
Too large to handle directly?

Jennifer Scott

Joint work with John Reid

Sparse Matrices for Scientific Computation 16.07.09 – p. 1/28

Sparse systems

We are interested in solving
Ax = b

where A is
LARGE

s p a r s e

Problem sizes of order > 107 not uncommon and growing larger

Direct methods (eg A = (PL)D(PL)T) are popular because they are robust

But their storage requirements generally grow rapidly with problem size

One possible solution: use an out-of-core direct solver

An out-of-core solver holds the matrix factors in files and may also hold the matrix
data and some work arrays in files.

Sparse Matrices for Scientific Computation 16.07.09 – p. 2/28

Sparse systems

We are interested in solving
Ax = b

where A is
LARGE

s p a r s e

Problem sizes of order > 107 not uncommon and growing larger

Direct methods (eg A = (PL)D(PL)T) are popular because they are robust

But their storage requirements generally grow rapidly with problem size

One possible solution: use an out-of-core direct solver

An out-of-core solver holds the matrix factors in files and may also hold the matrix
data and some work arrays in files.

Sparse Matrices for Scientific Computation 16.07.09 – p. 2/28

Brief history of HSL out-of-core solvers

MA32 frontal solver for element problems, written by Iain Duff in 1980.
Optionally used direct access files to hold the matrix factors.
Extended 1983 to assembled unsymmetric systems.
Superseded in 1992 by MA42 (Duff and Scott).
Major change: use of level 3 BLAS.
HSL MA42 (1995) was first HSL package written in Fortran 90.
Version for symmetric positive definite systems MA62 in 1996.
MPI versions HSL MP42 and HSL MP62 (1999).

25 years ago John Reid developed Cholesky out-of-core multifrontal code
TREESOLV for element applications. Good results but never in HSL.

John also wrote out-of-core symmetric positive definite banded solver
HSL MA55 (1999).

TREESOLV is really the inspiration for our recent codes.

Sparse Matrices for Scientific Computation 16.07.09 – p. 3/28

Brief history of HSL out-of-core solvers

MA32 frontal solver for element problems, written by Iain Duff in 1980.
Optionally used direct access files to hold the matrix factors.
Extended 1983 to assembled unsymmetric systems.
Superseded in 1992 by MA42 (Duff and Scott).
Major change: use of level 3 BLAS.
HSL MA42 (1995) was first HSL package written in Fortran 90.
Version for symmetric positive definite systems MA62 in 1996.
MPI versions HSL MP42 and HSL MP62 (1999).

25 years ago John Reid developed Cholesky out-of-core multifrontal code
TREESOLV for element applications. Good results but never in HSL.

John also wrote out-of-core symmetric positive definite banded solver
HSL MA55 (1999).

TREESOLV is really the inspiration for our recent codes.

Sparse Matrices for Scientific Computation 16.07.09 – p. 3/28

Brief history of HSL out-of-core solvers

MA32 frontal solver for element problems, written by Iain Duff in 1980.
Optionally used direct access files to hold the matrix factors.
Extended 1983 to assembled unsymmetric systems.
Superseded in 1992 by MA42 (Duff and Scott).
Major change: use of level 3 BLAS.
HSL MA42 (1995) was first HSL package written in Fortran 90.
Version for symmetric positive definite systems MA62 in 1996.
MPI versions HSL MP42 and HSL MP62 (1999).

25 years ago John Reid developed Cholesky out-of-core multifrontal code
TREESOLV for element applications. Good results but never in HSL.

John also wrote out-of-core symmetric positive definite banded solver
HSL MA55 (1999).

TREESOLV is really the inspiration for our recent codes.

Sparse Matrices for Scientific Computation 16.07.09 – p. 3/28

Brief history of HSL out-of-core solvers

MA32 frontal solver for element problems, written by Iain Duff in 1980.
Optionally used direct access files to hold the matrix factors.
Extended 1983 to assembled unsymmetric systems.
Superseded in 1992 by MA42 (Duff and Scott).
Major change: use of level 3 BLAS.
HSL MA42 (1995) was first HSL package written in Fortran 90.
Version for symmetric positive definite systems MA62 in 1996.
MPI versions HSL MP42 and HSL MP62 (1999).

25 years ago John Reid developed Cholesky out-of-core multifrontal code
TREESOLV for element applications. Good results but never in HSL.

John also wrote out-of-core symmetric positive definite banded solver
HSL MA55 (1999).

TREESOLV is really the inspiration for our recent codes.

Sparse Matrices for Scientific Computation 16.07.09 – p. 3/28

Other out-of-core solvers

BCSEXT-LIB (Boeing)

Oblio (Dobrian and Pothen)

TAUCS (Toledo and students)

MUMPS parallel solver: now offers out-of-core version

Also work by Rothberg and Schreiber

Sparse Matrices for Scientific Computation 16.07.09 – p. 4/28

HSL MA77

HSL MA77 is our new out-of-core solver

HSL MA77 is designed to solve LARGE sparse symmetric systems, both
positive definite and indefinite

HSL MA77 implements a multifrontal algorithm

Matrix data, matrix factor, and the main work space (multifrontal stack) held
in files

Aim today: to provide brief introduction to HSL MA77 and to present some
numerical results hope you will go away wanting to try the code

Sparse Matrices for Scientific Computation 16.07.09 – p. 5/28

Key features of HSL MA77

Written in Fortran 95 (recall: HSL is a library of Fortran packages)

Sparse Matrices for Scientific Computation 16.07.09 – p. 6/28

Key features of HSL MA77

Written in Fortran 95 (recall: HSL is a library of Fortran packages)

Matrix A may be either in assembled form or a sum of element matrices

Sparse Matrices for Scientific Computation 16.07.09 – p. 6/28

Key features of HSL MA77

Written in Fortran 95 (recall: HSL is a library of Fortran packages)

Matrix A may be either in assembled form or a sum of element matrices

Reverse communication interface with input by rows or by elements

Sparse Matrices for Scientific Computation 16.07.09 – p. 6/28

Key features of HSL MA77

Written in Fortran 95 (recall: HSL is a library of Fortran packages)

Matrix A may be either in assembled form or a sum of element matrices

Reverse communication interface with input by rows or by elements

Separate calls for each phase

Sparse Matrices for Scientific Computation 16.07.09 – p. 6/28

Key features of HSL MA77

Written in Fortran 95 (recall: HSL is a library of Fortran packages)

Matrix A may be either in assembled form or a sum of element matrices

Reverse communication interface with input by rows or by elements

Separate calls for each phase
Entering of integer and real matrix data
Analyse phase (set up data structures using user-supplied pivot order)
Factorization (compute and store factor plus optional solve)
Solve (any number of right-hand sides)
Compute residual and obtain information on factors (optional)
Optional restart (save data for later factorization and/or solves)
Optional scaling (out-of-core)

Sparse Matrices for Scientific Computation 16.07.09 – p. 6/28

Key features of HSL MA77

Written in Fortran 95 (recall: HSL is a library of Fortran packages)

Matrix A may be either in assembled form or a sum of element matrices

Reverse communication interface with input by rows or by elements

Separate calls for each phase

Additional flexibility through user-controlled parameters (default settings
minimize decisions user must make)

Sparse Matrices for Scientific Computation 16.07.09 – p. 6/28

Dense linear algebra kernels

At the heart of the multifrontal method is the partial factorization of dense
frontal matrices

We have developed separate packages to perform these factorizations (and
partial solves)
HSL MA54 for positive definite problems
HSL MA64 for indefinite problems (uses threshold partial pivoting with 1x1
and 2x2 pivots)

Kernels use blocking and exploit Level 3 BLAS. OpenMP option now
available

Modular design helps with readability, testing, maintenance etc

Kernels can also be reused in other solvers

Performance can be tuned for computing environment

Sparse Matrices for Scientific Computation 16.07.09 – p. 7/28

Dense linear algebra kernels

At the heart of the multifrontal method is the partial factorization of dense
frontal matrices

We have developed separate packages to perform these factorizations (and
partial solves)
HSL MA54 for positive definite problems
HSL MA64 for indefinite problems (uses threshold partial pivoting with 1x1
and 2x2 pivots)

Kernels use blocking and exploit Level 3 BLAS. OpenMP option now
available

Modular design helps with readability, testing, maintenance etc

Kernels can also be reused in other solvers

Performance can be tuned for computing environment

Sparse Matrices for Scientific Computation 16.07.09 – p. 7/28

Dense linear algebra kernels

At the heart of the multifrontal method is the partial factorization of dense
frontal matrices

We have developed separate packages to perform these factorizations (and
partial solves)
HSL MA54 for positive definite problems
HSL MA64 for indefinite problems (uses threshold partial pivoting with 1x1
and 2x2 pivots)

Kernels use blocking and exploit Level 3 BLAS. OpenMP option now
available

Modular design helps with readability, testing, maintenance etc

Kernels can also be reused in other solvers

Performance can be tuned for computing environment

Sparse Matrices for Scientific Computation 16.07.09 – p. 7/28

Dense linear algebra kernels

At the heart of the multifrontal method is the partial factorization of dense
frontal matrices

We have developed separate packages to perform these factorizations (and
partial solves)
HSL MA54 for positive definite problems
HSL MA64 for indefinite problems (uses threshold partial pivoting with 1x1
and 2x2 pivots)

Kernels use blocking and exploit Level 3 BLAS. OpenMP option now
available

Modular design helps with readability, testing, maintenance etc

Kernels can also be reused in other solvers

Performance can be tuned for computing environment

Sparse Matrices for Scientific Computation 16.07.09 – p. 7/28

Dense linear algebra kernels

At the heart of the multifrontal method is the partial factorization of dense
frontal matrices

We have developed separate packages to perform these factorizations (and
partial solves)
HSL MA54 for positive definite problems
HSL MA64 for indefinite problems (uses threshold partial pivoting with 1x1
and 2x2 pivots)

Kernels use blocking and exploit Level 3 BLAS. OpenMP option now
available

Modular design helps with readability, testing, maintenance etc

Kernels can also be reused in other solvers

Performance can be tuned for computing environment

Sparse Matrices for Scientific Computation 16.07.09 – p. 7/28

Dense linear algebra kernels

At the heart of the multifrontal method is the partial factorization of dense
frontal matrices

We have developed separate packages to perform these factorizations (and
partial solves)
HSL MA54 for positive definite problems
HSL MA64 for indefinite problems (uses threshold partial pivoting with 1x1
and 2x2 pivots)

Kernels use blocking and exploit Level 3 BLAS. OpenMP option now
available

Modular design helps with readability, testing, maintenance etc

Kernels can also be reused in other solvers

Performance can be tuned for computing environment

Sparse Matrices for Scientific Computation 16.07.09 – p. 7/28

Input/Output in HSL MA77

For HSL MA77 to perform well, the I/O must be efficient. I/O involves:
writing the original real and integer data

Sparse Matrices for Scientific Computation 16.07.09 – p. 8/28

Input/Output in HSL MA77

For HSL MA77 to perform well, the I/O must be efficient. I/O involves:
writing the original real and integer data
analyse phase (integer data only)

reading data for input matrix
writing data at each node of the assembly tree
reading data at each node
writing reordered data ready for factorization

Sparse Matrices for Scientific Computation 16.07.09 – p. 8/28

Input/Output in HSL MA77

For HSL MA77 to perform well, the I/O must be efficient. I/O involves:
writing the original real and integer data
analyse phase (integer data only)
factorization phase

reading integer data at each node of the tree
reading real data for each leaf node
writing columns of L as they are computed
writing Schur complements to stack
reading data from stack

Sparse Matrices for Scientific Computation 16.07.09 – p. 8/28

Input/Output in HSL MA77

For HSL MA77 to perform well, the I/O must be efficient. I/O involves:
writing the original real and integer data
analyse phase (integer data only)
factorization phase
solve phase

reading integer/ real factor data once for forward sub. and once for back sub.

Sparse Matrices for Scientific Computation 16.07.09 – p. 8/28

Input/Output in Fortran

In Fortran 77/90/95 - direct access I/O is entirely record based

Fine if every read/write is of the same amount of data
But we need to read/write different numbers of reals and integers at each stage
of the computation
Note: we do not want to be restricted to only accessing the data in the same
order as it was written so sequential access not an option

We have got around these limitations while adhering to the strict Fortran standard
by writing our own virtual memory management system

Sparse Matrices for Scientific Computation 16.07.09 – p. 9/28

Input/Output in Fortran

In Fortran 77/90/95 - direct access I/O is entirely record based

Fine if every read/write is of the same amount of data
But we need to read/write different numbers of reals and integers at each stage
of the computation
Note: we do not want to be restricted to only accessing the data in the same
order as it was written so sequential access not an option

We have got around these limitations while adhering to the strict Fortran standard
by writing our own virtual memory management system

Sparse Matrices for Scientific Computation 16.07.09 – p. 9/28

Virtual memory management

We have a separate Fortran 95 package HSL OF01 that handles all i/o.
Note: John wrote an earlier code OF01 for use by TREESOLV.

HSL OF01 provides read/write facilities for one or more direct access files
through a single in-core buffer (work array)

Version for real data and another for integer data. Each has its own buffer.

The buffer is divided into fixed length pages ... a page is the same length as a
record in the file

Careful handling of the buffer within HSL OF01 avoids actual input-output
operations whenever possible eg

All wanted pages that are in buffer are accessed before those that are not
When a page is freed, only written to file if it has changed

Sparse Matrices for Scientific Computation 16.07.09 – p. 10/28

Virtual memory management

We have a separate Fortran 95 package HSL OF01 that handles all i/o.
Note: John wrote an earlier code OF01 for use by TREESOLV.

HSL OF01 provides read/write facilities for one or more direct access files
through a single in-core buffer (work array)

Version for real data and another for integer data. Each has its own buffer.

The buffer is divided into fixed length pages ... a page is the same length as a
record in the file

Careful handling of the buffer within HSL OF01 avoids actual input-output
operations whenever possible eg

All wanted pages that are in buffer are accessed before those that are not
When a page is freed, only written to file if it has changed

Sparse Matrices for Scientific Computation 16.07.09 – p. 10/28

Virtual memory management

We have a separate Fortran 95 package HSL OF01 that handles all i/o.
Note: John wrote an earlier code OF01 for use by TREESOLV.

HSL OF01 provides read/write facilities for one or more direct access files
through a single in-core buffer (work array)

Version for real data and another for integer data. Each has its own buffer.

The buffer is divided into fixed length pages ... a page is the same length as a
record in the file

Careful handling of the buffer within HSL OF01 avoids actual input-output
operations whenever possible eg

All wanted pages that are in buffer are accessed before those that are not
When a page is freed, only written to file if it has changed

Sparse Matrices for Scientific Computation 16.07.09 – p. 10/28

Virtual memory management

We have a separate Fortran 95 package HSL OF01 that handles all i/o.
Note: John wrote an earlier code OF01 for use by TREESOLV.

HSL OF01 provides read/write facilities for one or more direct access files
through a single in-core buffer (work array)

Version for real data and another for integer data. Each has its own buffer.

The buffer is divided into fixed length pages ... a page is the same length as a
record in the file

Careful handling of the buffer within HSL OF01 avoids actual input-output
operations whenever possible eg

All wanted pages that are in buffer are accessed before those that are not
When a page is freed, only written to file if it has changed

Sparse Matrices for Scientific Computation 16.07.09 – p. 10/28

Virtual memory management

We have a separate Fortran 95 package HSL OF01 that handles all i/o.
Note: John wrote an earlier code OF01 for use by TREESOLV.

HSL OF01 provides read/write facilities for one or more direct access files
through a single in-core buffer (work array)

Version for real data and another for integer data. Each has its own buffer.

The buffer is divided into fixed length pages ... a page is the same length as a
record in the file

Careful handling of the buffer within HSL OF01 avoids actual input-output
operations whenever possible eg

All wanted pages that are in buffer are accessed before those that are not
When a page is freed, only written to file if it has changed

Sparse Matrices for Scientific Computation 16.07.09 – p. 10/28

Virtual memory management

Each set of data (such as the reals in the matrix and its factor) is accessed as a
virtual array i.e. as if it were a very long array

Long integers (64-bit) are used for addresses in the virtual array

Most active pages of the virtual array are held in the buffer

Any contiguous section of the virtual array may be read or written

Each virtual array is associated with a primary file

For very large problems, the virtual array may be too large for a single file so
secondary files are used

The primary and secondary files are direct access files.

Sparse Matrices for Scientific Computation 16.07.09 – p. 11/28

Virtual memory management

Superfiles

Virtual arrays

temp_filemain_file main_file1 main_file2

Buffer

In this example, two superfiles associated with the in-core buffer

First superfile has two secondaries, the second has none

Important: user shielded from this but can control where the files are stored
(primary and secondary files may be on different devices).

Actual i/o is not needed if user has supplied long buffer

Sparse Matrices for Scientific Computation 16.07.09 – p. 12/28

Use of HSL OF01 within HSL MA77

HSL MA77 has one integer buffer and one real buffer

The integer buffer is associated with a file that holds the integer data for the
matrix A and the matrix factor

The real buffer is associated with two (or three) files:
one holds the real data for the matrix A and the matrix factor
another is used for the multifrontal stack (work space)
in the indefinite case, third file holds separate multifrontal stack for data
from delayed pivots

The user supplies pathnames together with names for the primary files

NOTE: HSL MA77 includes option for the files to be replaced by in-core arrays
(faster if enough memory available). A combination of files and arrays may be
used.

Sparse Matrices for Scientific Computation 16.07.09 – p. 13/28

Use of HSL OF01 within HSL MA77

HSL MA77 has one integer buffer and one real buffer

The integer buffer is associated with a file that holds the integer data for the
matrix A and the matrix factor

The real buffer is associated with two (or three) files:
one holds the real data for the matrix A and the matrix factor
another is used for the multifrontal stack (work space)
in the indefinite case, third file holds separate multifrontal stack for data
from delayed pivots

The user supplies pathnames together with names for the primary files

NOTE: HSL MA77 includes option for the files to be replaced by in-core arrays
(faster if enough memory available). A combination of files and arrays may be
used.

Sparse Matrices for Scientific Computation 16.07.09 – p. 13/28

Some numerical experiments

Large problems from University of Florida Sparse Matrix Collection

Double precision (64-bit) reals on single processor of a Dell Precision 670
with two 3.6 GHz Intel Xeon processors and 4 Gbytes of RAM

f95 compiler with the -O3 option and ATLAS BLAS and LAPACK

Comparisons with HSL solver MA57 (recall yesterday’s talk)

Sparse Matrices for Scientific Computation 16.07.09 – p. 14/28

Factor time: positive definite problems

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.25

0.5

1

2

Problem Index

T
im

e
/ (

M
A

77
 o

ut
−

of
−

co
re

 ti
m

e)

MA57
MA77 in−core

Sparse Matrices for Scientific Computation 16.07.09 – p. 15/28

Solve time: positive definite problems

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.05

0.1

0.2

0.3

0.4

0.5

Problem Index

T
im

e
/ (

M
A

77
 o

ut
−

of
−

co
re

 ti
m

e)

MA57
MA77 in−core

Sparse Matrices for Scientific Computation 16.07.09 – p. 16/28

Total time: positive definite problems

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0.25

0.5

1

2

Problem Index

T
im

e
/ (

M
A

77
 o

ut
−

of
−

co
re

 ti
m

e)

MA57
MA77 in−core

Sparse Matrices for Scientific Computation 16.07.09 – p. 17/28

Total time: indefinite problems

0 5 10 15 20 25 30 35 40 45 50

0.3

0.5

1

2

3

4

Problem Index

T
im

e
/ (

M
A

77
 o

ut
−

of
−

co
re

 ti
m

e)

MA57
MA77 in−core

Sparse Matrices for Scientific Computation 16.07.09 – p. 18/28

Times (seconds) for large problems

Phase inline 1 bones10 nd24k bone010

(503, 712) (914, 898) (72, 000) (986, 703)

Input 4.87 6.25 2.86 8.00

Ordering 14.2 22.8 16.4 34.7

MA77 analyse 4.20 6.70 22.1 26.7

MA77 factor 90.6 174 1284 1491

MA77 solve(1) 5.30 36.0 10.4 311

MA77 solve(8) 10.6 41.3 20.7 331

MA77 solve(64) 60.5 141 90.2 499

MA57 not able to solve these on our test computer (insufficient memory).

Sparse Matrices for Scientific Computation 16.07.09 – p. 19/28

Unsymmetric element problems

Also developed out-of-core multifrontal code for unsymmetric element
problems. Code is called HSL MA78

Based on the design of HSL MA77

Again uses HSL OF01 to handle out-of-core

Separate kernel routine HSL MA74 computes the partial factorization of the
dense unsymmetric frontal matrices

Sparse Matrices for Scientific Computation 16.07.09 – p. 20/28

Comparison with frontal solver

n Time (secs) Factors (∗10
6)

MA42 ELEMENT MA78 MA42 ELEMENT MA78

ship 001 34920 10.5 13.4 15.5 15.6

m t1 97578 552 101 135 56.2

shipsec8 114919 950 101 196 55.6

troll 213453 3102 68 671 63.7

fullb 199187 786 80 356 75.1

These results illustrate the benefits of the multifrontal algorithm.

Appeal: We need large test problems in unassembled element form from real
applications.

Sparse Matrices for Scientific Computation 16.07.09 – p. 21/28

Pivoting options

HSL MA78 offers threshold partial pivoting and threshold rook pivoting.

Threshold partial pivot: candidate must satisfy

|fij | ≥ u ∗max |flj |

where 0 ≤ u ≤ 1 is the pivoting threshold parameter.

Threshold rook pivot: candidate must also satisfy

|fij | ≥ u ∗max |fil|

ie threshold test in both row and columns.

More expensive but more stable (controls condition of L and U).

Does it pay off?

Sparse Matrices for Scientific Computation 16.07.09 – p. 22/28

Rook versus partial pivoting

n Time (secs) Factors (∗10
6) Residual

rook partial rook partial rook partial

ship 001 34920 15.0 13.4 15.6 15.6 5.7 ∗ 10
−16

3.1 ∗ 10
−16

m t1 97578 55.7 94.9 40.2 56.2 4.7 ∗ 10
−16

8.5 ∗ 10
−14

shipsec5 179860 175 275 80.4 105 1.8 ∗ 10
−15

6.8 ∗ 10
−13

ship 003 121178 146 118 70.8 74.0 7.9 ∗ 10
−16

1.5 ∗ 10
−13

raju 001 151656 335 226 168 147 1.5 ∗ 10
−15

5.8 ∗ 10
−15

Conclude: rook pivoting can be beneficial.

Sparse Matrices for Scientific Computation 16.07.09 – p. 23/28

Out-of-core scaling

Ã = D−1

R AD−1

C

where DR, DC diagonal matrices, is an equilibration of A if norms of its rows and
columns have approx. same magnitude.

One possibility (Ruiz)

DR = diag

(

√

max
j
|Aij |

)

and DC = diag

(

√

max
i
|Aij |

)

.

May be applied iteratively.

Can we implement this without explicitly assembling A?

Sparse Matrices for Scientific Computation 16.07.09 – p. 24/28

Out-of-core scaling

Recall: each stage of multifrontal method involves a frontal matrix

F =

(

F1 F2

F3 F4

)

p rows of F1 and F2 are fully summed.

p columns of F1 and F3 are fully summed.

Search first p rows and columns of F and accumulate the largest entries

Sparse Matrices for Scientific Computation 16.07.09 – p. 25/28

Out-of-core scaling

Suppose row i of F corresponds to global row k of A

If i ≤ p

(DR)k ← max

(

(DR)k, max
j≤m
|fij |

)

Otherwise
(DR)k ← max

(

(DR)k, max
j≤p
|fij |

)

Similarly for (DC)k.

Update DR and DC and then discard F1, F2, F3 and stack F4.

Continue to next node of tree

Avoids assembly A in main memory but does require significant I/O

Sparse Matrices for Scientific Computation 16.07.09 – p. 26/28

Effects of equilibration

Rook Partial

No scaling Scaling No scaling Scaling

x104 34.0 24.9 37.8 23.0

m t1 55.7 45.0 94.9 63.0

shipsec1 110 49.3 174 44.4

thread 37.8 55.0 35.4 64.6

Notes:
Scaling adds overhead and may not give benefit.
But scaling can cut total cost and can be particularly beneficial for partial
pivoting.
Scaled residuals typically an order of magnitude large for partial pivoting.

Sparse Matrices for Scientific Computation 16.07.09 – p. 27/28

Concluding remarks

New HSL direct solvers are performing well on large problems
Able to solve larger problems than previously on desktop machines
Out-of-core working adds an overhead but our memory management system
attempts to minimise this (note: single rhs solve expensive)

Scaling out of core is a new development

Rook pivoting looks to be a useful option

Recently we have looked at developing parallel version but out-of-core
working adds complications

Reports giving full details are available via our webpages

Thank you and thank you John!

Sparse Matrices for Scientific Computation 16.07.09 – p. 28/28

Concluding remarks

New HSL direct solvers are performing well on large problems
Able to solve larger problems than previously on desktop machines
Out-of-core working adds an overhead but our memory management system
attempts to minimise this (note: single rhs solve expensive)

Scaling out of core is a new development

Rook pivoting looks to be a useful option

Recently we have looked at developing parallel version but out-of-core
working adds complications

Reports giving full details are available via our webpages

Thank you and thank you John!

Sparse Matrices for Scientific Computation 16.07.09 – p. 28/28

	Sparse systems
	Sparse systems

	Brief history of HSL out-of-core solvers
	Brief history of HSL out-of-core solvers
	Brief history of HSL out-of-core solvers
	Brief history of HSL out-of-core solvers

	Other out-of-core solvers
	{	t HSL_MA77}
	Key features of {	t HSL_MA77}
	Key features of {	t HSL_MA77}
	Key features of {	t HSL_MA77}
	Key features of {	t HSL_MA77}
	Key features of {	t HSL_MA77}
	Key features of {	t HSL_MA77}

	Dense linear algebra kernels
	Dense linear algebra kernels
	Dense linear algebra kernels
	Dense linear algebra kernels
	Dense linear algebra kernels
	Dense linear algebra kernels

	Input/Output in {	t HSL_MA77}
	Input/Output in {	t HSL_MA77}
	Input/Output in {	t HSL_MA77}
	Input/Output in {	t HSL_MA77}

	Input/Output in Fortran
	Input/Output in Fortran

	Virtual memory management
	Virtual memory management
	Virtual memory management
	Virtual memory management
	Virtual memory management

	Virtual memory management
	Virtual memory management
	Use of {	t HSL_OF01} within {	t HSL_MA77}
	Use of {	t HSL_OF01} within {	t HSL_MA77}

	Some numerical experiments
	Factor time: positive definite problems
	Solve time: positive definite problems
	Total time: positive definite problems
	Total time: indefinite problems
	Times (seconds)
for large problems
	Unsymmetric element problems
	Comparison with frontal solver
	Pivoting options
	Rook versus partial pivoting
	Out-of-core scaling
	Out-of-core scaling
	Out-of-core scaling
	Effects of equilibration
	Concluding remarks
	Concluding remarks

