
SECTION C: CONTINUOUS OPTIMISATION

PROBLEM SET 3

HONOUR SCHOOL OF MATHEMATICS, OXFORD UNIVERSITY

HILARY TERM 2006, DR RAPHAEL HAUSER

Instructions: Problem 2 is not mandatory, since it is not asterisked, but it is provided
as an additional exercise for exam preparations.

*Problem 1. Consider applying the conjugate gradient algorithm to the uncon-
strained minimisation problem minx∈Rn f(x), where f(x) = xTBx + bTx + a and B
is a positive definite symmetric n × n matrix.

(i) Using the fact that x1 = x0 + α0d0, show that

∇f(x1) ∈ span{∇f(x0), B∇f(x0)}.

(ii) Generalise this result and show by induction that

∇f(xk) ∈ Kk := span{∇f(x0), B∇f(x0), . . . , B
k∇f(x0)}

for k = 0, . . . , n. The spaces Kk are called Krylov subspaces. Hint: in the
proof of Lemma 2.3 of Lecture 5 we showed that

span{d0, . . . , dk} = span{∇f(x0), . . . ,∇f(xk)}. (0.1)

(iii) Now let B = I +A where rank(A) = r. Show that

Kk = span{∇f(x0), A∇f(x0), . . . , A
k∇f(x0)}.

(iv) Show that Kk can be at most r + 1 dimensional.
(v) Using part (iv) of this exercise and an equation derived in the proof of Lemma

2.3 from Lecture 5, show that the conjugate gradient algorithm must termi-
nate after at most r + 1 iterations at an iterate that corresponds to the
minimiser of f .

Problem 2. Let ‖ · ‖N : R
n → R be a norm, that is,

‖x‖N ≥ 0 ∀x ∈ R
n,

‖x‖N = 0 ⇔ x = 0,

‖λx‖N = |λ|‖x‖N ∀x ∈ R
n, λ ∈ R,

‖x + y‖N ≤ ‖x‖N + ‖y‖N ∀x, y ∈ R
n.

(i) Show that the unit ball B1 := {x ∈ R
n : ‖x‖N ≤ 1} is a convex set.

(ii) Consider a trust region method with trust region Rk = xk + ∆kB1, that is,
Rk is the unit ball B1 dilated or shrunk by a factor ∆k and moved so that
its centre lies at xk. Now let

φ(α) = f(xk) − α∇f(xk)T∇f(xk) +
α2

2
∇f(xk)TBk∇f(xk),

1



and consider the numbers αu
k = argminα≥0 φ(α) and

αc
k = arg min

α≥0
φ(α)

s.t. ‖xk − α∇f(xk)‖N ≤ ∆k.

We call yc
k = xk − αc

k∇f(xk) the Cauchy point, just as we did in the case
of the Euclidean norm ‖ · ‖2. Show that φ is strictly decreasing and α 7→
‖xk − α∇f(xk)‖N strictly increasing over the interval [0, αu

k ].
(iii) Use the results of (ii) to derive a formula for the Cauchy point.

*Problem 3. Under the assumptions of Theorem 1.2 of Lecture 6, prove that if
∆k ≥ ε

14β
for k = 0 then this inequality holds true for all k.

*Problem 4. Prove Claim 2 in the proof of Theorem 1.2 from Lecture 6 under the
additional assumption that ∆0 ≥ ε

14β
. That is, in the case where ‖∇f(xk)‖ ≥ ε for

all k, prove that whenever xk+1 = yk+1 occurs, we have

f(xk+1) − f(xk) ≤ −
ηε2

28β
.

We cut the proof into several stages as follows:

(i) Show that if ∇f(xk)TBk∇f(xk) ≤ 0, then

mk(xk) − mk(yc
k) ≥

ε2

14β
.

Hint: use the result of Problem 3 and formula (1.6) from Lecture 6.
(ii) Show that if ∇f(xk)TBk∇f(xk) > 0 and αc

k = ‖∇f(xk)‖2/∇f(xk)TBk∇f(xk)
then

mk(xk) − mk(yc
k) ≥

ε2

2β
.

(iii) Show that if ∇f(xk)TBk∇f(xk) > 0 and αc
k = ∆k/‖∇f(xk)‖ then

mk(xk) − mk(yc
k) ≥

ε2

28β
.

Hint: Use the fact that in this case

0 < αc
k =

∆k

‖∇f(xk)‖
<

‖∇f(xk)‖2

∇f(xk)TBk∇f(xk)

and exploit the convexity of the line-search objective function.
(iv) Why are these all the different cases we need to consider for bounds on

mk(xk) − mk(yc
k)?

(v) Conclude that Claim 2 is true.
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