Part 2: Linesearch methods
for unconstrained optimization

Nick Gould (RAL)

minimize  f(x)
zelR"

MSc course on nonlinear optimization

ITERATIVE METHODS

© in practice very rare to be able to provide explicit minimizer
© iterative method: given starting “guess” x, generate sequence
A_ﬂ.&.iJ k= H“wu...
© ATIM: ensure that (a subsequence) has some favourable limiting
properties:
o satisfies first-order necessary conditions

o satisfies second-order necessary conditions

Notation: fi = f(wr), gr = g(w), Hy. = H(zy).

UNCONSTRAINED MINIMIZATION

minimize f(z)
z€R"

where the objective function f : IR" — IR

© assume that f € C! (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary

LINESEARCH METHODS

© calculate a search direction py from xj
© ensure that this direction is a descent direction, i.e.,

gipp <0 if gp #0

so that, for small steps along pi, the objective function
will be reduced

® calculate a suitable steplength oy > 0 so that

far + arpr) < fr
© computation of ay, is the linesearch—may itself be an iteration
© generic linesearch method:

Th+1 = Tk + QEDk



STEPS MIGHT BE TOO LONG
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The objective function f(z) = x? and the iterates zy,1 = Tp + Qppi
generated by the descent directions pr = (—1)*! and steps oy, =
2 +3/2M1 from x = 2

PRACTICAL LINESEARCH METHODS

© in early days, pick a4 to minimize

fzr + apy)
o exact linesearch—univariate minimization
o rather expensive and certainly not cost effective
® modern methods: inexact linesearch

o ensure steps are neither too long nor too short
o try to pick “useful” initial stepsize for fast convergence
o best methods are either

> “backtracking- Armijo” or

> “Armijo-Goldstein”

based

STEPS MIGHT BE TOO SHORT

The objective function f(z) = 2? and the iterates zp,1 = 21 + appy
generated by the descent directions py = —1 and steps ap = 1/2F+!
from xg = 2

BACKTRACKING LINESEARCH

Procedure to find the stepsize a;:

Given aypjy > 0 (e.g.. ajpjt = 1)
let o = Qjpit and [ =0
Until f(xy + QS@S “<
set ol = 1) where 7 € (0,1) (e.g., T

I
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and increase [ by 1
Set ap = alV)

© this prevents the step from getting too small . . . but does not prevent
too large steps relative to decrease in f

® need to tighten requirement

flap+aVp) < fi



ARMIJO CONDITION
In order to prevent large steps relative to decrease in f,
instead require that

flap+aypy) < flay) + axBgipy
for some 8 € (0,1) (e.g., = 0.1 or even § = 0.0001)

f(xeo p)
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SATISFYING THE ARMIJO CONDITION

Theorem 2.1. Suppose that f € C1, that g(x) is Lipschitz con-
tinuous with Lipschitz constant (), that § € (0,1) and that p is
a descent direction at x. Then the Armijo condition
f(x +ap) < f(z) + apg(z)'p
is satisfied for all @ € [0, Qax(s)], where
2(8 = 1)g(x)"p
~(@)lpll3

QEWN -

BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize ay:

Given ajpit > 0 (e.g., apit = 1)

let ¥ = aypi¢ and [ =0

Until f(z;, + aVp,) < f(z;) + a8yl p,
set ") = 70 where 7 € (0,1) (e.g., 7 = 1)
and increase [ by 1

Set ay, = alV)

PROOF OF THEOREM 2.1
Taylor’s theorem (Theorem 1.1) +

208 —1)g(x)"p

o <
v(@)[pll3

)

f(x) + aglz)'p + iy(x)a?|pl?
f(x) +aglz)'p+a(f — Dglx)p
= f(z)+ aBg(x)'p

[z +ap)



THE ARMIJO LINESEARCH TERMINATES

Corollary 2.2. Suppose that f € C!, that g(z) is Lipschitz con-
tinuous with Lipschitz constant 7y at xy, that 8 € (0,1) and that
P 18 a descent direction at xj. Then the stepsize generated by the
backtracking-Armijo linesearch terminates with

27(8 — Cmm?a

Q. 2 min | eyt Yellel[2

GENERIC LINESEARCH METHOD

Given an initial guess zg, let k =0
Until convergence:
Find a descent direction py at xj
Compute a stepsize ay using a
backtracking-Armijo linesearch along py
Set xj41 = ) + aup, and increase k by 1

PROOF OF COROLLARY 2.2
Theorem 2.1 = linesearch will terminate as soon as a!) < apax.

2 cases to consider:
1. May be that «y;t satisfies the Armijo condition = a = )it
2. Otherwise, must be a last linesearch iteration (the {-th) for which

al) > Qmaxy =  Qp > ot = 7o) > T Qmax

Combining these 2 cases gives required result.

GLOBAL CONVERGENCE THEOREM

Theorem 2.3. Suppose that f € C! and that g is Lipschitz con-
tinuous on IR™. Then, for the iterates generated by the Generic

Linesearch Method,

either
g =0 for some [ >0
or
Jim fr = —o0
or

lim min m_@wm»_u _EMS_\__S__& = 0.

k—o00




PROOF OF THEOREM 2.3
Suppose that g # 0 for all k and that lim f; > —oco. Armijo =

k—oo
oo — Jk < Q»Q@MSA

for all K = summing over first j iterations

J T
fimn— o < »Mo 0D G-

LHS bounded below by assumption => RHS bounded below. Sum
composed of -ve terms =

lim ay[pf gy =0

k—o00
Let
27(8 — i pr
Ypell3
where 7 is the assumed uniform Lipschitz constant.

K10k | gy > & K (1,2, 3\ K

METHOD OF STEEPEST DESCENT

The search direction
Pr = —0k

gives the so-called steepest-descent direction.

© py is a descent direction

® pi solves the problem
minimize mj(z, +p) < fi+gfp subject to [pll> = [|gells
Em_Hw:

Any method that uses the steepest-descent direction is a
method of steepest descent.

For k € Ky,
27(3 — Dgi pi

Qg 2
Ylpxll3
- 2r(5 — 1) (g i)’
- - Dk
aprgy < Tu <0
. v [Pl
T
L (1)
keki—o0 || py |l
For k € I,
Qj 2 Qjpit
=
weim |pig,| =0. 2)

Combining (1) and (2) gives the required result.

GLOBAL CONVERGENCE FOR STEEPEST DESCENT

Theorem 2.4. Suppose that f € C! and that g is Lipschitz con-
tinuous on IR™. Then, for the iterates generated by the Generic
Linesearch Method using the steepest-descent direction,

either
g, =10 for some [ >0
or
lim f; = —o0
k—oo
or
¢ 9 =0




PROOF OF THEOREM 2.4
Follows immediately from Theorem 2.3, since

min (Ipf g, [pf gl /Ipells) = llgllo min (1, (g, )

and thus
lim min A_%M,Sﬂ_“ _@Mm»_\__%w__mv =0

k—o00

implies that limg_, g = 0.

STEEPEST DESCENT EXAMPLE
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Contours for the objective function f(z,y) = 10(y — 2%)? + (z — 1)%,
and the iterates generated by the Generic Linesearch steepest-descent

method

METHOD OF STEEPEST DESCENT (cont.)

© archetypical globally convergent method

© many other methods resort to steepest descent in bad cases
© not scale invariant

® convergence is usually very (very!) slow (linear)

® numerically often not convergent at all

MORE GENERAL DESCENT METHODS

Let By be a symmetric, positive definite matrix, and define the
search direction py, so that

Bipr = — gk
Then
© py, is a descent direction
© py solves the problem
minimize m(z, +p) Y fi + gfp + ip" Bip

peIR™

© if the Hessian Hj, is positive definite, and By, = Hj, this is
Newton’s method



MORE GENERAL GLOBAL CONVERGENCE

either

or

or

Theorem 2.5. Suppose that f € C'! and that g is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic
Linesearch Method using the more general descent direction,

g, =0 for some [ >0

Jim_ fi, = —o0
»ﬁlﬁomw =0

provided that the eigenvalues of Bj are uniformly bounded and

bounded away from zero.

Thus

_EWQL > Amin
[Pkl — Amax

_Ew:m

_ml_w

yENKﬂ

min (Amin, |95 /|2)

min A_@wS._“ _@me /Iy MV =

“_@MQL\__@»_E =0

Jim i (i

lim gL = 0.

k—o00

PROOF OF THEOREM 2.5
Let Amin(Bk) and Apax(By) be the smallest and largest eigenvalues of
By.. By assumption, there are bounds Apin > 0 and Ayax such that

sT Bys
V,BE m v:asﬁm\av m % m yE@xAmwv m v::@x
and thus that
1 1 1 mﬂm\wfm 1 1 1
\/mﬁx < yﬂciﬁmwv = v:azﬁmm v < < v,meAm\M v = ym&xmwv < v,m?

oSl T
for any nonzero vector s. Thus

kgl = 195 Bi el = Auin( B llgill3 = Aicell gl
In addition

5= 01 Bi gk < Auax( B gell3 < Al grll3,

:?

I1pells < Antullgell

MORE GENERAL DESCENT METHODS (cont.)

© may be viewed as “scaled” steepest descent
® convergence is often faster than steepest descent

® can be made scale invariant for suitable By,



CONVERGENCE OF NEWTON’S METHOD

whenever possible, has a lir
definite. Then

(i) ap = 1 for all sufficient
(i) the entire sequence {x

(iii) the rate is Q-quadrati

Theorem 2.6. Suppose that f € C? and that H is Lipschitz
continuous on IR". Then suppose that the iterates generated by the
Generic Linesearch Method with a3 = 1 and 8 < §, in which the
search direction is chosen to be the Newton direction p, = —Hj 'g,.

nit point x, for which H(z,) is positive

ly large k,
&} converges to x,, and

¢, i.e, there is a constant k > 0.

Taylor’s theorem = dz; between x; and xj + pj. such that

flog+pp) =

.\.ﬁ + %MQF + wﬁwmAN\avﬁw

Lipschitz continuity of H & Hypr + g = 0 =

[l +pp) — fo — kg, =

<

Now pick & sufficiently large

Y(pEgr + pEH (ze)py)
{(phgr + ok Hipy,) + 3(pf (H(z) — Hy)py,)
Wllzk — zellallpll3 < 3yllpell3

(4)

so that

Yprll2 < Ain(H)(1 = 28).

+(3)+4) =

fl@y+pp) — fi <
<

= unit stepsize satisfies th

wﬁwm\ﬂ +%§EQ&LCI M\QV__BL_W
Y1 —(1—26))pig, = Bri g

e Armijo condition, which proves (i).

PROOF OF THEOREM 2.6

Consider \Wm:mﬁq = x,. Continuity = H}, positive definite for all k € K

sufficiently large = Jko > 0:

@Mm%w 2 C::Emm*v__?a__w
Vko < k € K, where A\yin(H,) = smallest eigenvalue of H(z,) =

Pk gl = —phgr = PLHWD = min () |[pell5- (3)
Vko < k € K, and
wm_\ﬂaﬁoo@w =0

since Theorem 2.5 = at least one of the LHS of (3) and

pigel _  pio
pell2 Nkl
converges to zero for such k.

> wv:izmm*v __ﬁw__w

To obtain the remaining results, note that |Hy ||y < 2/Auin(H,) for
all sufficiently large k& € IC. The iteration gives

Thet — Ty = T — T — Hy g = 2, — 2o — Hi ' (g — g(4))
= Hi'(g(@.) — g — Hi(we — a)) -
But Theorem 1.3 =
lg(x) = gr — Hie (2 — @) [l < vllwe — a3
_—
ki1 = zlly < AIH ol — 23
which is (iii) when k = 27/ Apin(H).

Result (ii) follows since once iterate becomes sufficiently close to .,
(iil) implies that next is even closer.



NEWTON METHOD EXAMPLE
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Contours for the objective function f(z,y) = 10(y — 2%)? + (z — 1)%,
and the iterates generated by the Generic Linesearch Newton method

QUASI-NEWTON METHODS

Various attempts to approximate Hy:
© Finite-difference approximations:
(Hiei = h™Y(g(x) + hei) — g3)
for some “small” scalar A > 0
© Secant approximations: try to ensure the secant condition

Hi 151 =y, where s = xp1 — 2 and yp = gry1 — G

o Symmetric Rank-1 method (but may be indefinite or even
fail):

(yx — Hysi)(yx — Hesi)”

(yr — Hys) sy

o BFGS method: (symmetric and positive definite if y/ s, > 0):

Yryi . Hysysit H,,

Hypp = Hp +

Hpy = Hp +
yts, st Hysy,

MODIFIED NEWTON METHODS

If Hy is indefinite, it is usual to solve instead
(Hi + Mi)pr = —gi
where
©® My, chosen so that Hy + M, is “sufficiently” positive definite
© My =0 when Hy, is itself “sufficiently” positive definite

Possibilities:
o If Hy has the spectral decomposition H, = Q,.D, Q% then
Hy+ My, = Qpmax(e, | D) Q.

© M, = max(0, € — Ayin(Hy)) I
® Modified Cholesky: H, + M, = L, L}

MINIMIZING A CONVEX QUADRATIC MODEL

For convex models (B}, positive definite)

pr = (approximate) arg min fj, + %ﬂb\w + W@ﬂm%
pelR”

Generic convex quadratic problem: (B positive definite)

(approximately) minimize ¢(p) = p’ g + ip’ Bp
peIR"



MINIMIZATION OVER A SUBSPACE

o Di=(d":---:d™
® Subspace D' = {p | p= D'py for some p; € IR’}

© p' = arg min q(p)
ﬁmﬁ&.

= D'Tg =0, where ¢' = Bp' + g
o pleD
= p' = p'~ 1 + Dipj, where
pa= arg minpg D' g™t + 4 DT BD'p,
Pa€R o . . . ,
— |Abﬁ ﬂmbﬂv\wb& H.QN\H — |%\H H.QN\;.U& ﬂmbﬁv\ym&
— pi=p = A TG DI(DITBD) e,

CONJUGATE-GRADIENT METHOD

Given p’ =0, set ¢" =g, d’ = —g and i = 0.
Until ¢¢ “small” iterate

QN. _ |.Q~. ﬂ&&\&& ﬂm&&

Pt = pi 4 oid

g = ¢ + o/ Bd'

5 = g3/ Ig' 13

&il — |.QTI + Qs&s

and increase ¢ by 1

Important features
o dTgtt=0forall j=0,...,i = o' =|g'|3/d'"Bd
o g lgt =0foral j=0,...,i

)

© g'p' <0fori=1,...,n => descent direction for any p, = p

MINIMIZATION OVER A CONJUGATE SUBSPACE

Minimizer over D': p' = p'~! — d 1 T¢I D{(D'TBD) e,
Suppose in addition the members of D’ are B-conjugate:
© B-conjugacy: d! Bd; =0 (i # j)

= p'=p ' +a'"'d"7! where

&@.IH ﬂ.Q@IH

T Ji-1T Bgi-1

QSIH —

Building a B-conjugate subspace

Since ¢' is independent of D', let d' = —¢g' + 5 GYd
=0
® choose % so that d' is B-conjugate to D"

lgill3

“VQS =0 A.w <i-— an QN.N.IH MQNH __.Q H:w
=112

CONJUGATE GRADIENT METHOD GIVES DESCENT

) . ) . . i—2 . . .
.QSIH\H&&IH _ &NIHHAQAT@@NIJ _ &&IH \H.Q+§WUOO§.&NIH\Hm&m _ &NIH H.Q

p' minimizes ¢(p) in D' =

i il g~ Ta! s S g'd! P
p=» di—1T Bgi-1 =P d—1TRgi—1%" -
= T 7i—1)2
T i _ T i—1 _ (g7d™)
gp=9Pp di—1 T Bi-1’
= ¢'p' < g"p'~! = (induction)
,Qﬂ@ﬁ. <0
since : __»
T 1 9ll2
g'p =- <0
9"Bg

— p. = p' is a descent direction



