7/17/2009

PLASMA and Scheduling
Dense Linear Algebra on
Multicore Chips

Jack Dongarra

University of Tennessee
Oak Ridge National Laboratory
University of Manchester

http://www.research.ibm.com/
http://www.research.ibm.com/
http://www.research.ibm.com/

= Argonne ~1976 (IFIPS WG 2.5)

'..‘ b ‘ -

raf

’2::

Gatlinburg Meeting 1981, Oxford

Looking at the Gordon Bell Prize

I (Recognize outstanding achievement in high-performance computing applic
and encourage development of parallel processing)

- ."‘!

1 GFlop/s; 1988; Cray Y-MP; 8 Processo
Static finite element analysis
1 TFlop/s; 1998; Cray T3E; 1024 Processors

Modeling of metallic magnet atoms, using afisies
variation of the locally self-consistent multlp_ =
scattering method.

1 PFlop/s; 2008; Cray XT5; 1.5x10° Processors
Superconductive materials

1 EFlop/s; ~2018:; ?; 1x107 Processors (10°

+thraoanAdc)

Performance Development In
Top500

1 Eflop/s

100 Pflop/s
10 Pflop/s

1 Pflop/s
100 Tflop/s

10 Tflop/s

1 Tflop/s |
100 Gflop/
10 flop/}
* 1£lop/s .

100 Mflop/s

O
()
o
—

1994
1998
2000
2002
2004
2006
2008
2010
2012
2014
2016
2018
2020

N

e 33rd LlSt The TOP].O (core overloaded term)

0
Rank Site Computer Country ((P:E)Orgz) ['IF'?‘T;E);] P/Oegli
DOE / NNSA Roadrunner /' IBM
d Los Alamos Nat Lab BladeCenter Q522/L521 i 127,604 1105 76
DOE / Os Oak Jaguar / Cray ,
e Ridge Nat Lab Cray XT5 QC 2.3 6Hz vEs tpes Lpsl | a7
Forschungszentrum Jugene /' IBM]
& Juelich (FZJ) Blue Cene/P Solution Germany | 294914 625 | &2
NASA / Ames Research Pleiades / SGI
v Center/NAS SGI Altix ICE 8200EX ve 51,209 460 | 77
DOE / NNSA BlueGene/L IBM j
4 Lawrence Livermore NL | eServer Blue Gene Solution cod 212,992 478 80
NSF Kraken / Cray
¢ | NIesw of Tennessee Cray XTH QC 2.3 GHz usA LaLy 7
DOE / Os Argonne Intrepid / IBM
4 Nat Lab Blue Gene/P Solution] 163,840 458 82
NSF Ranger / Sun
< TACC/U. of Texas SunBlade x6420 v 62979 433 | 75
DOE / NNSA Dawn /' IBM
7 Lawrence Livermore NL Blue Gene/P Solution VA 147459 415 83
10 Forschungszentrum JUROPA /Sun - Bull SA Germatty 26,304 274 89

Juelich (FZJ)

NovaScale /Sun Blade

)
<~ Numerical Linear Algebra Library

* Interested in developing numerical
library for the fastest, largest
computer platforms for scientific
computing.

* Today we have machines with 100K
of processors (cores) going to 1M in
the next generation

* A number of important issues must
be addressed in the design of
algorithms and software.

N

<~ Something’s Happening Here...

10,000,000 .

Sutter, and B. Smith

From K. Olu kotun,LL. Hammond, H.

1,000,000 : /
A hardware issue just became a .
100,000 —2 goftware problem
10,000
1,000

100 / /
)&

1 / . —

0

e Clock Speed (MHz)
4 Power (W)
@& Perf/Clock (ILP)

| I |

m Transistors (000) | —

1970 1975 1980 1985 1990 1995

2000 2005 2010

In the “old
days” it was:
each year
processors
would become
faster

Today the clock
speed is fixed or
getting slower

Things are still
doubling every
18 -24 months

Moore’s Law
reinterpretated.

= Number of cores
double every
18-24 monghs

ICLOr"

Major Changes to Software

e Must rethink the design of our
software

= Another disruptive technology

 Similar to what happened with cluster
computing and message passing

= Rethink and rewrite the applications,
algorithms, and software

« Numerical libraries for example will
change

* For example, both LAPACK and
ScaLAPACK will undergo major changes
to accommodate this

£ A New Generation of Software:

ICcLOr"

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s) Rely on
(Vector operations) - Level-1 BLAS
operations

£ A New Generation of Software:

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

ICcLOr"

LINPACK (70’s)
(Vector operations)

LAPACK (80’s)
(Blockjng, cache

Software/Algorithms follow hardware evolution in time

A

Rely on
- Level-1 BLAS
operations

Rely on
- Level-3 BLAS

£ A New Generation of Software:

ICcLOr"

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

LINPACK (70’s)
(Vector operations)

LAPACK (80’s)
(Blocking, cache
friendly)

Software/Algorithms follow hardware evolution in time

A

Rely on
- Level-1 BLAS
operations

Rely on
- Level-3 BLAS
operations

& A New Generation of Software:

IcLOr-"

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s) : Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80’s) Rely on

(Blocking, cache - Level-3 BLAS

friendly) . operations

ScaLAPACK (90’s) Rely on

(Distributed Memory) - PBLAS Mess Passing

PLASMA (00’s) Rely on

New Algorithms - a DAG/scheduler

(many-core friendly) - block data layout

, - some extra kernels
Those new algorithms

- have a very low granularity, they scale very well (multicore, petascale computing, ...)
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and relv on efficient scheduling algorithms.

N
“* Coding for an Abstract Multicore

Parallel software for multicores should have

two characteristics:

* Fine granularity:
« High level of parallelism is needed

« Cores will probably be associated with relatively small local
memories. This requires splitting an operation into tasks that
operate on small portions of data in order to reduce bus traffic
and improve data locality.

 Asynchronicity:
« As the degree of thread level parallelism grows and granularity
of the operations becomes smaller, the presence of

synchronization points in a parallel execution seriously affects
the efficiency of an algorithm.

< Steps in the LAPACK LU

DGETF2 LAPACK
(Factor a panel)

DLSWP l LAPACK
(Backward swap) ‘

DLSWP ﬂ LAPACK
(Forward swap) /\

- DTRSM l l l l BLAS
(Triangular solve)
>

DGEMM | l l l l BLAS
(Matrix multiply) -
@

\/

N : : :
~. Fork-Join vs. Dynamic Execution

ﬂ I [. Fork-Join — parallel BLAS
"HENEEEE NEEEEEE NENEEEE DEGEEEE DNEEEEEE NEEEEER

HEEEEEEN NENEEEE NEEEEEE DNENEEEE NEEEEER

LTI T

}E

Experiments on
Intel’s Quad Core Clovertown
with 2 Sockets w/ 8 Treads

6
< Parallel Tasks in LU

N -SEEE . mmm

-lullliill“: ll‘{:l N

H OO | o .
T

= A

~. Fork-Join vs. Dynamic Execution

o

ﬂ D. [. Fork-Join — parallel BLAS
@

1111

Time

® @ DAG-based — dynamic scheduling

|

Time
saved

Experiments on
Intel’s Quad Core Clovertown
with 2 Sockets w/ 8 Treads .

e
 Parallel Tasks in LU

m Step 1: LU of block 1,1 (w/partial pivoting)

)

A

= Parallel Tasks in LU

‘ Step 1: LU of block 1,1 (w/partial pivoting)

- Step 2: Use U, , to zero A, , (w/partial pivoting

N

A

IcLOr-"

Parallel Tasks in LU

A

Step 1: LU of block 1,1 (w/partial pivoting)

Step 2: Use U, , to zero A, , (w/partial pivoting

N

A

= Parallel Tasks in LU

‘ Step 1: LU of block 1,1 (w/partial pivoting)

Step 2: Use U, , to zero A, , (w/partial pivoting

Step3: Use U, ; to zero A, ; (w/partial pivoting

{\

< Residual from PLASMA’s Tiled LU

H 10240
' N=9216
. N=8192
. N=T168
MN=6144
01 | N=5120
- N=4096 - &
L N=3072 iy
| N=2048 - ¥
N=1024 ¥

0.01 | -

0.007 ° :
0 2 B G 8

log2(NT)
Random Matrices NT (Number of Tiles)

{\

“= Residual Comparison with LAPACK

1000

< - N=10240

S - N=9216

o N=8192

3 N=7168

= N=G1d4 =

3 100 | N=5120 T
g : H=4DEIE' " . & I
kS N=3072 4 '
~ N=2048 - P

<§: N=1024 et : ’
n 10| —

< : . .

— -

o .

E =5

o

O |

@ |

log2(NT)

c

ICL

- DGETRF - Intel64 - 16 cores

Gflop/s

140

120

100

80

60

40

20

DGETREF - Intel64 Xeon quad-socket quad-core (16 cores) - th. peak 153.6 Gflop/s

2000

4000

6000

Matrix size

8000

10000

12000

DGEMM
==PLASMA

Intel MKL 10.1
=#=SCALAPACK
== APACK

14000

< Tile QR Algorithms

DGEQRT DLARFB DLARFB

N < NN

DTSQRT DSSRFB DSSRFB
C1
< <=l] <
DTSQRT DSSRFB DSSRFB

N
‘i N N

FOR k = 0..TILES-1 . .
ALKILK], TIKI[k] « DGRQRT(ALKIIK]) input matrix stored and processed by

FOR m = k+1.TILES-1 square tiles
AILKI[K], AImI[k], TIm][k] « DTSQRT(A[KI[K], AImI[k], TIm][k])
FOR n = k+1..TILES-1
ALKI[n] « DLARFB(A[KIIK], TIK]IK], ALk][n])
FOR m = k+1..TILES-1
A[KI[n], Alm][n] « DSSRFB(A[m][k], T[m][Kk], A[k][n], Alm][n])

DAG organization

F’LASNIA & ACML E-LP.S
—ACML QR 4.0.0 5 5 E E

: MKL QH 9.1 é é EGEMM _.

— LAPACK & ACML BLAS| ’ ’

10

00 2000 3000 4000 5000 6000 7000 8000 9000 10000
problem size

28

¢ PLASMA (Redesign LAPACK/ScaLAPACK)

Parallel Linear Algebra Software for Multicore Architectures

e Asychronicity

» Avoid fork-join (Bulk sync design)
 Dynamic Scheduling

e Out of order execution

e Fine Granularity
e Independent block operations

e Locality of Reference
e Data storage - Block Data Layout

Lead by Tennessee and Berkeley similar to LAPACK/ScaLAPACK as a community effort
29

N

A

““ If We Had A Small Matrix Problem

* We would generate the DAG,
find the critical path and
execute it.

* DAG too large to generate ahead
of time
= Not explicitly generate
= Dynamically generate the DAG as
we g0
* Machines will have large
number of cores in a distributed
fashion

= Will have to engage in message
passing

= Distributed management
= Locally have a run time system

s

< The DAGs are Large

 Here is the DAG for a factorization on a
20 x 20 matrix

* For a large matrix say 0(10¢) the DAG is huge
* Many challenges for the software 31

N
«-Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles

& 300 tasks total
& 100 task window

I/
AN/

N
«-Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles

& 300 tasks total
& 100 task window

I/
AN/

N
«-Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles

& 300 tasks total
& 100 task window

T

N
«-Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles

& 300 tasks total
& 100 task window

N
«-Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles

& 300 tasks total
& 100 task window

/)

N
«-Execution of the DAG by a Sliding Window

Tile LU factorization 10x10
tiles

& 300 tasks total
& 100 task window

T

«- PLASMA Dynamic Task Scheduler

task
pool

task e function .
e arguments slice

direction (IN, OUT, INOUT)
start address

end address

#RAW writer

#WAR readers

#¥child / descendant

Out

= task — a unit of scheduling (quantum of work)
= slice — a unit of dependency resolution (quantum of data)
= Current version uses one core to manage the task pool

* PLASMA Today

« http://icl.cs.utk.edu/plasma/

= Linear general system — LU —tile pairwise pivoting

= Linear SPD system — Cholesky factorization
= Overdetermined system — QR factorization
= Underdetermined system — LQ factorization
= |terative refinement for s/d and c/z

= Single, double, complex, and double complex
arithmetic.

= LAPACK look and feel, testing, timing, examples
= Shared memory

07 = Next two sided factorization, accelerators, message passing

http://icl.cs.utk.edu/plasma/

N

< Exascale Computing

Exascale systems are likely feasible by 2017+2

10-100 Million processing elements (cores or
mini-cores) with chips perhaps as dense as
1,000 cores per socket, clock rates will grow
more slowly

3D packaging likely
Large-scale optics based interconnects
10-100 PB of aggregate memory

Hardware and software based fault management

Heterogeneous cores

ExaScale Computing Smdy
Technology Challenges in
Achieving Exascale Systems

n,
R. Stanley Williams
Katherine Yelick

September 28, 2008

This work was spansared by DARPA IPTO in the ExaScale Computing Study with Dr. William Harrod.
s Progsam Mangger, AFRI coutact usber FAKS0.07.C.T724. This eportis publibed i he
mterest of

NOTICE

Using Govenment drawings, specifications, or other data included in this document for any
prpose other than Govemment procurement doss not in ary way obligate the UL.S. Government.
T fact shatthe Governmment formmlated o supplid the drawings. specifications, o ofher Gafa
does not license the holder or any ofher person or corporation; or couvey any rights or permission to

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

Performance per watt — stretch goal 100 GF/watt of
sustained performance = >> 10 - 100 MW Exascale system

Power, area and capital costs will be significantly higher

than for today’s fastest systems

Google: exascale computing study

40

~ Five Important Features to Consider When
Developing Software at Scale

+ Effective Use of Many-Core and Hybrid architectures
= Dynamic Data Driven Execution
= Block Data Layout

Exploiting Mixed Precision in the Algorithms

= Single Precision is 2X faster than Double Precision
= With GP-GPUs 10x

Self Adapting / Auto Tuning of Software
= Too hard to do by hand

Fault Tolerant Algorithms
= With 1,000,000’s of cores things will fail

Communication Avoiding Algorithms

= For dense computations from O(n log p) to O(log p) 41
communications

= GMRES s-step compute (x, Ax, A2x, ... ASx)

. Collaborators / Support

Joint work with Jim
Demmels’ group at | Microsoft

Berkeley : Q €N
T @\ The MathWorks

PLASMA Parallel Linear
Algebra Software for
Multicore Architectures

http://icl.cs.utk.edu/plasma/ GOUS[QN

MAGMA Matrix Algebra On Wehdm:;njrcles Video News Maps Desktop mor:;:anceuseamh

GPU and Multicore e e ey
Architectures

Mew! Try Docs & Spreadsheets and share your projects instantly.

Advertising Programs - Business Solutions - About Google

©2006 Google

¢ If you are wondering what's beyond
“" ExaFlops

1024 yotta
Mega, Giga, Tera, 1027 xona
30
Peta, Exa, Zetta.. 00 weka
1033 vunda
103¢ uda
103 kil
106 n':eoa 103 treda
109 iag 1042 sorta
sis 104 rinta
1012 tera
1048 quexa
1015 peta
10°" pepta
10'® exa
10°4 ocha
1021 zetta

1037 nenaN
100 minga
1063 [uma

