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INTRODUCTION

Markov Chain Monte Carlo

@ Objective: Sample distribution 75, : R — R,
@ Method: Construct Markov chain {x(®} with 7, invariant.

@ Ergodicity: the Markov chain samples 7, after mixing time
is reached and

J
%Z f(x®) = [ f(x)mp(dx) as J — oo.
k=1 R

@ Question: How do methods behave as n — oo?



INTRODUCTION
Metropolis-Hastings

@ Propose move x — y according to user-specified

an(x, dy) = gn(x,y)dy
@ Accept y with probability

an(x#)zh\W

7n(X)gn(X, ¥)

otherwise stay at x.
@ New Markov chain has 7, as invariant.



Local Metropolis-Hastings Algorithms

@ Random Walk Metropolis (RWM):
y=x+0nZ, Z~N(O,l) ’

@ Metropolis-Adjusted Langevin Algorithm (MALA)
The Langevin SDE

1
2
has invariant distribution 7,. Suggests the proposal:

dXt ==V |Og Wn(Xt)dt + th

2
y=Xx+ %Vlognn(x) +onZ, Z~N(0,l)

@ Question: What is the appropriate o, for large n?
@ Courant restriction is computational PDE analogy
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The Context

@ Existing work concerns product targets:
mn(X) = M4 f(x)
@ Roberts and coworkers (1997-2001) have shown:

RWM: o2 =0(n")
MALA: o2 =O(n1/3)

in the sense that, in stationarity, for these scalings:
Jim Elan(x.y)] € (0.1)
and, for larger time-steps,
nIi_)m()@]E[a,,(x,y)] =0.

@ Mixing time M(n) ="number of steps to reach stationarity”,
RWM: M(n) =O(n),  MALA: M(n) = O(n'/?)



INTRODUCTION

The Context

Our work:

@ We investigate non-product targets using a new approach,
extending existing results and, in the process, simplfying
the proofs.

@ Furthermore, we exploit ideas from numerical analysis to
construct new schemes which, in important applications,
give o2 = O(1).

@ We demonstrate the relevance of our results for infinite
dimensional sampling applications.
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RESULTS

The Family of Targets

@ We consider changes of measure from product measures:

200 = 1] ()

=17
@ ), is standard deviation of x;.
@ Our target 7, is defined as:

Z77(x) = exp(~Gnl)

for G, : R" — R.
@ Motivated by applications, we assume that

A= j=1,2,...n

for integer k > 0.
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Infinite-Dimensional Motivation

@ We find that if 7, is the target then:

RWM: o2 =0(X\2n~ ")
MALA: o2 = O(\2n1/3)

@ We anticipate similar MALA, RWM behaviour for wp, 7y, in
the presence of absolute continuity in the limit n = co:

dTso
oo

(x) = exp(~ G (X))

@ Such systems appear in many applications: conditioned
diffusions, conditioned Gaussian random fields.

@ In such applications =, is then a discretization of 7.



RESULTS

Theorems

Note: For MALA we use proposal as if target was 7.

Theorem (MALA): Assume

dM > 0:for all n, |Ga| <M

and conditions on f. Then the average acceptance probability
of MALA in stationarity satisfies:

liminf, ... E[an(x,y)] > 0, if 03 < O()\3n~"/3),

limp_oo Elan(x,y)] =0, if 62> O(\n~1/3).

Theorem (RWM): Similar; replace O(\2n~1/3) — O(X\2n~T).
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Sketch of Proof

Average acceptance probability:

apn = Ean = E<1 A eR”>

@ 02 < O(\2n~'/3): we have sup,E|R,| < oo and, for any
v > 0,

R
an> e P(|Rs| <7) > e (1 - w> > 0.

@ 02> 0(\2n"1/3): wegetER,=—2¢c,| — and

E|Ry—ERy|

Qn < e_c" + ]P(Rn > —Cn)) < e_C" + C
n
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Special Case: MALA + Gaussian Reference Measure

@ Target: 7 (x) = exp(—Gn(x)> 7n(Xx) with

n

#tn = [ N(O, A?)

=t

@ Proposal: Implicit MALA (¢ = 0 in previous)

o2 2

y=x-(1-6)2 Lnx—G%Lny+anZ, Z ~N(0, 1)

0 € [0,1], L, diagonal n x n with j-th diagonal element )\/.*2.

Theorem: If § # 1/2 then 02 = O(\2n~1/3),
If 9 =1/2then o2 = O(1).
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APPLICATIONS

Conditioned Diffusions

o Sample X(t) € L2([0, 1], R):

aX dw
o f(X)+ o

@ Given
X0)=X" & X(1)=XT

@ Target measure: m
@ Reference measure: Brownian Bridge (f = 0): 7
@ From the Girsanov theorem:

AT

0= exp(—Goo(x))

for G : L2([0,1],R) ~— R.
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Unveil Product Structure

@ Karhunen-Loéve representation of x € L? from Gaussian
measure N(0,C) is

x(t) =) xe(t).
j=1
@ Here x; ~ N(0, A/?) and C has evalues/evectors ()}, g;(1)).
@ For Brownian bridge
2 = (nj) 2, g(t) = sin(jxt).

@ Using the isometry between L2 and ¢ this (random)
Fourier series shows

N(0,C) - ﬁ/\/(o, A7).

=1




APPLICATIONS

Conditioned Diffusions

@ Infinite-Dimensional diffusion-bridge target 7..:
Too(X) = exp(—Goo(x)) Foo(X), oo = [[N(0,22)
i=1

with Brownian bridge eigenvalues \? = 7~2/=2,

@ Spectral Method 7,:
Use Fourier expansion truncation:

X_leel ije/

@ Theory suggests implicit MALA with § = 1/2 giving
2=0(1
On (1).
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Example - MALA Results

@ We applied implicit MALA to sample a non-Gaussian
bridge.

@ We verified 02 = O(X\2n=1/3) = O(n~7/3) for 6 # 1/2.

@ Andatd =1/2, 02 = O(1).

Average Acceptance Probability in Stationarity
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CONCLUSIONS

What We Have Shown

@ We have found scaling of step o2 in Metropolis-Hastings
proposals for non-product targets in high dimensions.

@ We have thus extended existing results in literature in a
manner which makes them much more applicable.

© When the reference measure is Gaussian, an implicit
scheme gives MALA with scaling 02 = O(1).

© Changes of measure from Gaussian law appears in many
applications.
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What Remains Open

@ Relax conditions on {G,,} for theorems:
o [Goo(X)|g < Mlx|, Vx.
0 |Goo(X) = Goc(W)ls < MIx =yl VX, y.
@ Does the step scaling O(n=*) imply mixing O(n”)?
e For product measure MCMC method has an SDE limit for
any fixed component x; (Roberts et al);

e this facilitates proof of mixing time;
e we conjecture existence of a limiting SPDE for entire vector

X in non-product case.
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