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Looking at the Gordon Bell Prize
(Recognize outstanding achievement in high-performance computing applications

and encourage development of parallel processing )

 1 GFlop/s; 1988; Cray Y-MP; 8 Processors

 Static finite element analysis

 1 TFlop/s; 1998; Cray T3E; 1024 Processors

Modeling of metallic magnet atoms, using a                   

variation of the locally self-consistent multiple             

scattering method.

 1 PFlop/s; 2008; Cray XT5; 1.5x105 Processors

 Superconductive materials

 1 EFlop/s; ~2018;   ?; 1x107 Processors (109

threads)  



Performance Development in 

Top500
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33rd List: The TOP10 (core overloaded term)

Rank Site Computer Country
Procs

(Cores)

Rmax

[Tflops]

% of 

Peak

Power

[MW]

Flops/

Watt

1
DOE / NNSA

Los Alamos Nat Lab
Roadrunner / IBM 

BladeCenter QS22/LS21
USA 129,600 1,105 76 2.48 446

2
DOE / OS                 Oak 

Ridge Nat Lab
Jaguar / Cray 

Cray XT5 QC 2.3 GHz
USA 150,152 1,059 77 6.95 151

3
Forschungszentrum

Juelich (FZJ)
Jugene / IBM

Blue Gene/P Solution
Germany 294,912 825 82 2.26 365

4
NASA / Ames Research 

Center/NAS
Pleiades / SGI

SGI Altix ICE 8200EX
USA 51,200 480 79 2.09 230

5
DOE / NNSA

Lawrence Livermore NL
BlueGene/L IBM

eServer Blue Gene Solution
USA 212,992 478 80 2.32 206

6
NSF                                

NICS/U of Tennessee
Kraken / Cray 

Cray XT5 QC 2.3 GHz
USA 66,000 463 76

7
DOE / OS          Argonne 

Nat Lab
Intrepid / IBM 

Blue Gene/P Solution
USA 163,840 458 82 1.26 363

8
NSF                       

TACC/U. of Texas
Ranger / Sun 

SunBlade x6420
USA 62,976 433 75 2.0 217

9
DOE / NNSA

Lawrence Livermore NL
Dawn / IBM

Blue Gene/P Solution
USA 147,456 415 83 1.13 367

10
Forschungszentrum

Juelich (FZJ)
JUROPA /Sun - Bull SA
NovaScale /Sun Blade

Germany 26,304 274 89 1.54 178



Numerical Linear Algebra Library

• Interested in developing numerical 

library for the fastest, largest 

computer platforms for scientific 

computing.

• Today we have machines with 100K 

of processors (cores) going to 1M in 

the next generation

• A number of important issues must 

be addressed in the design of 

algorithms and software. 7



Something’s Happening Here…

• In the ―old 

days‖ it was: 

each year 

processors 

would become 

faster

• Today the clock 

speed is fixed or 

getting slower

• Things are still 

doubling every 

18 -24 months

• Moore’s Law 

reinterpretated.

 Number of cores 

double every 

18-24 months 07 8

From K. Olukotun, L. Hammond, H. 

Sutter, and B. Smith

A hardware issue just became a 

software problem
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Major Changes to Software

• Must rethink the design of our 
software

 Another disruptive technology
• Similar to what happened with cluster 

computing and message passing

 Rethink and rewrite the applications, 
algorithms, and software

• Numerical libraries for example will 
change

 For example, both LAPACK and 
ScaLAPACK will undergo major changes 
to accommodate this



A New Generation of Software:
Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)

(Vector operations)

Rely on 

- Level-1 BLAS

operations

LAPACK (80’s)

(Blocking, cache 

friendly)

Rely on 

- Level-3 BLAS 

operations

ScaLAPACK (90’s)

(Distributed Memory)

Rely on 

- PBLAS Mess Passing

PLASMA (00’s)

New Algorithms 

(many-core friendly)

Rely on 

- a DAG/scheduler

- block data layout

- some extra kernels
Those new algorithms 

- have a very low granularity, they scale very well (multicore, petascale computing, … )

- removes a lots of dependencies among the tasks, (multicore, distributed computing)

- avoid latency (distributed computing, out-of-core)

- rely on fast kernels 

Those new algorithms need new kernels and rely on efficient scheduling algorithms.
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Coding for an Abstract Multicore

Parallel software for multicores should have 

two characteristics:
• Fine granularity: 

• High level of parallelism is needed

• Cores will probably be associated with relatively small local 

memories. This requires splitting an operation into tasks that 

operate on small portions of data in order to reduce bus traffic 

and improve data locality.

• Asynchronicity: 

• As the degree of thread level parallelism grows and granularity 

of the operations becomes smaller, the presence of 

synchronization points in a parallel execution seriously affects 

the efficiency of an algorithm.
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DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LAPACK

LAPACK

LAPACK

BLAS

BLAS

Steps in the LAPACK LU

(Factor a panel)

(Backward swap)

(Forward swap)

(Triangular solve)

(Matrix multiply)
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A

C

A

B C

T TT

Fork-Join vs. Dynamic Execution

Fork-Join – parallel BLAS

Experiments on 

Intel’s Quad Core Clovertown 

with 2 Sockets w/ 8 Treads

Time
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Parallel Tasks in LU
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Fork-Join vs. Dynamic Execution

Fork-Join – parallel BLAS

DAG-based – dynamic scheduling

Time

Experiments on 

Intel’s Quad Core Clovertown 

with 2 Sockets w/ 8 Treads

Time 

saved



Parallel Tasks in LU

Step 1: LU of block 1,1 (w/partial pivoting)



Parallel Tasks in LU

Step 1: LU of block 1,1 (w/partial pivoting)

Step 2: Use U1,1 to zero A1,2 (w/partial pivoting)
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Parallel Tasks in LU

Step 1: LU of block 1,1 (w/partial pivoting)

Step 2: Use U1,1 to zero A1,2 (w/partial pivoting)

Step3: Use U1,1 to zero A1,3 (w/partial pivoting)

.

.

.



Residual from PLASMA’s Tiled LU

NT (Number of Tiles)Random Matrices



Residual Comparison with LAPACK
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DGETRF - Intel64 - 16 cores
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Tile QR Algorithms

 input matrix stored and processed by

square tiles

 DAG organization
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• Asychronicity

• Avoid fork-join (Bulk sync design)

• Dynamic Scheduling

• Out of order execution

• Fine Granularity

• Independent block operations

• Locality of Reference

• Data storage – Block Data Layout

29

PLASMA (Redesign LAPACK/ScaLAPACK)
Parallel Linear Algebra Software for Multicore Architectures 

Lead by Tennessee and Berkeley similar to LAPACK/ScaLAPACK as a community effort



If We Had A Small Matrix Problem

• We would generate the DAG, 

find the critical path and 

execute it.

• DAG too large to generate ahead 

of time

 Not explicitly generate

 Dynamically generate  the DAG as 

we go

• Machines will have large 

number of cores in a distributed 

fashion

 Will have to engage in message 

passing

 Distributed management

 Locally have a run time system



The DAGs are Large

• Here is the DAG for a factorization on a                 

20 x 20 matrix

• For a large matrix say O(106) the DAG is huge

• Many challenges for the software 31



Tile LU factorization 10x10 

tiles

300 tasks total

100 task window

Execution of the DAG by a Sliding Window
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.....

 function
 arguments
 .....

 direction (IN, OUT, INOUT)
 start address
 end address
 RAW writer

 #WAR readers
 child / descendant

 .....

task 

pool

task slice

 task – a unit of scheduling (quantum of work)

 slice – a unit of dependency resolution (quantum of data)

 Current version uses one core to manage the task pool

PLASMA Dynamic Task Scheduler

In In

Out



PLASMA Today
• http://icl.cs.utk.edu/plasma/
 Linear general system – LU – tile pairwise pivoting

 Linear SPD system – Cholesky factorization

 Overdetermined system – QR factorization

 Underdetermined system – LQ factorization

 Iterative refinement for s/d and c/z

 Single, double, complex, and double complex 

arithmetic.

 LAPACK look and feel, testing, timing, examples

 Shared memory

 Next two sided factorization, accelerators, message passing07

http://icl.cs.utk.edu/plasma/


Exascale Computing

• Exascale systems are likely feasible by 20172 

• 10-100 Million processing elements (cores or                            
mini-cores) with chips perhaps as dense as                           
1,000 cores per socket, clock rates will grow                       
more slowly

• 3D packaging likely

• Large-scale optics based interconnects

• 10-100 PB of aggregate memory

• Hardware and software based fault management

• Heterogeneous cores

• Performance per watt — stretch goal 100 GF/watt of 
sustained performance  >> 10 – 100 MW Exascale system 

• Power, area and capital costs will be significantly higher 

than for today’s fastest systems

40
Google: exascale computing study



Five Important Features to Consider When 

Developing Software at Scale

• Effective Use of Many-Core and Hybrid architectures

 Dynamic Data Driven Execution

 Block Data Layout

• Exploiting Mixed Precision in the Algorithms

 Single Precision is 2X faster than Double Precision

 With GP-GPUs 10x

• Self Adapting / Auto Tuning of Software

 Too hard to do by hand

• Fault Tolerant Algorithms

 With 1,000,000’s of cores things will fail

• Communication Avoiding Algorithms

 For dense computations from O(n log p) to O(log p) 

communications 

 GMRES s-step compute ( x, Ax,  A2x, … Asx )

41



Collaborators / Support

Joint work with Jim 
Demmels’ group at 
Berkeley

PLASMA Parallel Linear 
Algebra Software for 
Multicore Architectures

http://icl.cs.utk.edu/plasma/ 

MAGMA Matrix Algebra on 
GPU and Multicore
Architectures



If you are wondering what’s beyond 

ExaFlops

Mega, Giga, Tera, 

Peta, Exa, Zetta …

103 kilo    

106 mega    

109 giga

1012 tera

1015 peta

1018 exa

1021 zetta

1024 yotta

1027 xona

1030 weka

1033 vunda

1036 uda

1039 treda

1042 sorta

1045 rinta

1048 quexa

1051 pepta

1054 ocha

1057 nenaN

1060 minga

1063 luma
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