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Difficulties

• All eigenvalues of T are easily computed in O(n2) time.

• Given λ̂, inverse iteration computes the eigenvector:

(T − λ̂I)xi+1 = xi, i = 0, 1, 2, . . . .

– Costs O(n) per iteration.

– Typically, 1-3 iterations are enough.

• BUT, inverse iteration only guarantees

‖T v̂ − λ̂v̂‖ = O(ε‖T‖).



Fundamental Limitations

Gap Theorem :

sin 6 (v, v̂) ≤ ‖T v̂ − λ̂v̂‖
Gap(λ̂)

.

Assume all off-diagonals not negligible, so Gap(λ̂) not zero, but can be small:
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When eigenvalues are close, independently computed eigenvectors WILL NOT be mutually

orthogonal.



Eigenvalues of Biphenyl Matrix

• Plot eigenvalues :

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

Eigenvalue Index

Ei
ge

nv
alu

e

• Plot Absgap(i) = log10(min(λi+1 − λi, λi − λi−1)/‖T‖) :
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• LAPACK — one big “cluster” λ1, λ2, . . . , λ939.

• Tridiagonal solution takes 80% of Total Time.



Ideal Solution

• Fundamental Limitation:

sin 6 (v, v̂) ≤ ‖T v̂ − λ̂v̂‖
Gap(λ̂)

.

• Get smallest possible residual norm.

– Compute eigenvalue to greatest accuracy possible :

|λ̂− λ| = O(ε|λ̂|).

– Compute eigenvector to high relative accuracy :

‖T v̂ − λ̂v̂‖ = O(ε|λ̂|).

• Gap Theorem implies :

sin 6 (v, v̂) =
O(ε|λ|)
Gap(λ̂)

=
O(ε)

Relgap(λ̂)
.

• Can we achieve the above ?



Key Idea 1. Discard Tridiagonals, Embrace Bidiagonals



Factored Forms yield Better Representations

• Tridiagonals DO NOT determine their eigenvalues to high relative accuracy.

• Bidiagonals determine their singular values to high relative accuracy.

T + µI = L LT
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• Bidiagonal Factors are “better” since they allow us to

– compute eigenvalues to high relative accuracy,

– compute eigenvectors to high relative accuracy.

• High accuracy ⇒ Orthogonality.

• For interior eigenvalues, extends to indefinite factorization LDLT .



Algorithm Outline

1. Choose µ such that T + µI is positive definite.

2. Compute the factorization :

T + µI = LDLT .

3. Compute eigenvalues of LDLT to high relative accuracy (by dqds or bisection).

4. Given eigenvalues, compute accurate eigenvectors of LDLT .

— HOW?



Key Idea 2. Shift with Differential QD

How do we get an eigenvector such that

‖T v̂ − λ̂v̂‖ = O(ε|λ̂|)?



Differential Transformations

• Inverse iteration — Solve for z :

LDLT − λ̂I = L+D+LT
+.

L+D+LT
+ z = random vector.

Simple qd : D+(1) := d1 − λ̂

for i = 1, n− 1

L+(i) := (dili)/D+(i)

D+(i + 1) := dil
2

i + di+1 − L+(i)dili − λ̂

end for

?

Differential qd (dqds) : s1 := −λ̂

for i = 1, n− 1

D+(i) := si + di

L+(i) := (dili)/D+(i)

si+1 := L+(i)lisi − λ̂

end for

D+(n) := sn + dn



Computing an Eigenvector

• Compute the appropriate Twisted Factorization :

T − λ̂I = NrDrN
T
r ,

where Dr is diagonal, Nr =
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and r is chosen to minimize |γr| (it will be O(λ− λ̂)).

• Solve for z, NrDrN
T
r z = γrer ( ⇒ NT

r z = er ) :

z(i) =
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1, i = r,

−L+(i) · z(i + 1), i = r − 1, . . . , 1,

−U−(i− 1) · z(i− 1), i = r + 1, . . . , n.

• Solves an open problem posed by Wilkinson (1965).



Main Theorem

THEOREM. [Dhillon & Parlett, 2003] Eigenvectors computed by twisted factorization are

numerically orthogonal if eigenvalues of LDLT have large relative gaps. In particular,

(v̂i, v̂j) =
O(ε)

Relsep(λi, λj)
,

where

Relsep(λi, λj) =
|λi − λj|

max(|λi|, |λj|)
.

• Example of Large Relsep :

λ1 = 10−16, λ2 = 10−15 ⇒ Relsep(λ1, λ2) ≈ 1

Above Theorem ⇒ Automatic Orthogonality.

• Example of Small Relsep :

λ1 = 1.000000000000001,

λ2 = 1.000000000000002.



Proof of Correctness

• Desired Relationship: LDLT − λ̂I = NrDrN
T
r , and NrDrN

T
r z = γrer.

-

6

-

? exact

computed

v̄, L̄D̄L̄T ÑrD̃rÑr
T
z̃ = γ̃rer

v, LDLT N̂rD̂rN̂
T
r , ẑ

4 ulps in Ñr

2 ulps in D̃r

3 ulps in L
3 ulps in D

• Exact Mathematical relationship holds : L̄D̄L̄T − λ̂I = ÑrD̃rÑr
T
.

• Key step in proof is to relate ẑ to v in 3 steps :

1. ẑ is close to z̃, (only multiplications),

2. sin 6 (v̄, z̃) = O(ε|λ̄|)/gap(λ̂), (|γ̃r| = O(ε|λ̄|)),
3. sin 6 (v̄, v) = O(ε)/relgap(λ̂) (relative perturbation theory).

⇒ sin 6 (ẑ, v) =
O(ε)

Relgap(λ̂)
.



Key Idea 3. Shift for Separation, again differentially



Algorithm MR3 (Multiple RRRs)

1. Choose µ such that T + µI is positive definite.

2. Compute the factorization :

T + µI = LDLT .

3. Compute eigenvalues of LDLT to high relative accuracy (by dqds or bisection).

4. Group eigenvalues according to their Relative Gaps :

a) isolated (agree in < 3 digits). Compute eigenvector using a twisted factorization.

b) clustered (agree in > 3 digits).

• Pick µ near cluster to form LDLT − µI = L1D1L
T
1 (by dqds).

• “Refine” eigenvalues in cluster to high relative accuracy.

• Set L← L1, D ← D1. Repeat step 4 for eigenvalues in cluster.



Key Idea 4. Analyze the Representation Tree

Step 4 of the MR3 algorithm may be represented as a tree:

• At the root is the original factorization.

• At each internal node is a factorization for another shift µ.

• Each child of the node for µ corresponds to an isolated eigenvalue or a cluster.



Small Example

• Eigenvalues: ε, 1 +
√

ε, 1 + 2
√

ε, 2.

• Extra representation needed at σ = 1:

LDLT − I = L1D1L
T
1 .

• The following Representation Tree captures the steps of the algorithm:
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Wilkinson’s Matrix

• W +
21 : 21× 21 Wilkinson’s matrix.

• λ20 and λ21 are identical to working precision.

• What happens in this case?

LDLT − λ̂21I = L1D1L
T
1 .

•
λ20(L1D1L

T
1 ) & λ21(L1D1L

T
1 ) — no digits in common!

−7.28× 10−14 & −1.22× 10−15

(v̂20, v̂21) = 1.0× 10−16

• Computed Eigenvectors v̂20 and v̂21:
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Worst Case / Large Depth

13× 13 matrix with eigenvalues: 0, 1, 1± 10−15, 1± 10−12, 1± 10−9, 1± 10−6, 1± 10−3, 2.�
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Performance of MRRR on Biphenyl Matrix

For the biphenyl matrix (n = 966),

• the root node had 805 leaf children and 63 internal node children.

• all nodes at the next level were leaf nodes.

• 49 clusters had 2 eigenvalues,

• 13 clusters had 3-8 eigenvalues.

• one cluster had 9 eigenvalues,



Residual Norms for computed z - Part 1

• Paper 1 guarantees small residuals at the bottom of the representation
tree :
a leaf and its parent

‖(leaf − δλI)z‖ = |γ| = O(εδλ).

• Our problem :

‖(root− λI)z‖ = |γ| = O(ε spdiam(root)) ???

• In exact arithmetic, root residual is also O(εδλ).



Residual Norms for computed z - Part 2

Compare child residual with parent residual at each interval node from leaf to
root.

-

6

-

? exact
τ

computed

r̃p r̄c

rp rc

λλ + τ

parent child

rc = (Tc − λI)z

Tc = LcDcL
T
c

• By design
r̃p = r̄c exact

• also
r̃p = rp + δTpz , T̃p = Tp + δTp

r̄c = rc + δTcz , T̄c = Tc + δTc

T + δT = (L + δL)(D + δD)(L + δL)T , T = LDLT



Technical Lemma

If

‖Dz‖ ≤ c spdiam(T0)

‖L̊DL̊Tz‖ ≤ c spdiam(T0), L̊ = L− I,

then

(∗) ‖δTz‖ ≤ (2c +
1

2
)(9ε) spdiam(T0) + O(nε2)

NOTE: large values in D and LDLT can be neutralized by small entries in z.

(*) gives a bound on increase in residual norm at each internal node on path
from leaf to root.



Orthogonality
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• By Paper 1, eigenvectors with same parent are orthogonal to working
accuracy.

• Our problem : |zT
j zk| = O(nε) ????

• SΓ = SLDLT

Γ = subspace invariant under LDLT for eigenvalues in Γ.



Two Angles

Ψk,Γ := 6 (zk,SΓ)

ΦΓα
:= 6 (Sparent

Γα
,Schild

Γα
), Sparent

Γα
⊂ Sparent

Γ

Lemma 1. sin Ψj,Γ ≤ sin Ψj,Γα
+ sin ΦΓα

Lemma 2. sin ΦΓα ≤ Rnε,

R depends on tolerance for relgap.



Theorem

Let (LDLT , Γ) be the least common ancestor of zj and
zk, j 6= k. If all internal nodes on the paths from leaves < j >
and < k > to Γ, (in the representation tree) are RRRs, then

cos 6 (zj, zk) ≤ 2 leafbound+{depth(Γ, j)+depth(Γ, k)−2}Rnε.


