
7/17/2009 1

PLASMA and Scheduling

Dense Linear Algebra on

Multicore Chips

Jack Dongarra

University of Tennessee

Oak Ridge National Laboratory

University of Manchester

http://www.research.ibm.com/
http://www.research.ibm.com/
http://www.research.ibm.com/

2

Argonne ~1976 (IFIPS WG 2.5)

Gatlinburg Meeting 1981, Oxford

3

Looking at the Gordon Bell Prize
(Recognize outstanding achievement in high-performance computing applications

and encourage development of parallel processing)

 1 GFlop/s; 1988; Cray Y-MP; 8 Processors

 Static finite element analysis

 1 TFlop/s; 1998; Cray T3E; 1024 Processors

Modeling of metallic magnet atoms, using a

variation of the locally self-consistent multiple

scattering method.

 1 PFlop/s; 2008; Cray XT5; 1.5x105 Processors

 Superconductive materials

 1 EFlop/s; ~2018; ?; 1x107 Processors (109

threads)

Performance Development in

Top500

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11
1
9
9
4

1
9
9
6

1
9
9
8

2
0
0
0

2
0
0
2

2
0
0
4

2
0
0
6

2
0
0
8

2
0
1
0

2
0
1
2

2
0
1
4

2
0
1
6

2
0
1
8

2
0
2
0

1 Eflop/s

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s SUM

N=1

N=500 Gordon

Bell

Winners

33rd List: The TOP10 (core overloaded term)

Rank Site Computer Country
Procs

(Cores)

Rmax

[Tflops]

% of

Peak

Power

[MW]

Flops/

Watt

1
DOE / NNSA

Los Alamos Nat Lab
Roadrunner / IBM

BladeCenter QS22/LS21
USA 129,600 1,105 76 2.48 446

2
DOE / OS Oak

Ridge Nat Lab
Jaguar / Cray

Cray XT5 QC 2.3 GHz
USA 150,152 1,059 77 6.95 151

3
Forschungszentrum

Juelich (FZJ)
Jugene / IBM

Blue Gene/P Solution
Germany 294,912 825 82 2.26 365

4
NASA / Ames Research

Center/NAS
Pleiades / SGI

SGI Altix ICE 8200EX
USA 51,200 480 79 2.09 230

5
DOE / NNSA

Lawrence Livermore NL
BlueGene/L IBM

eServer Blue Gene Solution
USA 212,992 478 80 2.32 206

6
NSF

NICS/U of Tennessee
Kraken / Cray

Cray XT5 QC 2.3 GHz
USA 66,000 463 76

7
DOE / OS Argonne

Nat Lab
Intrepid / IBM

Blue Gene/P Solution
USA 163,840 458 82 1.26 363

8
NSF

TACC/U. of Texas
Ranger / Sun

SunBlade x6420
USA 62,976 433 75 2.0 217

9
DOE / NNSA

Lawrence Livermore NL
Dawn / IBM

Blue Gene/P Solution
USA 147,456 415 83 1.13 367

10
Forschungszentrum

Juelich (FZJ)
JUROPA /Sun - Bull SA
NovaScale /Sun Blade

Germany 26,304 274 89 1.54 178

Numerical Linear Algebra Library

• Interested in developing numerical

library for the fastest, largest

computer platforms for scientific

computing.

• Today we have machines with 100K

of processors (cores) going to 1M in

the next generation

• A number of important issues must

be addressed in the design of

algorithms and software. 7

Something’s Happening Here…

• In the ―old

days‖ it was:

each year

processors

would become

faster

• Today the clock

speed is fixed or

getting slower

• Things are still

doubling every

18 -24 months

• Moore’s Law

reinterpretated.

 Number of cores

double every

18-24 months 07 8

From K. Olukotun, L. Hammond, H.

Sutter, and B. Smith

A hardware issue just became a

software problem

9

Major Changes to Software

• Must rethink the design of our
software

 Another disruptive technology
• Similar to what happened with cluster

computing and message passing

 Rethink and rewrite the applications,
algorithms, and software

• Numerical libraries for example will
change

 For example, both LAPACK and
ScaLAPACK will undergo major changes
to accommodate this

A New Generation of Software:
Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)

(Vector operations)

Rely on

- Level-1 BLAS

operations

LAPACK (80’s)

(Blocking, cache

friendly)

Rely on

- Level-3 BLAS

operations

ScaLAPACK (90’s)

(Distributed Memory)

Rely on

- PBLAS Mess Passing

PLASMA (00’s)

New Algorithms

(many-core friendly)

Rely on

- a DAG/scheduler

- block data layout

- some extra kernels
Those new algorithms

- have a very low granularity, they scale very well (multicore, petascale computing, …)

- removes a lots of dependencies among the tasks, (multicore, distributed computing)

- avoid latency (distributed computing, out-of-core)

- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

A New Generation of Software:
Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)

(Vector operations)

Rely on

- Level-1 BLAS

operations

LAPACK (80’s)

(Blocking, cache

friendly)

Rely on

- Level-3 BLAS

operations

ScaLAPACK (90’s)

(Distributed Memory)

Rely on

- PBLAS Mess Passing

PLASMA (00’s)

New Algorithms

(many-core friendly)

Rely on

- a DAG/scheduler

- block data layout

- some extra kernels
Those new algorithms

- have a very low granularity, they scale very well (multicore, petascale computing, …)

- removes a lots of dependencies among the tasks, (multicore, distributed computing)

- avoid latency (distributed computing, out-of-core)

- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

A New Generation of Software:
Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)

(Vector operations)

Rely on

- Level-1 BLAS

operations

LAPACK (80’s)

(Blocking, cache

friendly)

Rely on

- Level-3 BLAS

operations

ScaLAPACK (90’s)

(Distributed Memory)

Rely on

- PBLAS Mess Passing

PLASMA (00’s)

New Algorithms

(many-core friendly)

Rely on

- a DAG/scheduler

- block data layout

- some extra kernels
Those new algorithms

- have a very low granularity, they scale very well (multicore, petascale computing, …)

- removes a lots of dependencies among the tasks, (multicore, distributed computing)

- avoid latency (distributed computing, out-of-core)

- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

A New Generation of Software:
Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)

(Vector operations)

Rely on

- Level-1 BLAS

operations

LAPACK (80’s)

(Blocking, cache

friendly)

Rely on

- Level-3 BLAS

operations

ScaLAPACK (90’s)

(Distributed Memory)

Rely on

- PBLAS Mess Passing

PLASMA (00’s)

New Algorithms

(many-core friendly)

Rely on

- a DAG/scheduler

- block data layout

- some extra kernels
Those new algorithms

- have a very low granularity, they scale very well (multicore, petascale computing, …)

- removes a lots of dependencies among the tasks, (multicore, distributed computing)

- avoid latency (distributed computing, out-of-core)

- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

Coding for an Abstract Multicore

Parallel software for multicores should have

two characteristics:
• Fine granularity:

• High level of parallelism is needed

• Cores will probably be associated with relatively small local

memories. This requires splitting an operation into tasks that

operate on small portions of data in order to reduce bus traffic

and improve data locality.

• Asynchronicity:

• As the degree of thread level parallelism grows and granularity

of the operations becomes smaller, the presence of

synchronization points in a parallel execution seriously affects

the efficiency of an algorithm.

15

DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LAPACK

LAPACK

LAPACK

BLAS

BLAS

Steps in the LAPACK LU

(Factor a panel)

(Backward swap)

(Forward swap)

(Triangular solve)

(Matrix multiply)

16

A

C

A

B C

T TT

Fork-Join vs. Dynamic Execution

Fork-Join – parallel BLAS

Experiments on

Intel’s Quad Core Clovertown

with 2 Sockets w/ 8 Treads

Time

17

Parallel Tasks in LU

18

A

C

A

B C

T TT

Fork-Join vs. Dynamic Execution

Fork-Join – parallel BLAS

DAG-based – dynamic scheduling

Time

Experiments on

Intel’s Quad Core Clovertown

with 2 Sockets w/ 8 Treads

Time

saved

Parallel Tasks in LU

Step 1: LU of block 1,1 (w/partial pivoting)

Parallel Tasks in LU

Step 1: LU of block 1,1 (w/partial pivoting)

Step 2: Use U1,1 to zero A1,2 (w/partial pivoting)

Parallel Tasks in LU

Step 1: LU of block 1,1 (w/partial pivoting)

Step 2: Use U1,1 to zero A1,2 (w/partial pivoting)

Parallel Tasks in LU

Step 1: LU of block 1,1 (w/partial pivoting)

Step 2: Use U1,1 to zero A1,2 (w/partial pivoting)

Step3: Use U1,1 to zero A1,3 (w/partial pivoting)

.

.

.

Residual from PLASMA’s Tiled LU

NT (Number of Tiles)Random Matrices

Residual Comparison with LAPACK
R

e
s
id

u
a

l
(P

L
A

S
M

A
)

/
R

e
s
id

u
a

l
(L

A
P

A
C

K
)

DGETRF - Intel64 - 16 cores

0

20

40

60

80

100

120

140

0 2000 4000 6000 8000 10000 12000 14000

G
fl
o

p
/s

Matrix size

DGETRF - Intel64 Xeon quad-socket quad-core (16 cores) - th. peak 153.6 Gflop/s

DGEMM

PLASMA

Intel MKL 10.1

SCALAPACK

LAPACK

Tile QR Algorithms

 input matrix stored and processed by

square tiles

 DAG organization

33 28

9.1

4.0.0

• Asychronicity

• Avoid fork-join (Bulk sync design)

• Dynamic Scheduling

• Out of order execution

• Fine Granularity

• Independent block operations

• Locality of Reference

• Data storage – Block Data Layout

29

PLASMA (Redesign LAPACK/ScaLAPACK)
Parallel Linear Algebra Software for Multicore Architectures

Lead by Tennessee and Berkeley similar to LAPACK/ScaLAPACK as a community effort

If We Had A Small Matrix Problem

• We would generate the DAG,

find the critical path and

execute it.

• DAG too large to generate ahead

of time

 Not explicitly generate

 Dynamically generate the DAG as

we go

• Machines will have large

number of cores in a distributed

fashion

 Will have to engage in message

passing

 Distributed management

 Locally have a run time system

The DAGs are Large

• Here is the DAG for a factorization on a

20 x 20 matrix

• For a large matrix say O(106) the DAG is huge

• Many challenges for the software 31

Tile LU factorization 10x10

tiles

300 tasks total

100 task window

Execution of the DAG by a Sliding Window

Tile LU factorization 10x10

tiles

300 tasks total

100 task window

Execution of the DAG by a Sliding Window

Tile LU factorization 10x10

tiles

300 tasks total

100 task window

Execution of the DAG by a Sliding Window

Tile LU factorization 10x10

tiles

300 tasks total

100 task window

Execution of the DAG by a Sliding Window

Tile LU factorization 10x10

tiles

300 tasks total

100 task window

Execution of the DAG by a Sliding Window

Tile LU factorization 10x10

tiles

300 tasks total

100 task window

Execution of the DAG by a Sliding Window

.....

 function
 arguments


 direction (IN, OUT, INOUT)
 start address
 end address
 RAW writer

 #WAR readers
 child / descendant



task

pool

task slice

 task – a unit of scheduling (quantum of work)

 slice – a unit of dependency resolution (quantum of data)

 Current version uses one core to manage the task pool

PLASMA Dynamic Task Scheduler

In In

Out

PLASMA Today
• http://icl.cs.utk.edu/plasma/
 Linear general system – LU – tile pairwise pivoting

 Linear SPD system – Cholesky factorization

 Overdetermined system – QR factorization

 Underdetermined system – LQ factorization

 Iterative refinement for s/d and c/z

 Single, double, complex, and double complex

arithmetic.

 LAPACK look and feel, testing, timing, examples

 Shared memory

 Next two sided factorization, accelerators, message passing07

http://icl.cs.utk.edu/plasma/

Exascale Computing

• Exascale systems are likely feasible by 20172

• 10-100 Million processing elements (cores or
mini-cores) with chips perhaps as dense as
1,000 cores per socket, clock rates will grow
more slowly

• 3D packaging likely

• Large-scale optics based interconnects

• 10-100 PB of aggregate memory

• Hardware and software based fault management

• Heterogeneous cores

• Performance per watt — stretch goal 100 GF/watt of
sustained performance  >> 10 – 100 MW Exascale system

• Power, area and capital costs will be significantly higher

than for today’s fastest systems

40
Google: exascale computing study

Five Important Features to Consider When

Developing Software at Scale

• Effective Use of Many-Core and Hybrid architectures

 Dynamic Data Driven Execution

 Block Data Layout

• Exploiting Mixed Precision in the Algorithms

 Single Precision is 2X faster than Double Precision

 With GP-GPUs 10x

• Self Adapting / Auto Tuning of Software

 Too hard to do by hand

• Fault Tolerant Algorithms

 With 1,000,000’s of cores things will fail

• Communication Avoiding Algorithms

 For dense computations from O(n log p) to O(log p)

communications

 GMRES s-step compute (x, Ax, A2x, … Asx)

41

Collaborators / Support

Joint work with Jim
Demmels’ group at
Berkeley

PLASMA Parallel Linear
Algebra Software for
Multicore Architectures

http://icl.cs.utk.edu/plasma/

MAGMA Matrix Algebra on
GPU and Multicore
Architectures

If you are wondering what’s beyond

ExaFlops

Mega, Giga, Tera,

Peta, Exa, Zetta …

103 kilo

106 mega

109 giga

1012 tera

1015 peta

1018 exa

1021 zetta

1024 yotta

1027 xona

1030 weka

1033 vunda

1036 uda

1039 treda

1042 sorta

1045 rinta

1048 quexa

1051 pepta

1054 ocha

1057 nenaN

1060 minga

1063 luma

43

