
L-Implicit-U Factorization and the Simplex
Update

Sparse Matrices for Scientific Computation:
In Honour of John Reid’s 70th Birthday

Roger Fletcher

July 15th, 2009



Overview

I Solving Ax = b and ATx = b for nonsingular A by means of
L-Implicit-U (LIU) factors

I The Simplex Update is the replacement of one column of A by
a new column. It is important that LIU factors can be
updated quickly.

I Issues concerned with LIU factors for large sparse systems



What are LIU factors?

L-Implicit-U (LIU) factors of nonsingular A comprise a lower
triangular matrix IL and a diagonal matrix D such that

ILPA = U

where D = diag(U) and P is a permutation matrix allowing row
pivoting. When using the factors, access is required to A, but not
to the off-diagonals of U, which therefore are not stored.

LIU factors are related to regular LU factors

PA = LU

by IL = L−1, and U is the same upper triangular matrix.



Are LIU factors practicable?

For dense, non-symmetric A, with row pivoting, operation counts
and error analysis results are the same as for regular LU, both for
forming the factors, and for using them to solve systems.

When the Fletcher-Matthews method is used to update the factors
after a Simplex update, LIU factors are significantly more efficient,
since there is no U to update.

Given that A must be stored (as in LP), only the diagonal of U is
needed, resulting in a significant saving in the storage requirement.

(see R. Fletcher, ”Dense Factors of Sparse Matrices”, in
Approximation Theory and Optimization: Tributes to
M.J.D.Powell, Eds. M.D.Buhmann and A.Iserles, C.U.P., 1997.)



Solving Systems using LIU factors

The methodology here is quite different from the regular LU case.

Assume row permutations have been subsumed into A.

To solve Ax = b use and to solve ATx = b use

b(n) = b
for i = n, n − 1, . . . , 1

xi = lTi b(i)/di

b(i−1) = b(i) − aixi

end

x(0) = 0
for i = 1, 2, . . . , n

yi = (bi − aT
i x(i−1))/di

x(i) = x(i−1) + liyi

end
x = x(n).

where lTi denote the rows of IL and ai the columns of A.

Note just saxpy and scalar product operations are performed on
these vectors.



So why are LIU factors now almost unknown in NA?

many early papers
discussed what are
essentially LIU factors
(or (Implicit-L)-U
factors), including
some very famous
names, but its all lost
in the mists of time
. . .

Fox, Huskey and Wilkinson 1948
Hestenes and Stiefel 1952
Purcell 1953
Householder 1955
Pietrzykowski 1960
Faddeev and Faddeeva 1963
Stewart 1973
Enderson and Wassyng 1978
Sloboda 1978
Wassyng 1982
Abaffy, Broyden and Spedicato 1984
Hegedüs 1986
Tuma 1993
Benzi and Meyer 1994,1995



LIU factors for a sparse matrix

The main idea is to make row and column permutations, PAQ say,
to concentrate nonzeros into U, as far as possible.

1. Permute unit columns to the left, that is

A =

[
I A1

0 A2

]
.

2. Reduce A2 to irreducible block upper triangular
(traversal/Tarjan’s algorithm)

3. Transform each irreducible block to upper triangular + a few
row spikes in the lower triangle



Processing an irreducible block (1)

Ideally, using further row and column permutations, we would
proceed in two stages

Upper block rectangular

(SPK1 algorithm)

Spiked upper triangular

(spike stack algorithm)

Now, when factorizing PAQ, IL only fills in where there are row
spikes.



Processing an irreducible block (2)

Unfortunately the ideal case is only realised numerically if stable
pivots can be found from the rectangular blocks in the SPK1
ordering. Hence we need to employ threshold pivoting when
forming the spikes, and this can increase the number and/or total
length of spikes, albeit usually not substantially

The representation of IL as a collection of dense row spikes is very
efficient for implementing the algorithms for Ax = b and ATx = b,
involving saxpy and scalar product operations between the
relatively few row spikes and the sparse columns of A.

Also don’t need to remember the Tarjan block structure or the
decomposition into A1 and A2.



The Simplex Update for sparse matrices

Huge variety of methods in the literature.

My QP code uses the Fletcher-Matthews method as it applies to
LIU factors, represented in spiked form. However, growth in the
total spike length can be quite rapid, and it becomes necessary to
reinvert, typically every 30 iterations.

In this talk I describe how ideas inherent in Schur complement
updates (SCU) (Bisschop and Meeraus) can be used to advantage
in the context of LIU factors.

The motivation is to make use of factors of an initial matrix, A◦

say, over a number of Simplex updates



The Augmented Matrix in SCU (1)

A key observation of SCU is that if column ap of A◦ is replaced by
a new column aq, then solves with the updated matrix are readily
effected from factors of the augmented matrix[

A◦ aq

eT
p 0

]
.

But it follows from[
IL

λλλT 1

] [
A◦ aq

eT
p 0

]
=

[
U u

µ

]
that LIU factors of the augmented matrix are simply obtained by
adding the single spike λλλ to the spike set of A◦, where λλλ is
obtained by solving A◦Tλλλ = −ep, and setting µ = λλλTaq.



The Augmented Matrix in SCU (2)

If ap is a unit vector, it is first moved to the right of the set of unit
columns, so as to keep the length of λλλ as short as possible.

This process can be repeated as further Simplex updates are made
(k say), leading to an augmented matrix of the form[

A
E

]
where A is a rectangular matrix containing A◦ and all the columns
aq that have been added, and E is a matrix of k unit rows, whose
unit elements mark the columns of A that have been deleted.

One new spike in IL is added for each Simplex update, by means of
a solve with the factors of the previous augmented matrix.

Eventually reinversion may be needed if the total spike length is
too large.



Adding a previously deleted column (1)

It is convenient if the extended matrix A in the above contains at
most one copy of each column ai in the LP problem.

Thus if a previously deleted column is added, we update the
augmented matrix by deleting the corresponding row of E . In this
case, updating the LIU factors of the augmented matrix is less
straightforward.

Here is a sketch of how to proceed . . .



Adding a previously deleted column (2)
I Let the last few spikes of IL be as shown, with the top row

corresponding to the row of E being deleted
× × × × × 1
× × × × × × 1
× × × × × × × 1
× × × × × × × × 1



I Working upwards, carry out row operations to introduce zeros
in the starred positions, and then delete the top row−m3 1

−m2 1
−m1 1



× × × × × 1
× × × × × ∗ 1
× × × × × ∗ × 1
× × × × × ∗ × × 1


I Finally close up the columns of IL and remove a row of E× × × × × 0 1

× × × × × 0 × 1
× × × × × 0 × × 1

 [
A
E

]



Adding a previously deleted column (2)
I Let the last few spikes of IL be as shown, with the top row

corresponding to the row of E being deleted
× × × × × 1
× × × × × × 1
× × × × × × × 1
× × × × × × × × 1


I Working upwards, carry out row operations to introduce zeros

in the starred positions, and then delete the top row−m3 1
−m2 1

−m1 1



× × × × × 1
× × × × × ∗ 1
× × × × × ∗ × 1
× × × × × ∗ × × 1



I Finally close up the columns of IL and remove a row of E× × × × × 0 1
× × × × × 0 × 1
× × × × × 0 × × 1

 [
A
E

]



Adding a previously deleted column (2)
I Let the last few spikes of IL be as shown, with the top row

corresponding to the row of E being deleted
× × × × × 1
× × × × × × 1
× × × × × × × 1
× × × × × × × × 1


I Working upwards, carry out row operations to introduce zeros

in the starred positions, and then delete the top row−m3 1
−m2 1

−m1 1



× × × × × 1
× × × × × ∗ 1
× × × × × ∗ × 1
× × × × × ∗ × × 1


I Finally close up the columns of IL and remove a row of E× × × × × 0 1

× × × × × 0 × 1
× × × × × 0 × × 1

 [
A
E

]



Adding a previously deleted column (3)

However a near-zero pivot may cause numerical instability

To avoid this we use the Fletcher-Matthews idea, based on
allowing a row interchange in E , as illustrated in the following
example (only the trailing submatrix of IL is shown).

For the first step we use the basic row elimination operation


1

1
1

1/6 1




1
−1/8 1

3/4 −10/3 1
−1/8 −1/9 −1/2 1

 =


1

−1/8 1
3/4 −10/3 1
0 −2/3 −1/3 1


For the next step we shall use a Fletcher-Matthews type step . . .



A Fletcher-Matthews type step

First we create a unit 2 × 2 block in IL
1

1
10/3 1

1




1
−1/8 1

3/4 −10/3 1
0 −2/3 −1/3 1

 =


1

−1/8 1 0
1/3 0 1
0 −2/3 −1/3 1


Next, interchange rows and eliminate: this can be expressed as

1
0 1
1 3/8

1




1
−1/8 1 0

1/3 0 1
0 −2/3 −1/3 1

 =


1

1/3 0 1
0 1 3/8

0 −2/3 −1/3 1


Finally, interchanging columns in IL and rows in E returns IL to
lower triangular



Adding a previously deleted column (4)

A basic elimination step now completes the elimination process

−1/3 1
1

1




1
1/3 1
0 3/8 1
0 −2/3 −1/3 1

 =

0 1
0 3/8 1
0 −2/3 −1/3 1


Either the basic step or the Fletcher-Matthews step can be made
in a numerically stable manner at each stage.

The choice is usually made on the basis of minimizing a bound on
growth in the factors.



Conclusions

The spike based factorization scheme has been working well for
many years.

The augmented matrix approach for Simplex updates is currently
being coded.

Hopefully some numerical results will be available soon

Finally: Happy 70th Birthday John!!


