Part 4: Interior-point methods
for inequality constrained optimization

Nick Gould (RAL)

minimize  f(x) subject to ¢(x) >0
zeR"

MSc course on nonlinear optimization

CONSTRAINED MINIMIZATION

v

minimize f(z) subject to ¢(x)
zelR"

where the objective function f : IR" — IR
and the constraints ¢ : [R" — IR™

© assume that f, ¢ € C! (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary




CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:
© minimize the objective function f(z)

© satisfy the constraints

Overcome this by minimizing a composite merit function &(z,p)
for which

© p are parameters

© (some) minimizers of ®(x, p) wrt & approach those of f(z) subject
to the constraints as p approaches some set P

© only uses unconstrained minimization methods

AN EXAMPLE FOR EQUALITY CONSTRAINTS

minimize f(z) subject to ¢(x) =0
z€R"

Merit function (quadratic penalty function):

1
Oz, p) = flz) + EHC(SU)H%
© required solution as p approaches {0} from above

© may have other useless stationary points



A MERIT F* FOR INEQUALITY CONSTRAINTS

minimize f(z) subject to ¢(x) >0
zeR"

Merit function (logarithmic barrier function):

O, 1) = fla) = p % logeife)

© required solution as p approaches {0} from above

© may have other useless stationary points

© requires a strictly interior point to start

® consequent points are interior

CONTOURS OF THE BARRIER FUNCTION

0.4

0.2

\
\
|

0 I I I I Ll 1 I I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

1=10 n=1

Barrier function for min z% + x3 subject to z1 + 23 > 1



CONTOURS OF THE BARRIER FUNCTION (cont.)
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BASIC BARRIER FUNCTION ALGORITHM

Given pg > 0, set k=0
Until “convergence” iterate:
Find z}, for which ¢(x3) >0

Starting from x7, use an unconstrained
minimization algorithm to find an
“approximate” minimizer xy of ®(z, uy)

Compute py11 > 0 smaller than py such
that limy_,o ptr+1 = 0 and increase k£ by 1

® often choose 1 = 0.1uy or even pigq = ,LL%

© might choose x}.,; = ;.




MAIN CONVERGENCE RESULT

The active set A(x) ={i | ¢;(x) =0}

Theorem 4.1. Suppose that f, ¢ € C2 that (y3); < pe/ci(xr)
fori=1,...,m, that

|V @ (g, i) |2 < €

where €, converges to zero as k — oo, and that xj; converges to x,
for which {a;(2.) }ic a(z,) are linearly independent. Then x, satisfies
the first-order necessary optimality conditions for the problem

minimize f(z) subject to ¢(z) > 0
reIR"

and {y;} converge to the associated Lagrange multipliers ..

PROOF OF THEOREM 4.1
Let M& {1, m}, AY (i | cz(m: }andzdefM\A

Generalized inv. A%(z) (Aa(z ) ) bounded near .
Define
e
()i = i € M, (y)a= Al(w)gla.) and (y.)z = 0.
ci(zxy)
Iwr)zll2 < 2021/ min |ei(z.))| (1)

(if Z # () for all sufficiently large k. (1) + inner-it. termination =

lg(zy) — A£($k>(yk>,4||2 < llg(zy) — AT<5’7k)?Jk||2 + HAI<:UIC><yk)1'H2
< oty 2TlAL

mmzez |ci(xy)]

(2)
= || Ah(zp)g(z)) = () all2 = NAL@)(g(2) — Al (W) 4l
< 2||A%(@) [|€x
= [[(W)a — (W) all2
< [[AL(z)g(,) — Az g(zp)ll + A4 (T g(z) — (yr)all2



+ (1) = {yr} — y.. Continuity of gradients + (2) =
g(z.) — A(w)y. =0

c(xg) > 0, defs. of yp and ys + ¢i(xp)(yr)i = ppr =
c(xy) >0,y > 0 and ¢;(z4)(ys)i = 0.
—> (x4, ys) satisfies the first-order optimality conditions.

ALGORITHMS TO MINIMIZE ®(x, )

Can use
® linesearch methods

o should use specialized linesearch to cope with singularity of log
® trust-region methods

o need to reject points for which e(xy + sg) # 0

o (ideally) need to “shape” trust region to cope with contours of
the singularity



GENERIC BARRIER NEWTON SYSTEM

Newton correction s from z for barrier function is

(H(z,y(x)) + pA” (2)C(2)A(z))s = —g(z, y(2))

where

o C(z) = diag(ci(x), ..., cn(T))

© Lagrange multiplier estimates: y(z) = uC~(z)e

where e is the vector of ones

o g(z,y(x)) = g(x) — AT(2)y(z): gradient of the Lagrangian
o H(z,y(z)) = H(x) = 3 yi(x)H(x)

Sometimes written as

(H(z,y) + A (2)CH2)Y (2)Ax)) s = —g(z,y(z))
or (H(z,y) + LAT(2)Y*(2)Alz)) s = —g(x, y(x))

where

o Y(x) = diag(yi(x), . ., ym(x))

POTENTIAL DIFFICULTIES I

Ill-conditioning of the Hessian of the barrier function:

roughly speaking (non-degenerate case)

© m, eigenvalues ~ N (ALY 3A )/

© n —m, eigenvalues &~ N\;(N{H (x, y,)N )
where

m, = number of active constraints

A = active set at z,

Y = diagonal matrix of Lagrange multipliers
N 4 = orthogonal basis for null-space of A4

— condition number of V., ®(zk, pr) = O(1/ )
—> may not be able to find minimizer easily



POTENTIAL DIFFICULTIES 11

Value z;_ , = z, is a poor starting point: Suppose
0~ Vo O(zk, pur) = g(wr) — A" (2)C Hap)e
~ g(xy) — pp Aly(xr) O (zp)e
Roughly speaking (non-degenerate case) Newton correction satisfies
P A (@) 3P (x) A () & (g — ) Aul)C ol (zy)e

— (full rank)

AA(JIk)S ~ (1 - Hi
ME+1

Jeatan

— (Taylor expansion)

Mk
Mi+1
if pp1 < $ppr = Newton step infeasible = slow convergence

calzy +8) & cqlwy) + Aglzg)s =~ (2 — ) calzr) <0

PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize f(z) subject to c(z) >0

reIR"
are:
g(z) — AT(2)y =0 dual feasibility
C(z)y =0 complementary slackness

c(x) >0 and y >0

Consider the “perturbed” problem

g(z) — Al(z)y =0 dual feasibility
C(x)y = pe perturbed comp. slkns.
c(z) >0 and y >0

where p > 0



PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of
g(z) — AT (2)y =0 and C(2)y — pe =0
as 0 < p — 0, while maintaining ¢(z) > 0 and y > 0

© nonlinear system = use Newton’s method

Newton correction (s, w) to (x,y) satisfies

(H(%w — AT (z) ) ( s ) - (g(x) - AT(%)?J)
YA(x) C(x) w C(z)y — pe

Eliminate w =
(H(x,y) + AT (2)C )Y A(x)) s = — (g(z) — pAT (2)Ce)

c.f. Newton method for barrier minimization!

PRIMAL VS. PRIMAL-DUAL

Primal:
(H(z,y(z)) + AT (2)CH(2)Y (2)A(2)) 8" = —g(,y(x))
Primal-dual:
(H(z,y) + A" (2)C™H(2)Y A(z)) s = —g(, y(x))

where

What is the difference?

® freedom to choose y in H(z,y) + AT (x)C~Hx)Y A(z) for
primal-dual ... vital



POTENTIAL DIFFICULTY II ... REVISITED

Value x}_, = x, can be a good starting point:
© primal method has to choose y = y(x}) = pup1C e
o factor pyy1/p too small for a good Lagrange multiplier estimate
© primal-dual method can choose y = 1xC ™ (zr)e — v,
Advantage: roughly (non-degenerate case) correction s satisfies
pp AU () O3 (@) A u() 8™ = (pgy — ) A(2)C 3 (e
— (full rank)

AA<$k>8PD ~ (@ —1
Mk

calzr)

— (Taylor expansion)

M+1
Hk:

—> Newton step allowed = fast convergence

CA<:L’k + SPD> ~ CA<£Uk) + AA<£Uk)SPD ~ CA(ZCk) >0

PRIMAL-DUAL BARRIER METHODS

Choose a search direction s for ®(z, ) by
(approximately) solving the problem

mineilr;ize g(z,y(x))' s+ 1s" (H(x,y) + AT (2)C N z)Y A(x)) s

possibly subject to a trust-region constraint
o y(@) = pC=(z)e = g(z,y(z)) = Vo 0(z, 1)

Oy=...
o y(x) = primal Newton method
o occasionally (ug—1/pr)y(x) = good starting point
o Yo' 4w = primal-dual Newton method

o max(y®™ + w e(u)e) for “small” e(uy) > 0
(e.g., €(uy) = pp°) = practical primal-dual method



POTENTIAL DIFFICULTY I... REVISITED

Ill-conditioning #=we can’t solve equations accurately:

roughly (non-degenerate case, Z = inactive set at x)

—

H —AT)\ (s g— ATy
= — :>
YA C w Cy — e
H —Ay —A7\( s 9= Alya— ALy
YzA; 0 C7 Wz Cryr — pe
H+A7CT'WYiAr —Aj V([ s | _ (9 Alya—nACr'le
AA CAYVZI ’U}A N CA — /’LY,,Zle

® potentially bad terms C7' and Y ;! bounded

® 1in the limit becomes well-behaved
H —Aﬁ ) ( S

A.A 0 U}A 0

:_(Q_Aﬁy./l)

PRACTICAL PRIMAL-DUAL METHOD

|

Given o > 0 and feasible (x), yg), set k =0
Until “convergence” iterate:
Inner minimization: starting from (z3,y}), use an

unconstrained minimization algorithm to find (zy, yx) for which

1C(zr)yr — pwel| < i and [|g(zg) — AT (z)yel| < p

Set fy,q = min(0. 1z, p1}%)

1.00005
k

Find (2}, vj,1) using a primal-dual Newton step from (z, yj)

If (z71,9}.,) is infeasible, reset (31, v}.,) to (Tk, Ys)
Increase k by 1




FAST ASYMPTOTIC CONVERGENCE

Theorem 4.2. Suppose that f, ¢ € C?, that a subsequence
{(zk,yx)}, k € K, of the practical primal-dual method converges to
(4, ys) satistying second-order sufficiency conditions, that A 4(x,)
is full-rank, and that (y,) 4 > 0. Then the starting point satisfies the
inner-minimization termination test (i.e., (xx, yx) = (x3,y;)) and
the whole sequence {(zy, yr)} converges to (z,,y.) at a superlinear
rate (Q-factor 1.9998).

OTHER ISSUES

® polynomial algorithms for many convex problems

o linear programming
o quadratic programming

o semi-definite programming . ..
© excellent practical performance

© globally, need to keep away from constraint boundary until near
convergence, otherwise very slow

© initial interior point:

minimize ec subject to ¢(z) +¢ >0
()



