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Solution to Problem 1.
(1) We have

(B+UVY)(B'-B'ua+vTB'U)"'vTB )
=1-Uv1+v'B'U)y"'WrB ' +UuvtBT —U(V'BTU)(1+VBT'U) VB!
=1-U(I+V'B~'U)1+V'B'U)"'W VBT + UV B!

=1-UV'B'+UVTB ! =1.

(ii) We observe that we never used the condition m < n in part (i). Therefore,
the SMW formula should be applicable to

(I+VT(BU) " =1-1VT(1+B " UIVT) !B UT=1-VT(B+UVT)"'U,

which suggests that I +VTB~1U is invertible. We can easily check this by multiplying
the above result with I+VTB~'U:

(I+vi(B'U)I-v(B+UV")'U)
=1-viB+UuvhH U+ vIBlU -V'BlUVT(B+ UV U
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Solution to Problem 2.
(i) We have

q(z) = flaze) + Vf(ze) " (z — ap) + %(x —23) V2 f(z1) (2 — xp).
(ii) Vg(z*) = 0 implies
* = — V2 f(2r) V f(or).

Since V2q(x) = V2f(x;) = 0 for all x € R", the second order sufficient optimality
conditions hold at a*, and z* is the global minimiser of g(x).
(iii) #* — xy, is exactly equal to the Newton-Raphson step for f applied at .



Solution to Problem 3.

(i) f is strictly convex because V2f(z) = Diag(k,1) = 0. Moreover, Vf(0) =
Diag(x,1)0 = 0, thus z* = 0 is a local minimiser because the 2nd order sufficient
optimality conditions hold there. Finally, since f is strictly convex, this function has
a unique local minimiser, which is also its global minimiser.

(ii) Arguing inductively, suppose z; = 7(e, k)T, where 7 > 0 and e = (—1).
Then Vf(z) ~ (e,1)T, so the search direction d = (—e, —1)T is a positive scalar
multiple of the steepest descent direction. If ay, = (2k7)/(k + 1) we find that

k—1 [—e
= d = .1
Tht1 Tk + Qpdi T/@—|—1<Ii) (0 )

and then Vf(zx11) ~ (—e,1)T L dg. Therefore, the step length aj corresponds to
an exact line search. Using the formula (0.1) inductively, we find

T = (::L ‘Dk <(_i)k> Vk € No.

(iii) The convergence is Q-linear because

|Z+1 — 2| k=1
- = = < 1.
p Kk+1
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(iv) Expressed in the new coordinates, the objective function becomes

9(y) = f(2(y)) = % <<KO; (1)> y)T <g (1)) ((Hoé (1)) y> - %yTy,

and the starting point is yy = Diag(/{%, Dz = (/ﬁ ,k)T. The steepest descent direc-
tion at yo is dy = —Vg(yo) = —yo. Therefore, the exact line search corresponds to
the step length ag = 1 and leads to the global minimiser y* = 0 in one step.

(v) We find zp = (k + x2)~2(1,1)T and

b= alo) = 37 (5 1)+

This is the same situation as analysed in (i), with x = 1 and 7 = (k + x2)~2. There-
fore, (0.1) shows that z; = 0 = z*. Thus, again we have convergence in one step.

Solution to Problem 4.

(i) The secant equation is BE+1)§ = ~. The validity of this equation is checked
by direct calculation.

(ii) Let f(z) = ¢+ b2 + 32T Gz. Then

v=(b+ Gm‘(k+1)) —(b+ Gm(k)) — G(x(k'H) _ x(k)) e
2



and n = (G — B®)4. Therefore,
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(iii) We have
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(iv) B*) can become singular and the algorithm may not be able to compute a

quasi-Newton step.



