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Introduction - Automatic Differentiation

Griewank and Walther [GW08] state that

Automatic Differentiation

Algorithmic, or automatic, differentiation (AD) is is a growing area of
theoretical research and software development concerned with the accurate
and efficient evaluation of derivatives for function evaluations given as
computer programs.

AD is not
1 the finite, or divided difference approximation,
2 symbolic differentiation (e.g., Maple, Mathematica).

In contrast, for AD all derivatives:
1 are calculated without truncation error and frequently with greater

efficiency,
2 stored as floating point numbers and arbitrarily complicated computer

programs may be differentiated.
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Notation and Terminology

We consider the a function of the form:

y = f (x, a),

with

independent variables x ∈ IRn

dependent variables y ∈ IRm

function parameters a (may be from IR or II )

For which we need to calculate the Jacobian Jf ,

Jf =

[
∂yj , j=1,...,m

∂xi ,i=1,...,n

]
.

4/ 32 Automatic Differentiation and Sparse Matrices



Forward Mode AD

Consider the example function [FTPR04] f : IR3 → IR2.

Example Function y=f(x,a,b)

function y = f(x,a,b)
w(1) = log(x(1) * x(2));
w(2) = x(2) * x(3)^2-a;
w(3) = b * w(1) + x(2)/x(3);
y(1) = w(1)^2 + w(2) - x(2);
y(2) = sqrt(w(3)) - w(2);
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Evaluation Trace (or Code List)

We automatically rewrite f as a sequence of unary or binary operations
known as the Evaluation Trace [GW08] or Code List [Ral05].

Example Evaluation Trace

function y = f_eval_trace(x,a,b)
v(1) = x(1) * x(2);
v(2) = log(v(1));
v(3) = x(3)^2;
v(4) = v(3) * x(2);
v(5) = v(4) - a;
v(6) = 1 / x(3);
v(7) = x(2) * v(6);

:

:
v(8) = b * v(2);
v(9) = v(8) + v(7);
v(10) = v(5) - x(2);
v(11) = v(2)^2;
v(12) = sqrt(v(9));
y(1) = v(11) + v(10);
y(2) = v(12) - v(5);
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Differentiated Code

Define a differentiation operator,

D =

[
∂

∂x1
,

∂

∂x2
,

∂

∂x3

]
and differentiate the code list line-by-line,

Forward Mode Differentiated Code

function [y,Dy] = Df_eval_trace(x,Dx,a,b)
Dv(1,:) = x(1) * Dx(2,:) + Dx(1,:) * x(2);
v(1) = x(1) * x(2);
Dv(2,:) = (1/v(1)) * Dv(1,:);
v(2) = log(v(1));

:
Dy(1,:) = Dv(11,:) + Dv(10,:);
y(1) = v(11) + v(10);
Dy(2,:) = Dv(12,:) - Dv(5,:);
y(2) = v(12) - v(5);
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Using the Differentiated Code

>> x=[1,2,3]
x =

1 2 3
>> a=0.5;b=2;
>> Dx=eye(length(x))
Dx =

1 0 0
0 1 0
0 0 1

>> [y,Dy] = Df_eval_trace(x,Dx,a,b)
y =

15.9805 -16.0672
Dy =

1.3863 8.6931 12.0000
0.6979 -8.5347 -12.0775
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Computational Complexity of Forward Mode AD

Computational Complexity of Forward Mode AD

cost(Jf (forward mode))

cost(f )
≤ 1 + 3n

Where cost is the sum of the number of floating point and nonlinear
operations.

c.f. one-sided finite differencing,

cost(Jf (FD))

cost(f )
≈ 1 + n

Griewank and Walther have a more involved result which includes
memory operations [GW08].

Upper bound attained for a function consisting entirely of
multiplications.
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Implementation

AD algorithms are implemented using either:

Source Transformation - compiler-like tools read in a users code and
produce differentiated code with derivative statements included e.g.,
ADIFOR [BCH+98], ADIC [BRM97], Tapenade [INR05],
TAF [GKS05].

Operator Overloading - modern programming languages allow a
programmer to define their own class/type for which arithmetic
operations may be defined so as to propagate derivative information
e.g., AD01/AD02 [PR98], ADOL-C [GJU96].
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Sparse Storage of Derivatives

If Jf is sparse (also see later) we might sparse storage for derivative
vectors e.g. value-index pairs.

Used in John Reid’s ADO1[PR98] and ADO2 (HSL library
http://www.cse.scitech.ac.uk/nag/hsl/). 1

ADIFOR’s SparseLinC library [BKBC96] may be used in Fortran (and
C?).

The MAD package [For06] uses MATLAB’s sparse matrices to store
derivatives for forward mode AD in MATLAB.

1Aside - If you Google John Reid AD01, hit 2 is Victoria Beckham’s New Armani
Underwear Ad 01.
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NLSF1 from Optimization Toolbox - Matlab 2008b

F(1) = (3-2*x(1)).*x(1)-2*x(2) + 1;
i = 2:(n-1);
F(i) = (3-2*x(i)).*x(i)-x(i-1)-2*x(i+1) + 1;
F(n) = (3-2*x(n)).*x(n)-x(n-1) + 1;

Jacobian is tridiagonal.

problem size n
Jac. Tech 25 100 2500 10000 40000

on 2.7 2.6 2.5 2.6 2.2
FiniteDiff 29.9 107.4 2594.1 - -
fmad 128.0 121.1 2252.8 - -
fmadsparse 136.5 109.7 54.4 140.0 711.1

Table: NLSF1 Jacobian cpu time ratio cpu(Jf )/cpu(f ). Multiple evaluations for 1
cpu s: timed out (-).
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The Jacobian Needn’t be Sparse

If sufficient intermediate variables have sparse derivatives then sparse
storage may be advantageous.

e.g., partially separable cases,

f (x) =
∑

k

gk (xj , j ∈ Nk ),

with Nk a small subset of 1, 2, . . . , n.

e.g., gradient for the Optimal Design of Composites
problem [ACMX92].
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Optimal Design of Composites Gradient - Matlab 2008b

problem size n
Grad. Tech 25 100 2500 10000 40000 90000

hand-coded 1.9 1.9 2.0 1.7 1.7 2.0
FiniteDiff 27.4 101.9 2641.7 - - -
fmad 61.0 128.0 1906.4 - - -
fmad(sparse) 64.0 54.5 111.7 x - -

Table: ODC Gradient evalution cpu time ratio cpu(∇f )/cpu(f ). Multiple
evaluations for 1 cpu s: timed out (-), out of memory(x).
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Jacobian Compression

Overhead of manipulating sparse data structure is limiting.

For Jacobians with known sparsity pattern we may use compression.

Seminal paper by Curtis, Powell and Reid [CPR74]

We divide the columns of J into groups. To form the first group
we inspect the columns in turn and include each that has no
unknowns in common with those columns already included. The
other groups are formed successively by applying the same
procedure to those columns not already included in a group.

Now a research area in itself [GW08, Chap. 8], [GMP05].

Substantial mathematical framework and numerous other techniques -
CPR Compression still very widely used.
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NLSF1 from Optimization Toolbox - Matlab 2008b

Jacobian is tridiagonal so 3 groups used.

problem size n
Jac. Tech 25 100 2500 10000 40000

on 2.7 2.6 2.5 2.6 2.2
FiniteDiff 29.9 107.4 2594.1 - -
fmad 128.0 121.1 2252.8 - -
fmadsparse 136.5 109.7 54.4 140.0 711.1
fmadcmp 128.0 102.9 18.1 10.0 8.2

Table: NLSF1 Jacobian cpu time ratio cpu(Jf )/cpu(f ). Multiple evaluations for 1
cpu s: timed out (-).
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Extended Jacobian Approaches

We write the linear system for a forward mode AD differentiation as, −In 0 0
B L− Ip 0
R T −Im

 DX
DV
DY

 =

 −In
0
0

 (1)

where the coefficient matrix is the extended Jacobian,

p is the number of intermediate variables vi in the evaluation trace.

The p × p matrix L is strictly lower triangular.

And,

DX =

 Dx1
...

Dxn

 , DV =

 Dv1
...

Dvp

 , DY =

 Dy1
...

Dym

 .

Forward mode AD is seen as solving (1) via forward substitution
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Reverse Mode AD

Write, DY = [0 0 Im]

 DX
DV
DY


= [0 0 Im]

 −In 0 0
B L− Ip 0
R T −Im

−1  −In
0
0


= −[X̄ T V̄ T Ȳ T ]

 −In
0
0

 = X̄ T ,

with adjoints X̄ , V̄ and Ȳ by back-substitution on the system −In BT RT

0 LT − Ip T T

0 0 −Im

 X̄
V̄
Ȳ

 =

 0
0
−Im

 . (2)
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Computational Complexity of Reverse/Adjoint Mode AD

Computational Complexity of Reverse/Adjoint Mode AD

cost(Jf (reverse mode))

cost(f )
≤ 1 + 4m

Cheap gradient result - m = 1 gives,

cost(Jf (reverse mode)) ≤ 5 cost(f ).

An AD Tool facilitates reverse mode/back-substitution by either:
I Recomputing intermediates vi and extended Jacobian entries as

required.
I Storing required values in a forward pass through the code and

retrieving them as needed.
I Hybrid of above.

Significantly more complex than forward mode tools.
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Schur Complements

From (1),  −In 0 0
B L− Ip 0
R T −Im

 DX
DV
DY

 =

 −In
0
0


we see that,

J = DY = R + T (Ip − L)−1B, (3)

the Schur complement of R.

Forward substitution approach

J = R + T
[
(Ip − L)−1B

]
. (4)

Back substitution approach

J = R +
[
T (Ip − L)−1

]
B. (5)
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MATLAB Implementation

MATLAB class ExtJacMAD with components
I value - stores object’s value.
I index - stores row index of object in the extended Jacobian.
I jacobian - handle (MATLAB pointer) to storage for extended

Jacobian.

As user’s function is evaluated the extended Jacobian is automatically
built up for y = f(x).

Final call to getJacobian(y):
I Forms the extended Jacobian as a sparse matrix.
I Extracts blocks B, L, R and T .
I Calculates Jacobian via (4) or (5) depending on whether n ≤ m or not.
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ExtJacMAD plus Operation

function z = plus(x,y)
% PLUS Implement obj1 + obj2 for ExtJacMAD
isx = isa(x,’ExtJacMAD’);
isy = isa(y,’ExtJacMAD’);
if isx && isy

% Both x and y are of class ExtJacMAD
z = x; % deep copy to initisalise z
z.value = x.value + y.value;
z.index = z.jacobian.n_entry + (1:numel(z.value));
z.jacobian.n_entry = z.jacobian.n_entry + numel(z.value);
z.index = reshape(z.index, size(z.value))
array1 = ones(1,numel(z.index));
z.jacobian.add_entry(z.index, x.index, array1);
z.jacobian.add_entry(z.index, y.index, array1);

elseif isx
:
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NLSF1 from Optimization Toolbox - Matlab 2008b

problem size n
Jac. Tech 25 100 2500 10000 40000

on 2.7 2.6 2.5 2.6 2.2
FiniteDiff 29.9 107.4 2594.1 - -
fmad 128.0 121.1 2252.8 - -
fmadsparse 136.5 109.7 54.4 140.0 711.1
fmadcmp 128.0 102.9 18.1 10.0 8.2
ExtJacMAD 150.8 134.9 83.2 86.0 192.0

Table: NLSF1 Jacobian cpu time ratio cpu(Jf )/cpu(f ). Multiple evaluations for 1
cpu s: timed out (-).

23/ 32 Automatic Differentiation and Sparse Matrices



Optimal Design of Composites Gradient - Matlab 2008b

problem size n
Grad. Tech 25 100 2500 10000 40000 90000

on 1.9 1.9 2.0 1.7 1.7 2.0
FiniteDiff 27.4 101.9 2641.7 - - -
fmad 61.0 128.0 1906.4 - - -
fmadsparse 64.0 54.5 111.7 x - -
ExtJacMAD 70.1 62.8 65.4 81.9 157.2 -

Table: ODC Gradient evalution cpu time ratio cpu(∇f )/cpu(f ). Multiple
evaluations for 1 cpu s: timed out (-), out of memory(x).
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Employing Pre-Eliminations

The number of entries in the extended Jacobian may become large -
can we easily reduce it?
Consider selected assignments of example problem’s evaluation trace:

v(1) = x(1) * x(2);
v(2) = log(v(1));
v(8) = b * v(2);
v(9) = v(8) + v(7);

The corresponding rows of the extended Jacobian are:

x(1) x(2) x(3) v(1) v(2) · · · v(7) v(8) v(9)

v(1) x(2) x(1) −1
v(2) 1

v(1) −1

v(8) b −1
v(9) 1 1 −1

There’s scope for some Gaussian eliminations here!
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Employing Pre-Eliminations (ctd)

v(2) has a single predecessor

v(8) has a single predecessor

Remove v(2) and v(8) from the system.

Computational cost is one flop for each eliminated entry - gives a net
saving in flops and extended Jacobian storage.

Key to efficiency - perform eliminations on the fly before assembly.

x(1) x(2) x(3) v(1) v(2) · · · v(7) v(8) v(9)

v(1) x(2) x(1) −1
v(2) 1

v(1) − 1

v(8) b − 1
v(9) 1 1 −1
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Employing Pre-Eliminations (ctd)
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MATLAB Implementation

MATLAB class ExtJacMAD H with additional component
I entry - stores entry/coefficient in the extended Jacobian.

e.g. index=3, entry=2.3 : object has entry 2.3 in column 3 of the
Extended Jacobian.

Element-wise functions and binary functions with just one active
argument do not create entries in extended Jacobian.

sin function

function z = sin(x)
z = x;
z.value = sin(x.value);
z.entry = x.entry.*cos(x.value);

Only binary or matrix operations create extended Jacobian entries.
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NLSF1 from Optimization Toolbox - Matlab 2008b

problem size n
Jac. Tech 25 100 2500 10000 40000

on 2.7 2.6 2.5 2.6 2.2
FiniteDiff 29.9 107.4 2594.1 - -
fmad 128.0 121.1 2252.8 - -
fmadsparse 136.5 109.7 54.4 140.0 711.1
fmadcmp 128.0 102.9 18.1 10.0 8.2
ExtJacMAD 150.8 134.9 83.2 86.0 192.0
ExtJacMAD-H 105.2 96.0 57.6 54.0 55.1

Table: NLSF1 Jacobian cpu time ratio cpu(Jf )/cpu(f ). Multiple evaluations for 1
cpu s: timed out (-).

28/ 32 Automatic Differentiation and Sparse Matrices



Optimal Design of Composites Gradient - Matlab 2008b

problem size n
Grad. Tech 25 100 2500 10000 40000 90000

on 1.9 1.9 2.0 1.7 1.7 2.0
FiniteDiff 27.4 101.9 2641.7 - - -
fmad 61.0 128.0 1906.4 - - -
fmadsparse 64.0 54.5 111.7 x - -
ExtJacMAD 70.1 62.8 65.4 81.9 157.2 -
ExtJacMAD-H 45.0 40.3 33.4 32.0 39.1 35.0

Table: ODC Gradient evalution cpu time ratio cpu(∇f )/cpu(f ). Multiple
evaluations for 1 cpu s: timed out (-), out of memory(x).
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Source Transformation

Efficiency of overloaded AD ultimately limited by function call
overheads.
MSAD source transformation tool [KF06] inlines and specialises fmad
class operations.

CPU(J,∇f )/CPU(f )
Problem Hand- msad fmad msad fmad (m, n)

coded (cmp) (cmp) (spr) (spr)

nlsf1a(J) 4.4 6.9 22.5 19.4 35.1 (1000,1000)
brownf(∇) 4.6 9.3 13.7 (1,1000)
browng(J) 5.2 4.2 8.4 15.3 19.6 (1000,1000)
tbroyf(∇) 3.8 8.8 15.9 (1,800)
tbroyg(J) 3.3 10.1 15.8 23.5 (800,800)

Table: Jacobian/gradient to function CPU time ratio for MATLAB Optimisation
Toolbox largescale examples.
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Related Work

Gaussian eliminate all off-diagonal entries involving intermediates
yields the Jacobian with different elimination orderings giving different
flop counts [GR91] - vertex elimination [GW08, Chap. 9.3].

Source transformation makes such techniques efficient [FTPR04].

John Reid has shown that a poor choice of elimination ordering may
result in instability [GW08, Chap. p203].

Theoretical possibility of fewer flops from eliminating one entry at a
time - edge elimination [Nau01].

So-called face elimination may be more efficient yet [Nau04].

Griewank has investigated structure-preserving transformations of the
Extended Jacobian [GW08, Chap 10.3].

Implementations based on pivoted LU-factorisation may give better
efficiency [PT08]
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Conclusions

Sparse matrix techniques underpin the mathematics behind modern
algorithms for automatic differentiation.

Efficient sparse matrix libraries may even be used to implement
automatic differentiation algorithms.

Much theory is now presented via graphs - Naumann’s face
elimination only has a graph based interpretation.

Interplay between the sparse matrix and automatic differentiation
communities remains fruitful (Reid, Pothen, . . . )
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