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Solution to Problem 1. (i) Let z ∈ Rn be such that gj(z) ≥ gj(x) and Az = b, and
let x(t) = x + t(z − x), (t ∈ [0, 1]). By concavity of gj , we then have

gj(x(t)) ≥ (1 − t)gj(x) + tgj(z) ≥ gj(x)

for all t ∈ [0, 1], and hence we have

∇gj(x)T(z − x) =
d

dt
|t=0gj(x(t)) = lim

t→0+

gj(x(t)) − gj(x)

t
≥ 0.

This shows

{z ∈ Rn : gj(z) ≥ gj(x)} ⊆ {z ∈ Rn : ∇gj(x)T(z − x) ≥ 0}.

The result now follows from the following relation:

{z ∈ Rn : gj(z) > gj(x)} = {z ∈ Rn : gj(z) ≥ gj(x)}◦

⊆ {z ∈ Rn : ∇gj(x)T(z − x) ≥ 0}◦

= {z ∈ Rn : ∇gj(x)T(z − x) > 0}.

(ii) Let the Slater condition be satisfied and z ∈ Rn be such that Az = b and
gI(z) > 0. Since gE(x) = Ax− b = 0 are the equality constraints of (CP), the vectors
{∇gi(x) : i ∈ E} are exactly the row vectors of A, and these are linearly independent
by the SCQ assumption.

Furthermore, let x ∈ F , so that A(z − x) = 0, and let x(t) be defined as above.
Then for j ∈ A(x) we have gj(z) > 0 = gj(x), and hence by part (i) we find

∇gj(x)T(z − x) > 0.

This shows that d := (z − x) satisfies

dT∇gi(x) = 0, (i ∈ E), (0.1)

dT∇gj(x) > 0, (j ∈ A(x)), (0.2)

which (together with the requirement that A has full row rank) form exactly the re-
quirements of the MFCQ. This shows that the MFCQ is satisfied at all feasible points.

(iii) Let x∗ be a feasible point where the MFCQ holds. Then, {∇gi(x
∗) : i ∈ E}

is a linearly independent set of vectors, which shows that A has full row rank.
Furthermore, let d ∈ Rn be such that (0.1) and (0.2) are satisfied, and let x(t) =

x∗ + td for t ≥ 0. Then Ax(t) = Ax + tAd = b for all t, and Taylor’s theorem implies
that gj(x(t)) > 0 for all j ∈ A(x∗) for t sufficiently small. By continuity we also have
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gj(x(t)) > 0 for all j ∈ I \ A(x∗) and t sufficiently small. Thus, there exists t > 0
such that z = x(t) satisfies the conditions of the SCQ.

This shows that the SCQ holds true, and therefore by part (i) the MFCQ holds
for all feasible points.

Solution to Problem 2. (i) we have to show that

min x1 +
2

x2
(0.3)

s.t. − x2 +
1

2
≤ 0

− x1 + x2
2 ≤ 0

x2 ≥ 0.

is a convex programming problem. Note that

D2f(x) =

(

0 0
0 4

x3

2

)

� 0,

and it follows from the results of Lecture 1 that f is convex. Writing the problem in
standard form we get

min f(x) = x1 +
2

x2

s.t. g1(x) = x2 −
1

2
≥ 0,

g2(x) = x1 − x2
2 ≥ 0,

g3(x) = x2 ≥ 0,

g1 and g3 are affine functions and hence concave. g2 is concave because D2g2(x) =
diag(0,−2) is negative semidefinite. Thus, (0.3) is a convex programming problem.

(ii) We are looking for local minimisers where x2 > 0, that is, 3 /∈ A(x). The
KKT conditions are the following,

(

1
− 2

x∗2

2

)

= λ∗
1

(

0
1

)

+ λ∗
2

(

1
−2x∗

2

)

+ λ∗
3

(

0
1

)

,

x∗
2 −

1

2
≥ 0,

x∗
1 − x∗2

2 ≥ 0,

x∗
2 ≥ 0,

λ∗
1(x

∗
2 − 1

2
) = 0,

λ∗
2(x

∗
1 − x∗2

2 ) = 0,

λ∗
3x

∗
2 = 0,

λ∗
1, λ

∗
2, λ

∗
3 ≥ 0.
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Since we want x∗
2 > 0 we must have λ∗

3 = 0. Moreover, the first equation implies that
λ∗

2 = 1. Therefore,

x∗
1 = x∗2

2 , (0.4)

and the first equation implies

λ∗
1 = 2x∗2

2 − 2

x∗2
2

. (0.5)

If λ∗
1 6= 0 then x∗

2 = 1/2. (0.4) implies x∗
1 = 1/

√
2 and (0.5) implies λ∗

1 = −7.
This solution violates the last set of inequalities among the KKT conditions.

On the other hand, if λ∗
1 = 0 then (0.5) implies x∗

2 = 1. (0.4) shows that x∗
1 = 1.

Thus, x∗ = (1, 1), λ∗ = (0, 1, 0) is the unique solution to the KKT conditions when
x∗

2 > 0.
The active set of at x∗ is A(x∗) = {2}. Moreover, the LICQ holds at this point.

The KKT conditions are therefore both necessary and sufficient, proving that x∗ =
(1, 1) is the global minimiser.

Solution to Problem 3. (i) The Lagrangian of

min
x∈Rn

cTx − µ
∑

i

ln xi (0.6)

s.t. Ax = b

x ≥ 0

is the following extended function,

L(x, u, v) =











(c − ATv − u)Tx + bTv − µ
∑

i ln xi, (u ≥ 0, x > 0),

+∞ (u ≥ 0, x 6> 0),

−∞ (u � 0).

(ii) The Lagrangian primal problem is minx(max(u,v) L(x, u, v). In order to show
that this problem is equivalent to (0.6), we have to derive more explicit expressions
for the objective function.

If x 6> 0 then max(u,v) L(x, u, v) = L(x, 0, 0) = +∞.
Let us thus assume that x > 0. Then

max
(u,v)

L(x, u, v) = max
{(u,v):u≥0}

−uTx − (Ax − b)Tv + (cTx − µ
∑

i

ln xi) (0.7)

= max
v

−(Ax − b)Tv + (cTx − µ
∑

i

ln xi) (0.8)

=

{

+∞ if Ax 6= b,

cTx − µ
∑

i ln xi if Ax = b,

where (0.7) holds because when u � 0 then L(x, u, v) = −∞ is clearly not a maximum,
and (0.8) holds because u ≥ 0 and x > 0 imply −uTx ≤ 0. In summary, we have

max
(u,v)

L(x, u, v) =

{

+∞ if x 6> 0 or Ax 6= b,

cTx − µ
∑

i ln xi otherwise.
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Therefore,

(P) min
x

(

max
(u,v)

L(x, u, v)
)

is equivalent to

min
x∈Rn

cTx − µ
∑

i

ln xi

s.t. Ax = b

x ≥ 0,

and this is equivalent to (0.6).

(iii) To work out the Lagrangian dual, we need explicit expressions for the objec-
tive function minx L(x, u, v).

If u � 0 then minx L(x, u, v) = −∞.

If u ≥ 0 then

min
x

L(x, u, v) = min
x>0

L(x, u, v) (0.9)

= min
x>0

(c − ATv − u)Tx + bTv − µ
∑

i

ln xi

=

{

−∞ if c − ATv − u 6> 0,

(c − ATv − u)Tx∗ + bTv − µ
∑

i ln x∗
i otherwise,

(0.10)

where (0.9) holds because when x 6> 0, then L(x, u, v) = +∞ is clearly not opti-
mal, (0.10) holds because if the i-th component of c − ATv − u is Mi ≤ 0 then
limxi→∞ Mixi − µ ln xi = −∞ ((0.10) follows by setting all other components of x to
1), and where x∗ is determined by

∇x
(

c − ATv − u)Tx + bTv − µ
∑

i

ln xi

)

= 0,

that is, x∗
i = µ/si (i = 1, . . . , n), where s = c−ATv − u. Substituting into (0.10), we

find

(c − ATv − u)Tx∗ + bTv − µ
∑

i

ln x∗
i = bTv − µ

∑

i

ln si + n(µ − ln µ).

In summary, we have

min
x

L(x, u, v) =

{

−∞ if u � 0 or s = c − ATv − u 6> 0,

bTv − µ
∑

i ln si + n(µ − ln µ) if u ≥ 0, s = c − ATv − u > 0.

Therefore,

(D) max
(u,v)

(

min
x

L(x, u, v)
)
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is equivalent to

max
(u,v)

bTv − µ
∑

i

ln si + n(µ − ln µ)

s.t. ATv + s = c − u

s > 0,

and since n(µ − ln µ) is just a constant and ln si is maximised when si is maximised,
that is, when ui = 0 for all i, this problem is equivalent to

max
(y,s)

bTy − µ
∑

i

ln sis.t. ATv + s = c

s > 0.

(iv) The Slater constraint qualification for (P) is ∃x > 0 such that Ax = b. The
SCQ for (D) is ∃ (y, s) such that s > 0 and ATy + s = c.

(v) Since the SCQ holds, (P) has feasible solutions. If an optimal solution exists
then it is unique, because the objective function is strictly convex. Furthermore, in
this case the KKT conditions are both necessary and sufficient conditions for x to be
a minimiser: ∃u, v such that

c − µ
[

x
−1

1
,...,x−1

n

]T − ATv − u = 0

Ax = b

x ≥ 0

uixi = 0.

The conditions can only be satisfied when x > 0, and then the complementarity
equation shows that u = 0. Thus, the optimal solution of (P) is characterised by the
existence of (y, s) (where y = v) such that

Ax = b

ATy + s = c

Xe = µS−1e

x, s > 0.

But ATy + s = c, s > 0 is exactly the SCQ for (D).

(vi) Everything works the same way, because a reversal of the sign of the objective
function turns (D) into a strictly convex problem. The set of equations characterising
the optimal solution is exactly the same as for (P):

Ax = b

ATy + s = c

Se = µX−1e

x, s > 0.
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