A Brief History of Numerical Libraries

Sven Hammarling NAG Ltd, Oxford & University of Manchester

John Reid at Gatlinburg VII (1977)

"Solution of large finite element systems of linear equations out of main storage" Proceedings of IMA Conference, Oxford, 1970

Published 1971

John's Article on CG

On the Method of Conjugate Gradients for the Solution of Large Sparse Systems of Linear Equations

J. K. REID

Mathematics Branch, Atomic Energy Research Establishment Harwell, England.

1. Introduction

The method of conjugate gradients has been known for some time, having been developed independently by E. Stiefel and by M. R. Hestenes with the co-operation of J. B. Rosser, G. Forsythe and L. Paige, but it has received little attention recently. It is difficult to see why this has been so since the method has several very pleasant features when regarded not as a direct method for the solution of full systems of equations but as an iterative method for the solution of large and sparse systems. It is our purpose here to explain these features and to report on some numerical experiments which compare the various versions of the algorithm that are available.

2. The Algorithm and its Variants

We will follow the notation of Hestenes and Stiefel [1] because their original algorithm has advantages over other versions of the method that have been proposed subsequently. Given a system

$$Ax = b \tag{2.1}$$

of *n* linear equations whose matrix A is symmetric and positive-definite we take a starting vector x_0 , form the corresponding residual

$$r_0 = b - Ax_0, \tag{2.2}$$

set $p_0 = r_0$ and then for i = 0, 1, 2, ... find the vectors x_{i+1} , r_{i+1} and p_{i+1} and the scalars a_i and b_i by using the recursions

$$a_i = \begin{cases} \text{either } (p_i, r_i)/(p_i, Ap_i) \\ (2.3a) \end{cases}$$

or
$$(r_i, r_i)/(p_i, Ap_i)$$
 (2.3b)

John's CG Article

"The paper of Reid (1971) drew the attention of many researchers to the potential of the algorithm as an iterative method for sparse linear systems. It was a catalyst for much of the subsequent work in conjugate gradients."

Golub and O'Leary, SIAM Review, 1989

Rough Outline

- History
- Libraries, packages and their facets
- Fortran
- Floating Point Arithmetic
- Proceedings and Books
- Summary

Manchester Baby, 21 June 1948 (Replica)

Kilburn/Tootill Program to compute the highest proper factor

2¹⁸ took 52 minutes
1.5 million instructions
3.5 million store
accesses

18/7/48 Kilburn Highest Factor Routine (amended)line 01234 2 131415 Instra. 010 24t C -6, 01 2 C 6. 010 to a -6n Q. Tn-1 -23 LC 11011 00 Sub 27 9-x15 011 Lut 0000 100 00101 addactol 001 01011 Jul- 26 To 218 001 110 ~ to 25 To 010 10011 -256C 011 12 111 - EN EN 13 0: 0 010 14 6. Th - Gh 6m -26 t C 15 001 lute 21 Gn+1 110 16 t 21 010 18 26 19 01101 000 A. 22 tolal. mit 25 - 3 10111.et 26 10000 21 2 00100 21 0010100

First Numerical Library

Wilkes, Wheeler and Gill (1951) "Preparation of Programmes for an Electronic Digital Computer" Addison-Wesley

With special reference to the EDSAC and the use of a library of subroutines

"Short, ready-made programs for performing the more common computing operations ... are usually called subroutines" (page 1)

Wilkes, Wheeler and Gill

For V:

 $z \leftarrow x \pm y$

 $A = A^T$ Ax, $v \leftarrow$

PART II

SPECIFICATIONS OF LIBRARY SUBROUTINES

Each subroutine is distinguished by a letter denoting its category and a serial number within that category. The categories are as follows.

Category	Subject
A	Floating point arithmetic.
в	Arithmetical operations on complex numbers.
С	Checking.
D	Division.
Е	Exponentials.
F	General routines relating to functions.
G	Differential equations.
J	Special functions.
к	Power series.
L	Logarithms.
Μ	Miscellaneous.
Р	Print and layout.
Q	Quadrature.
R	Read (i.e., Input).
S	nth root.
т	Trigonometrical functions.
U	Counting operations.
v	Vectors and matrices.

In the specifications on succeeding pages the following information is given in abbreviated form immediately beneath the title of each subroutine:

1. Type of subroutine, i.e., whether open, closed, interpretive, or special.

2. Restriction on address of first order. If the word "even" appears it denotes that the first order must have an even address; if no note appears it indicates that the address may be either odd or even.

3. Total number of storage locations occupied by the subroutine.

4. Addresses of any storage locations needed as working space by the subroutine.

5. Approximate operating time (not possible to state in all cases).

The gaps in the numbering within each category correspond to subroutines which have become obsolete.

72

Quality Numerical Software

• Should be:

- Numerically stable, with measures of quality of solution
- Reliable and robust
- Accompanied by test software
- Useful and user friendly with example programs
- Fully documented
- Portable
- Efficient

John Backus 1924 - 2007

Ded regul Banks

Programmer's Reference Manual October 15, 1956

THE FORTRAN AUTOMATIC CODING SYSTEM FOR THE IBM 704 EDPM

This manual supersedes all earlier information about the FORTRAN system. It describes the system which will be made available during late 1956, and is intended to permit planning and FORTRAN coding in advance of that time. An Introductory Programmer's Manual and an Operator's Manual will also be issued.

> APPLIED SCIENCE DIVISION AND PROGRAMMING RESEARCH DEPT.

International Business Machines Corporation 590 Madison Ave., New York 22, N.Y.

WORKING COMMITTEE

L. B. MITCHELI	J. W. BACKUS
R. A. NELSON	R. J. BEEBER
R. NUTT	S. BEST
United Aircraft Corp. East Hartford, Conn.	R. GOLDBERG
D. SAYRE	H. L. HERRICK
P. B. SHERIDAN	R. A. HUGHES
H. STERN	Radiation Laboratory,
L ZILLER	Livermore, Calif.

	FOR COMMENT ATEMENT UMBER 5	CONTINUATION	FORTRAN STATEMENT	IDENTI- FICATION
С			PROGRAM FOR FINDING THE LARGEST VALUE	
C		Х	ATTAINED BY A SET OF NUMBERS	
			DIMENSION A(999)	
			FREQUENCY 30(2,1,10), 5(100)	
			READ 1, N, (A(I), I = 1,N)	
	1 FORMAT (13/(12F6.2))			
			BIGA = A(1)	
	5		DO 20 I = 2, N	
	30		IF (BIGA-A(I)) 10,20,20	
	10		BIGA = A(I)	
	20		CONTINUE	
			PRINT 2, N, BIGA	
	2		FORMAT (22H1THE LARGEST OF THESE 13, 12H NUMBERS IS F7.2)	
			STOP 77777	

the second se

Fortran

- Fortran lives on now Fortran 2003
- Fortran 2008 under discussion

Thank you John for all your work on the Fortran standard.

18 years on ISO committee, 10 as convenor

Language Support

- Need more language support of the sort provided in Fortran 2003 and C99
 - Machine (or environment) parameters
 - IEEE arithmetic, such as directed rounding
 - Exception handling
 - Interval arithmetic
- See W Kahan, How Futile are Mindless Assessments of Roundoff in Floating-Point Computation? http://www.cs.berkeley.edu/~wkahan/

"I have little doubt that about 80 per cent. of all the results printed from the computer are in error to a much greater extent than the user would believe, ..."

Leslie Fox, IMA Bulletin, 1971

"Giving business people spreadsheets is like giving children circular saws.

The average spreadsheet programmer does little or no advance planning, has no idea whether his or her algorithms are correct ... builds in few or no cross-checks, and does little or no testing.

It is a cast iron certainty that the vast majority of spreadsheets contain errors"

Jack Schofield, The Guardian, 2003

NATIONAL PHYSICAL LABORATORY

Notes on Applied Science No. 32

Rounding Errors in Algebraic Processes

by J. H. WILKINSON, M.A., Sc.D.

LONDON HER MAJESTY'S STATIONERY OFFICE 1963

N. J. Higham. *Accuracy and Stability of Numerical Algorithms*. SIAM, Philadelphia, PA, USA, second edition, 2002. "Since the use of the punched-card equipment required the use of an operator, it encouraged user participation generally, and this was a distinctive feature of Pilot ACE operation

Speaking for myself I gained a great deal of experience from user participation, and it was this that led to my own conversion to backward error analysis."

Wilkinson (1980) in *A History of Computing in the Twentieth Century*, Academic Press

Portability

- For portability, needed a model of floating point arithmetic
- IFIP/WG 2.5. B Ford et al. See: <u>http://www.nsc.liu.se/~boein/ifip/projects/p1.txt</u>
- W S Brown A simple but realistic model of floating-point computation ACM Trans. Math. Software,7, 445–480, 1981
- NAG: Chapter X02
- LAPACK: xLAMCH

John was a member of IFIP WG 2.5 for 25 years!

IEEE Arithmetic Formats

Format	Precision	Exponent	Approx Range	Approx precision (<i>u</i>)
Single	24 bits	8 bits	$10^{\pm 38}$	10 ⁻⁸
Double	53 bits	11 bits	$10^{\pm 308}$	10^{-16}
Extended	≥ 64	≥15	$10^{\pm 4932}$	10^{-20}

W. Kahan's self-portrait

Handbook for Automatic Computation

Edited by

F. L. Bauer · A. S. Householder · F. W. J. Olver H. Rutishauser † · K. Samelson · E. Stiefel

Volume II

J.H.Wilkinson · C. Reinsch

Linear Algebra

Chief editor F. L. Bauer

Springer-Verlag Berlin Heidelberg New York 1971

T. J. Dekker, W. Hoffmann; *Algol 60* procedures in numerical algebra part 2; MC Tracts 23, Mathematisch Centrum, Amsterdam (1968)

Lecture Notes in Computer Science

Edited by G. Goos and J. Hartmanis

6

B. T. Smith · J. M. Boyle · J. J. Dongarra B. S. Garbow · Y. Ikebe · V. C. Klema C. B. Moler

Matrix Eigensystem Routines -EISPACK Guide

Second Edition

Springer-Verlag Berlin · Heidelberg · New York

J.R. Bunch G.W. Stewart

sian Copyrighted material

Basic Linear Algebra Subprograms

- Level 1 BLAS, 1979
- Level 2 BLAS, 1988
 - Vector machines
- Level 3 BLAS, 1990

- Hierarchical memory, shared memory parallel
- Dates are for TOMS publication

search the site

GO

Google Translate Select Language

Blas Festival 2009

English	Gàidhlig
welcome	
newsletter	
news	
about blas	
gallery	

contact us

links

mailing list

Subscribe to our <u>mailing list</u> for information on this and future festivals...

tickets

Purchase tickets for all events at <u>thebooth.co.uk</u> or by contacting the venue...

EventScotland

News Feed

Celebrating the Highlands 4th - 12th September 2009

Welcome to the Blas Festival which celebrates the culture of the Scottish Highlands through music and language. Devised by The Highland Council in partnership with Fèisean nan Gàidheal and the Promoters Arts Network, Blas is now in its fourth year.

We are proud to announce that this year's festival which ran from the 5th-13th September 2008 was our most successful yet. In just our fourth year we broke our records for attendances and sell out shows. Congratulations to the promoters, communities, artists and all those who work for Blas in making it such a success.

We have a number of interesting developments in the pipeline which will ensure the Blas Festival remains a great 'homecoming party' for people who love Scottish culture.

This week we will be announcing our successful 2008 figures and we will soon be announcing our programme for 2009!

Check back with us for more news and updates soon!

Latest News

Ceòlraidh is a perfect case for Faculty of Advocates 12 Sep 2008

Leading International Music Artistes Give Blas Exclusive Taste of New Album 07 Sep 2008

Blas Offers Role Model for Festival Delivery 05 Sep 2008

Budget Car Hire

Homecoming Scotland 2009

homecomingscotland2009.com

BBC RADIO SCOTLAND 92-95FM & 810MW bbc.co.uk/radioscotland

John Francis (Mr QR)

Discussion of linear equation solvers on the Pilot ACE

"An interesting feature of the codes is that they made a very intensive use of subroutines; the addition of two vectors, multiplication of a vector by a scalar, inner products, etc., were all coded this way."

Wilkinson, 1980

The History of Computing in the 20th Century.

Efficient Use of Data

"Since all machines have stores of finite size often divided up into high speed and auxiliary sections, storage considerations often have a vitally important part to play."

Wilkinson, MTAC, 1955

Emphasis on error and condition estimates, as well as efficiency

L A P A C K L-A P-A C-K A P A -C -K L-A P-A-C K L A -P -A C K L-A-PAC-K

Users' Guide

Third Edition

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen

S O F T W A R E · E N V I R O N M E N T S · T O O L S

LAPACK95 Users' Guide

V. A. Barker, L. S. Blackford, J. Dongarra, J. Du Croz, S. Hammarling, M. Marinova, J. Waśniewski, and P. Yalamov

siam

SOFTWARE · ENVIRONMENTS · TOOLS

ScaLAPACK Users' Guide

L. S. Blackford • J. Choi • A. Cleary • E. D'Azevedo J. Demmel • I. Dhillon • J. Dongarra • S. Hammarling G. Henry • A. Petitet • K. Stanley • D. Walker • R. C. Whaley

Software Code Sizes

• NAG Fortran Library, Mark 21

– Source:	28.3 Mb
 Stringent test programs: 	42.1 Mb
 Example programs: 	4.4 Mb
– XML documentation:	136 Mb
LAPACK 3.0	
- Source:	12.1 Mb
- Testing:	10.9 Mb
- Timing:	6.5 Mb
- Users' Guide:	407 page

Measures of Solution Quality

DGESVX is an 'expert' driver for solving AX = BDGESVX (..., RCOND, FERR, BERR, WORK,..., INFO) RCOND : Estimate of $1/\kappa(A)$ FERR (j): Estimated forward error for X_i BERR (j): Componentwise relative backward error for X_i (smallest relative change in any element of A and B that makes X_i an exact solution) WORK (1): Reciprocal of pivot growth factor (1/g)INFO : > 0 if A is singular or nearly singular

Proceedings of IMA Conference, Loughborough, 1973

Published 1974

Software for Numerical Mathematics

edited by D.J. Evans

Academic Press London and New York

Contents		
C. Cox		
CONTRIBUTORS		
PREFACE		vii
1. THEORY OF OPTIMAL ALGORITHMS. By J. F. Traub	•••	
DISCUSSION: OPTIMAL ALGORITHMS		15
2. LINEAR ALGEBRA ALGORITHMS. By J. H. Wilkinson		17
DISCUSSION: LINEAR ALGEBRA		27
3. DIRECT METHODS FOR SPARSE MATRICES. By J. K. Reid		29
4. ITERATIVE SPARSE MATRIX ALGORITHMS. By D. J. Evans		49
5. Sparse Inverse in the Factored Form and Ma Sparsity During Simplex Iterations. By G. Mitra		ING 85
DISCUSSION: SPARSE MATRICES. Panel. J. K. Reid, D. G. Mitra	J. Ev.	ans, 99
6. NUMERICAL QUADRATURE: A SURVEY OF THE A ALGORITHMS. By Valerie A. Dixon	AVAILA	ABLE 105
7. Algorithms for Integral Equations. By G. F. Miller		139
8. TESTING AND EVALUATION OF SOME SUBROUTINES FOR N QUADRATURE. By Bo Einarsson	UMER	ICAL
9. Some Extrapolation Methods for the Numerical tion of Multidimensional Integrals. By A. C. C	CALCI Genz	ULA-
DISCUSSION: NUMERICAL QUADRATURE. Panel. Valerie G. F. Miller, B. Einarsson, A. C. Genz	A. Di 	xon, 17
10. INITIAL AND BOUNDARY VALUE ROUTINES FOR DIFFERENTIAL EQUATIONS. By Joan Walsh	Ordin	JARY 17
DISCUSSION: ORDINARY DIFFERENTIAL EQUATIONS		19

11.	NONLINEAR OPTIMISATION: A SURVEY OF THE STATE OF THE ART. By L. C. W. Dixon.	193
	DISCUSSION: NON-LINEAR OPTIMISATION	217
12	ALGORITHMS FOR CURVE AND SURFACE FITTING, By J. G. Haves	219
13.	A DATA FITTING PACKAGE FOR THE NON-SPECIALIST USER. By M. G. Cox	235
14.	PIECEWISE QUADRATIC SURFACE FITTING FOR CONTOUR PLOTTING. By M. J. D. Powell	253
	DISCUSSION: CURVE AND SURFACE FITTING. Panel. J. G. Hayes, M. G. Cox, M. J. D. Powell	273
15.	RATIONAL APPROXIMATIONS FOR SPECIAL FUNCTIONS. By C. W. Clenshaw	275
16.	SPECIAL FUNCTIONS IN THE NAG LIBRARY. By J. L. Schonfelder	285
	DISCUSSION: SPECIAL FUNCTIONS. Panel. C. W. Clenshaw, J. L. Schonfelder.	301
17.	Application of On-Line Techniques to the Numerical Solution of Partial Differential Equations. By A. Sykes	303
18.	POTENT-A PACKAGE FOR THE NUMERICAL SOLUTION OF POTEN- TIAL PROBLEMS IN GENERAL TWO-DIMENSIONAL REGIONS. By C. LL. Thomas	315
19.	A New Scheme for Interactive Numerical Computation. By D. Hutchinson and P. Jesty	337
	DISCUSSION : ON-LINE TECHNIQUES. Panel. A. Sykes, C. LL. Thomas D. Hutchinson, P. Jesty	353
20.	THE ORGANISATION OF NUMERICAL ALGORITHMS LIBRARIES. By B. Ford and S. J. Hague	357
21.	MANAGEMENT PRACTICES IN THE DEVELOPMENT AND DISTRIBUTION OF MATHEMATICAL SOFTWARE WITH EMPHASIS ON COM- PUTATIONAL AIDS IN A MULTI-MACHINE ENVIRONMENT. By D. B. Taylor, B. Ford and S. J. Hague	373
22.	THE DEVELOPMENT AND MAINTENANCE OF MULTI-MACHINE SOFT- WARE IN THE NAG PROJECT. By J. A. Prentice	383

CONTENTS

315

337

353 357

х

•

.

CONTENTS

xi

23. THE NATS APPROA J. M. Boyle and	CH TO W. J.	QUALI	ITY SOF	TWARE	. By B	. T. Sr	nith, 	393
DISCUSSION: ORGA LIBRARIES	NISATIO	ON AN	D POI	RTABILI	TY OF	Proc	RAM	407
24. SETTING UP A NUME M. D. Hebden	RICAL	Adviso	ory Sef 	VICE. I	By R. F	letcher	and	413
25. USER DOCUMENTAT THE NAG APPI	ION FO	By Sh	Genera iirley A	L NU	MERICA	L LIBR	ARY:	423
DISCUSSION: DOCUM Shirley A. Lill.	ENTAT	ION. Pa	anel. R.	Fletch	ier, M.	D. Hel	oden,	433
AUTHOR INDEX			1					437
SUBJECT INDEX								443

Proceedings of IMA Conference, Sussex 1977

Published 1978

CONTENTS

PART I. LIBRARIES OF NUMERICAL SOFTWARE

I.1	A LIBRARY DESIGN FOR ALL PARTIES by B. Ford and	
	J. Bentley	3
	1. Introduction to Numerical Software	3
	2. The Concept of a Library	4
	3. User Requirements	6
	4. Overall Design of Library	7
	5. Specific Design Aspects	13
	6. Implications of Design Principles for Library	
	Development	17
	7. Concluding Remarks	18
	8. Acknowledgements	19
	9. References	19
I 2	PORTABILITY AND ADAPTABILITY WHAT ARE THE	
	ISSUES? by B.T. Smith	21
	1. Introduction	22
	2. The Problem	22
	3. The Source Text	22
	4. Algorithms	27
	5. The Compromise	29
	6. From Adaptable Algorithmic Representations to	
	Transportable Software A Practical Example	32
	7. References	36
I.3	LIBRARIES: THE USER INTERFACE by P. Kemp	39
	1. Introduction	39
	2. The Requirements of the End User	40
	3. The Requirements of the Computing Centre	41
	4. Aspects of the User Interface	42
	5. Documentation	43
	6. Library Structure	46
	7. Advice on Library Use	51
	8. Library Contents	52
	9. A Look at Some Libraries	53
	10. Conclusions	55
	11. References	56
I.4	SOFTWARE TOOLS by S.J. Hague	57
	1. Introduction	57
	2. Manipulation and Mechanisation	59

CONTENTS

	3.	Various Tools Used in Mathematical Software	
		Development	62
	4.	TAMPR - A Transformational System	67
	5.	Present State and Future Developments	75
	6.	Acknowledgements	78
	7.	References	78
т.5	THE	VALUE OF A NUMERICAL LIBRARY TO A LARGE	
1.5	TNDI	ISTRIAL ORGANIZATION by R.W. McIntyre and	
	Т. Г	Pate -	81
	1.	Introduction	81
	2.	Engineering Computing	82
	3.	Engineering Software	83
	4	Numerical Methods in Engineering	85
	5.	Acquiring a General Purpose Numerical Library	87
	6.	IMSL as Part of the Company's Computing	
	••	Service	89
	7.	Conclusions	93
	8.	Acknowledgements	94
	9.	References	94
тб	UST	NG THE NAG LIBRARY IN INDUSTRIAL RESEARCH by	
1.0	J.P	Whelan	97
	1.	Introduction	97
	2.	Changing Computers	98
	3.	The User Documentation Subset	99
	4.	A User Advisory Service	101
	5.	Difficult Problems	102
	6.	Monitoring Library Usage	104
	7.	Summary	105
		Sr The Copprobiles	
PART I	II	INEAR AND NON-LINEAR ALGEBRA	
11111		nes tententi è esuratos elderantenti	
II.l	SIN	IGULAR-VALUE DECOMPOSITION - BASIC ASPECTS by	
	J.H	I. Wilkinson	109
	1.	Introduction	109
	2.	Practical Difficulties	112
	3.	The Singular Value Decomposition	113
	4.	Advantages of the SVD	118
	5.	The Golub Algorithm	119
	6.	Linear Systems and Least Squares	125
	7.	The Pseudo-Inverse	127
	8.	Analysis in Terms of the SVD	129
	9.	Inverse Iteration	131
	10.	References	135
II.2	SI	NGULAR VALUE DECOMPOSITION IN MULTIVARIATE	
	ANA	ALYSIS by C.F. Banfield	137
	1.	Introduction	137

CONTENTS

xv

	2. Multivariate Techniques Using Singular Value	
	Decomposition	138
	3. Techniques on Small Machines Using Singular	
	Value Decomposition	144
	4. Statistical Software for Singular Value	
	Decomposition	146
	5. Acknowledgement	146
	6. References	147
I.3	SOFTWARE FOR SPARSE MATRICES by J.K. Reid	151
	1. Introduction	151
	2. Direct Solution of Linear Sets of Equations	152
	3. Iterative Solution of Linear Sets of Equations	155
	4. Least Squares Problems	157
	5. Non-Linear Sets of Equations	158
	6. Eigenvalue Problems	160
	7. The User Interface	161
	8. Acknowledgement	162
	9. References	163
т 4	NON-LINEAR ALGEBRAIC FOUATIONS IN PROCESS	
	ENGINEERING CALCULATIONS by A.K. Mallin-Jones	167
	1 Introduction	167
	2 Design of Chemical Plant	167
	3 Representation of Flowsheets	169
	A Program Structure	171
	5 Effect of Program Structure on Equation	
	Solvers	172
	6 Experience of Using "Inside Out" Equation	
	Column	173
	7 Algorithms	177
	7. Algorithms 9 Alternative Ways of Simulating Flowsheets	178
	0. Conclusion	178
	9. Conclusion	179
	IO. References	1.5
	TT DAMA DIMUTNO	
AKI. T	II DATA-FITTING	
TT 1	DAMA - ETAMATING ALCOPTANING AVAILABLE IN DREDARATION.	
11.1	DATA-FITTING ALGORITHES AVAILABLE, IN FREFAMILION,	
	AND IN PROSPECT, FOR THE WAG LIBRART BY U.G.	183
	Hayes	193
	1. Introduction	185
	2. Polynomial Curves	100
	3. Cubic Spline Curves	105
	4. Spline Surfaces	195
	5. Polynomial Surfaces	100
	6. L1 and L Norms	201
	/. References	201
11.2	CURVE FITTING USING THE ROTHAMSTED MAXIMUM	202
	LIKELIHOOD PROGRAM by G.J.S. Ross	203
	. Introduction	205

1.	Introduction	

xvi

CONTENTS

	2.	Methods for Fitting Non-Linear Curves	214
	3.	Program Availability	222
	4.	References	222
PART I	v co	OMPUTER AIDED DESIGN AND SIMULATION	
TV.1	INTE	ERACTIVE COMPUTING: A NEW OPPORTUNITY by	
1	H.H.	Rosenbrock	227
	1.	Introduction	227
	2.	Interactive Computing	228
	3.	An Example	230
	4.	Software Problems	232
	5.	Cultural Difficulties	233
	6.	References	235
IV.2	THE	USE OF NUMERICAL SOFTWARE IN THE DIGITAL	
	SIM	ULATION LANGUAGE PMSP by T. Chambers	237
	1.	Introduction	237
	2.	The Use of Digital Simulation	237
	3.	PMSP - The Plant Modelling System Program	238
	4.	Properties of PMSP Models	239
	5.	User Requirements from PMSP	240
	6.	Description of Numerical Algorithms Used	242
	7.	Acknowledgement	252
	8.	References	252
PART V	DI	FFERENTIAL AND INTEGRAL EQUATIONS	
57]	SOL	UTTON OF LARGE, STIFF INITIAL VALUE PROBLEMS	_
V.1	THE	STATE OF THE ART by A.R. Curtis	257
	1	Introduction	257
	2	Problem Classification and Sources	258
	3	Software Design Considerations	261
	4	FACSIMILE - A Problem-Oriented Backward-	
		Difference Program	274
	5.	Experience with FACSIMILE	275
	6.	Acknowledgements	277
	7.	References	277
v.2	SOM	E FACTORS AFFECTING THE EFFICIENCY OF STIFF	
183	TNT	EGRATION ROUTINES by H.H. Robertson	279
	1.	Introduction	279
	2.	Numerical Stability	280
	3.	Prediction and Error Estimates	283
	4.	Structure	285
	5.	Local Convergence of the Parallel Chord	
		Iteration	290
	6.	Applications	292
	7.	Numerical Comparison of Partitioned	
		Updating	295

298 299
299
303
303
304
306
308
310
311
318
321
325
325
330
332
334
336
337
339
339
341
347
353
357
357
358
363
363
500
364

3. Algorithmic Aspects

2. An Algorithm Schema

4. Concluding Remarks

5. References

W.C. Davidon 1. Introduction

5. References

4. Matrix Generators and Report Writers

VI.2 OPTIMIZATION BY NON-LINEAR SCALING by

3. Properties of the Algorithm

7I. 3	OPTIMIZATION IN PRACTICE by S.E. Hersom	385
	2 The Deuti	385
	2. The Routines	385
	3. Applications	505
	4. Future	392
	5. Conclusion	399
		399
	6. References	400

xvii

CONTENTS

Proceedings of IFIP Conference, Boulder 1981

Published 1982

Included "Floatingpoint Parameters, Models and Standards by Jim Cody the relationship between numerical computation and programming languages

> edited by j.k.reid

IFIP

north-holland

Jim Cody in 1969

Sadly passed away on June 24th, 2009

State of Libraries and Packages in 1984

PRENTICE-HALL SERIES IN COMPUTATIONAL MATHEMATICS, Cleve Moler, Advisor

Articles on:

- Observations on Mathematical Software Effort (Cody)
- LINPACK (Dongarra, Stewart)
- FUNPACK (Cody)
- EISPACK (Dongarra, Moler)
- MINPACK (Moré, Sorensen, Garbow, Hillstrom)
- Software for ODEs (Shampine, Watts)

... (cont'd)

- Sources of Information on Quadrature Software (Kahaner)
- A Survey of Sparse Matrix Software (Duff)
- Mathematical Software for Elliptic Boundary Value Problems (Boisvert, Sweet)
- The IMSL Library (Aird)
- The SLATEC Common Mathematical Library (Buzbee)

... (cont'd)

- The Boeing Mathematical Software Library (Erisman, Neves, Philips)
- The PORT Mathematical Subroutine Library (Fox)
- The Evolving NAG Library Service (Ford, Pool)
- ΤΤΩΤ

Today

- BCSLIB, IMSL, HSL and NAG are all alive
- A number of the PACKs are still available; LAPACK is probably the most active (but needs more funding)

- PETSc
- Trilinos (maintained repository), ...

Big Challenge for the Future

- Multicore and hybrid chips
- Dongarra: "There is no Moore's law for software"

• See the final talk by Jack Dongarra