MCMC In High Dimensions

Andrew Stuart

Mathematics Institute and Centre for Scientific Computing, University of Warwick

SIAM, Oxford, 5th January 2007

Collaboration with: Alexandros Beskos

Funded by EPSRC

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Markov Chain Monte Carlo

- **Objective:** Sample distribution $\pi_n : \mathbb{R}^n \mapsto \mathbb{R}^+$.
- Method: Construct Markov chain $\{x^{(k)}\}$ with π_n invariant.
- **Ergodicity:** the Markov chain samples *π_n* after mixing time is reached and

$$rac{1}{K}\sum_{k=1}^J f(x^{(k)}) o \int_{\mathbb{R}^n} f(x) \pi_n(dx) \quad ext{as} \quad J o \infty.$$

• Question: How do methods behave as $n \to \infty$?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Metropolis-Hastings

Propose move x → y according to user-specified

$$q_n(x,dy) = q_n(x,y)dy$$

Accept y with probability

$$\mathbf{a}_n(x,y) = \mathbf{1} \wedge rac{\pi_n(y)q_n(y,x)}{\pi_n(x)q_n(x,y)}$$

otherwise stay at *x*.

• New Markov chain has π_n as invariant.

Local Metropolis-Hastings Algorithms

• Random Walk Metropolis (RWM):

$$y = x + \sigma_n Z$$
, $Z \sim \mathcal{N}(0, I_n)$

• Metropolis-Adjusted Langevin Algorithm (MALA) The Langevin SDE

$$dX_t = \frac{1}{2}\nabla \log \pi_n(X_t)dt + dW_t$$

has invariant distribution π_n . Suggests the proposal:

$$y = x + \frac{\sigma_n^2}{2} \nabla \log \pi_n(x) + \sigma_n Z, \quad Z \sim \mathcal{N}(0, I_n)$$

- **Question:** What is the appropriate *σ_n* for large *n*?
- Courant restriction is computational PDE analogy

The Context

• Existing work concerns product targets:

$$\pi_n(x) = \prod_{i=1}^n f(x_i)$$

Roberts and coworkers (1997–2001) have shown:

RWM:
$$\sigma_n^2 = \mathcal{O}(n^{-1})$$

MALA: $\sigma_n^2 = \mathcal{O}(n^{-1/3})$

in the sense that, in stationarity, for these scalings:

$$\lim_{n\to\infty}\mathbb{E}[a_n(x,y)]\in(0,1)$$

and, for larger time-steps,

$$\lim_{n\to\infty}\mathbb{E}[a_n(x,y)]=0.$$

• Mixing time M(n) ="number of steps to reach stationarity", RWM: M(n) = O(n), MALA: $M(n) = O(n^{1/3})$

(日) (日) (日) (日) (日) (日) (日)

The Context

Our work:

- We investigate non-product targets using a new approach, extending existing results and, in the process, simplfying the proofs.
- Furthermore, we exploit ideas from numerical analysis to construct new schemes which, in important applications, give $\sigma_n^2 = O(1)$.
- We demonstrate the relevance of our results for infinite dimensional sampling applications.

The Family of Targets

• We consider changes of measure from product measures:

$$\tilde{\pi}_n(x) = \prod_{j=1}^n \frac{1}{\lambda_j} f\left(\frac{x_j}{\lambda_j}\right)$$

- λ_j is standard deviation of x_j .
- Our target π_n is defined as:

$$\frac{d\pi_n}{d\tilde{\pi}_n}(x) = \exp\Bigl(-G_n(x)\Bigr)$$

for $G_n : \mathbb{R}^n \mapsto \mathbb{R}$.

Motivated by applications, we assume that

$$\lambda_j = j^{-\kappa}, \quad j = 1, 2, \dots n$$

for integer $\kappa \geq 0$.

・ロト・(型ト・(ヨト・(ヨト・)) ふくの

Infinite-Dimensional Motivation

• We find that if $\tilde{\pi}_n$ is the target then:

RWM:
$$\sigma_n^2 = \mathcal{O}(\lambda_n^2 n^{-1})$$

MALA: $\sigma_n^2 = \mathcal{O}(\lambda_n^2 n^{-1/3})$

• We anticipate similar MALA, RWM behaviour for π_n , $\tilde{\pi}_n$, in the presence of absolute continuity in the limit $n = \infty$:

$$rac{d\pi_\infty}{d ilde{\pi}_\infty}(x) = \exp\Bigl(-G_\infty(x)\Bigr)$$

- Such systems appear in many applications: conditioned diffusions, conditioned Gaussian random fields.
- In such applications π_n is then a discretization of π_∞ .

(日) (日) (日) (日) (日) (日) (日)

Theorems

Note: For MALA we use proposal as if target was $\tilde{\pi}_n$.

Theorem (MALA): Assume

 $\exists M > 0$: for all $n, |G_n| \leq M$

and conditions on *f*. Then the average acceptance probability of MALA in stationarity satisfies:

 $\liminf_{n\to\infty} \mathbb{E}[a_n(x,y)] > 0, \quad \text{if } \sigma_n^2 \leq \mathcal{O}(\lambda_n^2 n^{-1/3}),$

 $\lim_{n\to\infty} \mathbb{E} \left[a_n(x,y) \right] = 0, \qquad \text{if } \sigma_n^2 > \mathcal{O}(\lambda_n^2 n^{-1/3}).$

Theorem (RWM): Similar; replace $\mathcal{O}(\lambda_n^2 n^{-1/3}) \rightarrow \mathcal{O}(\lambda_n^2 n^{-1})$.

Sketch of Proof

Average acceptance probability:

$$\alpha_n = \mathbb{E}a_n = \mathbb{E}\left(\mathbf{1} \wedge e^{R_n}\right)$$

• $\sigma_n^2 \leq \mathcal{O}(\lambda_n^2 n^{-1/3})$: we have $\sup_n \mathbb{E}|R_n| < \infty$ and, for any $\gamma > 0$,

$$lpha_{\textit{n}} \geq \textit{e}^{-\gamma} \mathbb{P}(|\textit{\textit{R}}_{\textit{n}}| \leq \gamma) \geq \textit{e}^{-\gamma} \left(1 - rac{\mathbb{E}|\textit{\textit{R}}_{\textit{n}}|}{\gamma}\right) > \textit{0}.$$

• $\sigma_n^2 > \mathcal{O}(\lambda_n^2 n^{-1/3})$: we get $\mathbb{E} R_n = -2c_n \downarrow -\infty$ and

$$\alpha_n \leq e^{-c_n} + \mathbb{P}\Big(R_n \geq -c_n\Big) \Big) \leq e^{-c_n} + \frac{\mathbb{E}|R_n - \mathbb{E}R_n|}{c_n}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Special Case: MALA + Gaussian Reference Measure

• Target:
$$\pi_n(x) = \exp(-G_n(x)) \tilde{\pi}_n(x)$$
 with

$$\tilde{\pi}_n = \prod_{j=1}^n N(0, \lambda_j^2)$$

• **Proposal:** Implicit MALA ($\theta = 0$ in previous)

$$\mathbf{y} = \mathbf{x} - (1 - \theta) \frac{\sigma_n^2}{2} L_n \mathbf{x} - \theta \frac{\sigma_n^2}{2} L_n \mathbf{y} + \sigma_n \mathbf{Z}, \quad \mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$$

 $\theta \in [0, 1], L_n$ diagonal $n \times n$ with *j*-th diagonal element λ_i^{-2} .

Theorem: If $\theta \neq 1/2$ then $\sigma_n^2 = \mathcal{O}(\lambda_n^2 n^{-1/3})$. If $\theta = 1/2$ then $\sigma_n^2 = \mathcal{O}(1)$.

Conditioned Diffusions

• Sample $X(t) \in L^2([0,1], \mathbb{R})$:

$$\frac{dX}{dt} = f(X) + \frac{dW}{dt}$$

Given

$$X(0) = X^{-}$$
 & $X(1) = X^{+}$

- Target measure: π_{∞}
- Reference measure: Brownian Bridge ($f \equiv 0$): $\tilde{\pi}_{\infty}$
- From the Girsanov theorem:

$$rac{d\pi_\infty}{d ilde\pi_\infty}(x) = \exp\Bigl(-G_\infty(x)\Bigr)$$

for G_{∞} : $L^2([0, 1], \mathbb{R}) \mapsto \mathbb{R}$.

◆ロト ◆課 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○のへで

Unveil Product Structure

 Karhunen-Loève representation of x ∈ L² from Gaussian measure N(0, C) is

$$x(t) = \sum_{j=1}^{\infty} x_j \boldsymbol{e}_j(t).$$

Here x_j ~ N(0, λ_j²) and C has evalues/evectors (λ_j, e_j(t)).
For Brownian bridge

$$\lambda_j^2 = (\pi j)^{-2}, \boldsymbol{e}_j(t) = \sin(j\pi t).$$

Using the isometry between L² and l² this (random)
 Fourier series shows

$$\mathcal{N}(\mathbf{0},\mathcal{C}) \leftrightarrow \prod_{j=1}^{\infty} \mathcal{N}(\mathbf{0},\lambda_j^2).$$

(日) (日) (日) (日) (日) (日) (日)

Conditioned Diffusions

Infinite-Dimensional diffusion-bridge target π_∞:

$$\pi_{\infty}(x) = \exp\left(-G_{\infty}(x)
ight) ilde{\pi}_{\infty}(x), \quad ilde{\pi}_{\infty} = \prod_{i=1}^{\infty} \mathcal{N}(0, \lambda_i^2)$$

with Brownian bridge eigenvalues $\lambda_i^2 = \pi^{-2} i^{-2}$.

• Spectral Method π_n :

Use Fourier expansion truncation:

$$\mathbf{x} = \sum_{j=1}^{\infty} x_j \mathbf{e}_j \approx \sum_{j=1}^{n} x_j \mathbf{e}_j$$

• Theory suggests implicit MALA with $\theta = 1/2$ giving $\sigma_n^2 = O(1)$.

Example - MALA Results

- We applied implicit MALA to sample a non-Gaussian bridge.
- We verified $\sigma_n^2 = \mathcal{O}(\lambda_n^2 n^{-1/3}) = \mathcal{O}(n^{-7/3})$ for $\theta \neq 1/2$.
- And at $\theta = 1/2$, $\sigma_n^2 = \mathcal{O}(1)$.

Average Acceptance Probability in Stationarity

What We Have Shown

- We have found scaling of step σ_n^2 in Metropolis-Hastings proposals for non-product targets in high dimensions.
- We have thus extended existing results in literature in a manner which makes them much more applicable.
- Solution When the reference measure is Gaussian, an implicit scheme gives MALA with scaling $\sigma_n^2 = O(1)$.
- Changes of measure from Gaussian law appears in many applications.

(日) (日) (日) (日) (日) (日) (日)

What Remains Open

1 Relax conditions on $\{G_n\}$ for theorems:

- $|G_{\infty}(x)|_{\beta} \leq M|x|_{\gamma} \quad \forall x.$
- $|G_{\infty}(x) G_{\infty}(y)|_{\beta} \leq M|x y|_{\gamma} \quad \forall x, y.$
- **2** Does the step scaling $O(n^{-\rho})$ imply mixing $O(n^{\rho})$?
 - For product measure MCMC method has an SDE limit for any fixed component x_j (Roberts et al);
 - this facilitates proof of mixing time;
 - we conjecture existence of a limiting SPDE for entire vector *x* in non-product case.

References

- G.O. Roberts, A. Gelman and W.R. Gilks. "Weak convergence and optimal scaling of random walk Metropolis algorithms". Ann. Appl. Prob. 7(1997), 110–120.
- G.O. Roberts and J.S. Rosenthal. "Optimal scaling of discrete approximations to Langevin diffusions". J. Roy. Stat. Soc. 60B(1998), 255–268.
- A. Beskos, G.O. Roberts, A.M. Stuart and J. Voss. "An MCMC Method for diffusion bridges." See:

http : //www.maths.warwick.ac.uk/ \sim stuart/sample.html

 A. Beskos and A.M. Stuart. "Scalings for local Metropolis-Hastings chains on non-product targets." In preparation.