another SQP step from xy + s;
H(xy+ sk, yi) AT (2 + sp) st ) _ [ 9lwe+sk)
Alxy + si) 0 ~Yi c(zy + sg)
o ete., etc.

TRUST-REGION SQP METHODS

Obvious trust-region approach:

s, = arg min gi s + s’ B.s subject to Aps = —¢;, and ||s|| < A,
se€IR™

® do not require that By be positive definite
= can use By = H(xy, yi)

o if Ap < AT where

Acrr def __,w__ subject to Aps = —c¢;,

= no solution to trust-region subproblem
= simple trust-region approach to SQP is flawed if ¢ # 0 =
need to consider alternatives



INFEASIBILITY OF THE SQP STEP

\ The linearized constraint

<«— The trust region |v/

\ /

The nonlinear constraint

THE S{,QP METHOD

Try to minimize the ¢,-(exact) penalty function

Oz, p) = f(x) + plle()ll,

for sufficiently large p > 0 and some ¢, norm (1 < p < 00), using a
trust-region approach

Suitable model problem: ¢,QP

minimize (fy+) gi s + 55’ Bys + pllex + Ags||, subject to ||s|| < Ay
s€R™

® model problem always consistent
© when p and Ay are large enough, model minimizer = SQP direction

© when the norms are polyhedral (e.g., £; or {o norms), (,QP is
equivalent to a quadratic program . . .

ALTERNATIVES

® the S€,QP method of Fletcher

© composite step SQP methods
o constraint relaxation (Vardi)
o constraint reduction (Byrd-Omojokun)
o constraint lumping (Celis-Dennis-Tapia)

® the filter-SQP approach of Fletcher and Leyffer

THE (;,QP SUBPROBLEM

£1QP model problem with an £, trust region
minimize g} s+ Ls' Bys + pller + Ags|li subject to |[s]lae < Ag
seR”

But

cx + Aps =u —v, where (u,v) >0
= (1QP equivalent to quadratic program (QP):

minimize  g}s + 1sT Bys + plelu + elv)
s€R", u,velR™
subject to  Aps —u—+v = —¢;
u>0, v>0
and —Ape <s < Age

® good methods for solving QP

® can exploit structure of u and v variables



PRACTICAL S/,QP METHODS

® Cauchy point requires solution to ¢1LP model:

minimize g s + pllcp + Ags|li subject to ||s]/ee < A
s€R"

® approximate solutions to both £;LP and ¢;QP subproblems suffice
® need to adjust p as method progresses
© easy to generalize to inequality constraints

® globally convergent, but needs second-order correction for fast
asymptotic convergence

© if ¢(z) = 0 are inconsistent, converges to (locally) least value
of infeasibility ||c(x)]]

NORMAL AND TANGENTIAL STEPS

\ The linearized constraint /

Nearest point on linearized constraint

Close to nearest point

<— The trust region —

Points on dotted line are all potential tangential steps

COMPOSITE-STEP METHODS

Aim: find composite step
S, = ny + tg
where

the normal step n; moves towards feasibility of the linearized
constraints (within the trust region)

([ Awre + cill < llexl|
(model objective may get worse)

the tangential step ¢, reduces the model objective function (within
the trust-region) without sacrificing feasibility obtained from ny,

Ap(ng + 1) = Agny = At =0

CONSTRAINT RELAXATION — VARDI

normal step: relax
Aps = —¢; and ||s]| < Ay
to
Apn = —ope and ||n|| < Ay

where oy, € [0, 1] is small enough so that there is a feasible ny,

tangential step:

(approximate) arg min (gy + Byng) 't + 1tT Bt
telR"
subject to Ayt =0 and |[ng +t|| < Ay

Snags:

® choice of g},

© incompatible constraints



CONSTRAINT REDUCTION — BYRD-OMOJOKUN

normal step: replace
\Cﬁw = —C and :m__ M Dw
by

approximately minimize ||Axn + cx|| subject to ||n|| < Ay

tangential step: as in Vardi
© use conjugate gradients to solve both subproblems
= Cauchy points in both cases
® globally convergent using ¢s merit function

® basis of successful KNITRO package

FILTER METHODS — FLETCHER AND LEYFFER

Rationale:

© trust-region and linearized constraints compatible if ¢ is small
enough so long as ¢(x) = 0 is compatible
= if trust-region subproblem incompatible, simply move closer to
constraints

© merit functions depend on arbitrary parameters
= use a different mechanism to measure progress

Let 6 = ||c(x)]]

A filter is a set of pairs {(6, fr)} such that no member dominates
another, i.e., it does not happen that

%N ﬁ.AS %.m N\SQ r\.& ﬁ.AS A\-.w

for any pair of filter points ¢ # j

CONSTRAINT LUMPING — CELIS-DENNIS-TAPIA

normal step: replace
Ars = —cp and ||s|| < Ay

by
[Asn + cil| < o and [n]] < Ay

where gy, € [0, ||ck||] is large enough so that there is a feasible ny,
tangential step:

(approximate) arg min  (gi + Bgny) 't + 37 Byt
telR"
subject to || Apt + Apny 4 ci || < op and ||t +ni| < A

Snags:
® choice of o},

® tangential subproblem is (NP?) hard

A FILTER WITH FOUR ENTRIES

f(x)




BASIC FILTER METHOD

© if possible find

S = ar min S + 1s* B, s m:_u.moﬁ to \;.m = —C}. @5& sl < D\A
k 2 k =
seIR™

otherwise, find sy;:
O(xy, + s)“<"0; forall i <k

o if x4 si is “acceptable” for the filter, set x4 = z) + sp
and possibly increase Ay and “prune” filter

© otherwise reduce A, and try again

In practice, far more complicated than this!



