
Direct solution of large
sparse sets of equations

on a multicore computer

John Reid, Jonathan Hogg,
and Jennifer Scott

Rutherford Appleton Laboratory

Sparse Matrices for
Scientific Computation,

Cosener’s House, Abingdon,
15 – 16 July, 2009.



2

Introduction

Multicore machines have become very common.

The NA Group at RAL has purchased an 8-core
machine.

Its theoretical peak is 10/80 Glops on 1/8 cores.

Its DGEMM peak is 9.3/72.8, using MPI to run
independent matrix multiplies.

We have been exploring how to make such a
machine work well when factorizing sparse
matrices. We use OpenMP.



3

The full symmetric positive-definite case

Jonathan Hogg has developed a Cholesky code,
HSL_MP54, inspired by the work of Buttari,
Langou, Kurzak, and Dongarra (2007).

The matrix is blocked and the computation is
divided into tasks:

T(i) Factor: L L = Akk kk kk
−1(ii) Solve: L = A Lik ik kk

T(iii) Update: A = A − L Lij ij ik jk

Factor must wait for fully updated A .kk

Solve must wait for fully updated A and for L .ik kk

Update must wait for L and L .ik jk

This leaves a lot of scope for tasks to be
performed in parallel.



4

Priorities

The dependencies can be represented by a DAG
(directed acyclic graph), with a node for each
task.

Hogg found that complex priority schemes based
on critical paths in the DAG offered very little
benefit over the simple priority

(i) Factor
(ii) Solve

(iii) Update



5

Counts

For each block of L, count the tasks to be
performed on it.

During factorization, keep running count of
outstanding tasks for each block.

When count reaches 0 for block on the diagonal,
spawn factorize task for it.

When factorize done, decrement count for each
sub-diagonal block in its block column.

When count reaches 0 for off-diagonal block,
spawn solve task.

When solve done, spawn updates made possible.

When update done, decrement count.



6

Performance in Gflops

threads 1 2 4 8
n

500 5.6 8.6 13.4 17.7

2500 7.6 14.5 26.9 43.5

10000 8.6 17.1 33.6 61.9

Peak 9.3 72.8



7

The sparse case

Assume that a good pivot order is available.

There is freedom to alter this without changing
the result, apart from round-off.

If l is the first subdiagonal entry in column j, iij

must follow j in the pivot sequence (to ensure that
a is up to date).ii

Construct a tree with all such ij pairs as parent-
child edges.

Each parent must wait for all its children.

Merging a node with its parent has little (or no)
effect on fill-in.

Do this recursively (within reason) to give block
eliminations at each node.

Result is the assembly tree.



8

Conventional parallelism

Usually rely on two levels of parallelism:

Tree-level parallelism: Independent subtrees
processed in parallel.

Node-level parallelism: parallelism within
operations at a node. Normally used near the
root.

Our idea: treat the whole computation as a set of
factor, solve, and update tasks.



9

Data structure

Nodal matrix: columns of L that correspond to
variables eliminated there, packed as a
trapezoidal matrix.

Like holding the fully-summed parts of all the
frontal matrices of the multifrontal method.

Divide this into blocks, wasting the upper
triangular part of the blocks on the diagonal.

Hold each block by rows. Hold the blocks by
block columns. Example:

1
4 5
7 8 9
10 11 12 25
13 14 15 27 28
16 17 18 29 30
19 20 21 31 32
22 23 24 33 34



10

Tasks

Factor and solve tasks are as in the full case.

Update of a block within the nodal matrix is as in
the full case.

Update of a block not within the nodal matrix is
different.



11

Updates between nodes

Updates not within the nodal matrix must be to an
ancestor nodal matrix.

Consider the update
TA = A − L Lij ij ik jk

to a block of such an ancestor nodal matrix.

L consists of a set of contiguous rows of theik

nodal matrix. In general, they will correspond to a
subset of the rows of A .ij

Similarly, L consist of a set of contiguous rowsjk

that correspond to a subset of the columns of A .ij

The format (blocks held by rows) allows us to
perform this as a single BLAS 3 to a buffer,
followed by addition with indirect addressing.



12

Counts

As in the full case, keep track of the number of
outstanding tasks for each block of L.

Initial values not so simple now and have to be
calculating during analyse.



13

Effect of caching

As in the full case, keep track of the number of
outstanding tasks for each block of L

When a task becomes ready, good idea to do it
immediately with the same cache.

Hence we hold a small stack for each cache of
tasks that are ready.

If it gets full, move bottom half to a global pool.

If it gets empty, get a task from global pool. If
this, too, is empty, grab bottom half of biggest
other stack.

Tasks in pool given priorities:
1. factorize
2. solve
3. update within node
4. update between nodes



14

Performance

We tested the code on 30 problems from Tim
Davis’ collection, with

orders from 20 to 1228 thousands,
max. front size from 1.9 to 10.7 thousands,
nz(L) from 25 to 323 millions.

The speed-ups were:
2-core: close to 2
4-core: usually about 3.3, not less than
about 3.
8-core: better than 6 on many large cases, not
less than 5.

The actual 8-core speed was usually about 35
Gflops, less than 24 Gflops in only 2 cases.



15

Comparison with MUMPS and PARDISO

On one core

HSL_MA87 is broadly comparable with MUMPS
and PARDISO.

On 8 cores

HSL_MA87 is broadly comparable with PARDISO,
usually faster than MUMPS with median ratio
about 2.

On one problem, the times were 17, 96, 120, resp.



16

Further work

We have begun to plan extension to the indefinite
case, using 1×1and 2×2pivots subject to a
threshold test.

This is based on our happy exprience with new
indefinite kernel HSL_MA64.

Now have to wait for the whole of a block
column to be ready before we can spawn updates.

A bit less scope for parallelism, but counts only
needed for block columns instead of blocks.

Also need to allow for delayed pivots.



17

References

Buttari, A., Langou, J., Kurzak, J., and Dongarra,
J. (2009). A class of parallel tiled linear algebra
algorithms for multicore architectures. Parallel
Computing 35, 38-53.

Hogg, J. D. (2008) A DAG-based parallel
Cholesky factorization for multicore systems.
RAL-TR-2008-029.

Hogg, J. D., Reid, J.K., and Scott, J.A. (2008) A
DAG-based sparse Cholesky solver for multicore
architectures. RAL-TR-2009-004.


