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We will now see a related method that does not require puj to
converge to zero, and yet in a neighbourhood of a KKT point
z* of the nonlinear optimisation problem

(NLP) min f(z)
reR"
s.t. ge(z)=0
gz(x) >0,
the iterates x; still converge to z* if the LICQ and the second
order sufficient optimality conditions hold at this point. In fact,

p can even be held constant after a while and the convergence
of z;, continues!

In Lecture 13 we saw that the quadratic penalty method has the
disadvantage that the penalty parameter p has to be reduced to
very small values before x; becomes feasible to high accuracy.

Moreover, we pointed out that reducing p to very small values
can lead to numerical instabilities if the method is not imple-
mented very carefully.

Motivation:

The method is motivated by the observation that if we knew
the Lagrange multipliers A* such that (z*, \*) is a KKT point
for (NLP), then we could find z* by solving the unconstrained
problem

min L£(x, \*). (1)
z€eR™

Indeed, as already remarked in Lemma 1.2 i) of Lecture 12, the
first set of KKT conditions V £L(z*, A*) = 0 amount to the first
order necessary optimality conditions for (1).



The Merit Function:

The merit function used by this algorithm is the augmented

Of course, \* is not known, but we know from Lecture 13 that . .
Lagrangian of (NLP), defined as follows,

one can obtain estimates A*l which can be used to set up the

1
problem La(m, A p) =L@+ Y §2(=)
: (k] 21 e70e
mfRn L(x, A1), 5:(2)
eR? .
- . =f@) - Y Ngil@)+ Y T2gi(w)
as an approximation of (1). ieTUE ieTus 2K
gi(x) )
= f(x ——X;)g;(x),
If the estimates Al can be iteratively improved and made to f( )+i€%g< 24 i)9i(®)
converge to \*, then this can form the basis of an algorithmic where §; is defined as in Lecture 13
framework for solving (NLP).
-\ _ Jgi(z) (1€¢€)
gz(x) = . .
min(g;(z), 0) (i €1).
Algorithm: Augmented Lagrangian Method (AL) S1 For k=0,1,2,... repeat

y[O] =z, 1:=0
SO Initialisation: choose the following,

until | VL 4yl AFI < 7. repeat
zg € R™ (starting point, not necessarily feasible) IVaLaly i)l < 7 rep

compute yll+ such that £4(yIHAFL 1) < £, KL 1)
MOl € RIEVII (initial " guestimate” of Lagrange multiplier
vector) (using unconstrained minimisation method)

o > 0 (initial value of homotopy parameter) l—1+1

()N, \ O (error tolerance) end



Ul

T+l =Y
A= 30 Bioe) (i€ £UT),
AR max(o, Al (i €71)

choose 41 € (0, pg)

end

e By arguments similar to those in Theorem 2.2 in Lecture 13,

A i) e e gu,
23

e Therefore, we have

Gi(p41) ~ %(AZ[k] - A;"), (ie EUT),

which suggests that if MKl X\* then all constraint residuals
converge to zero like a function o(u;), where

im 200 _

=0 pu
That is, the convergence is much faster than the O(u;) con-
vergence obtained in the quadratic penalty function method.

0.

A quick argument gives insight into why this method can be
expected to converge before uj reaches very small values:

e We have

Vel a(zp1, W, )

=Vf(ogs1) — D (Al[k] - M) Vgi(xp41)-
i€EUT Hk

o Using [|VaLa(@pq1, A, )| < 7, we find

Z(/\Z[k] - M>vgi(ﬂ7k+l) = Vf(zpy1) +O(m).
I

7

Theorem 1: Let z* be a local minimiser of (NLP) where the
LICQ and the first and second order sufficient optimality condi-
tions are satisfied for some Lagrange multiplier vector \*. Then
there exists a constant g > 0 such that z* is a strict local min-
imiser of

min ‘CA(Ia A*a N)
xeR™

for all u € (0, ).



Theorem 2: For (z*,\*) and i as in Theorem 1 there exist
constants M,e,6 > O such that the following is true:

i) If up, <pand
1)
I — xr) < =, (2)
K
then the constrained minimisation problem

min £a(z, A, ) (3)
st. |lz¥—z| <e

has a unique minimiser x4,

Some remarks about this result:

e (3) suggests the use of a trust-region method in the inner
loop of Algorithm (AL).

e Without loss of generality, we may assume that z < (2M) 1.
Note that if (A[k],uk) satisfy the conditions of part i) of the
theorem,

D pr < A,
é
m A <=
1295
and if it is also the case that

1II) z), € Be(z*),

and furthermore,

lo* — apqll < MuglAE — x4, (4)

i) if u, and Al are as in part i) and if Ak is chosen as in

Algorithm (AL), then

AL ) < g AT — A=), (5)

then z, is a feasible starting point for the constrained problem

min £4(z, A, )
s.t. [|[z¥ —z| <e

Furthermore, we have

1) _
I') prt1 < pi < [,
11),(5) )
)y AR xS My = e < 00
Kk B HE41

III') Tp41 c Bg(aﬂ*)

Hence, by induction the relations I), II) and III) hold at every
subsequent iteration j and the assumptions of part i) remain
valid.



e Let kg be the iteration where (4) and (5) first hold,

2 — zpp ]l < Mugl|AF — 2|,

I < Mg AT — .
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Then induction on k£ shows that

1
2]67’(30

[ko] _ y* Recommended Additional Reading: Section 17.4, Nocedal—
A A
Wright.

AT =X, g — 2| < ()~ Fofatiol a7 <

Therefore, z;, — z* and Al*l — X\* at a Q-linear rate if u < [
is held fixed.



