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Markov Chain Monte Carlo

Objective: Sample distribution πn : Rn 7→ R+.
Method: Construct Markov chain {x (k)} with πn invariant.
Ergodicity: the Markov chain samples πn after mixing time
is reached and

1
K

J∑
k=1

f (x (k)) →
∫

Rn
f (x)πn(dx) as J →∞.

Question: How do methods behave as n →∞?
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Metropolis-Hastings

Propose move x → y according to user-specified

qn(x , dy) = qn(x , y)dy

Accept y with probability

an(x , y) = 1 ∧ πn(y)qn(y , x)

πn(x)qn(x , y)

otherwise stay at x .
New Markov chain has πn as invariant.
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Local Metropolis-Hastings Algorithms

Random Walk Metropolis (RWM):

y = x + σnZ , Z ∼ N (0, In)

Metropolis-Adjusted Langevin Algorithm (MALA)
The Langevin SDE

dXt =
1
2
∇ log πn(Xt)dt + dWt

has invariant distribution πn. Suggests the proposal:

y = x +
σ2

n
2
∇ log πn(x) + σnZ , Z ∼ N (0, In)

Question: What is the appropriate σn for large n?
Courant restriction is computational PDE analogy
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The Context

Existing work concerns product targets:

πn(x) = Πn
i=1f (xi)

Roberts and coworkers (1997–2001) have shown:

RWM: σ2
n = O(n−1)

MALA: σ2
n = O(n−1/3)

in the sense that, in stationarity, for these scalings:

lim
n→∞

E[an(x , y)] ∈ (0, 1)

and, for larger time-steps,

lim
n→∞

E[an(x , y)] = 0.

Mixing time M(n) ="number of steps to reach stationarity",
RWM: M(n) = O(n), MALA: M(n) = O(n1/3)
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The Context

Our work:

We investigate non-product targets using a new approach,
extending existing results and, in the process, simplfying
the proofs.
Furthermore, we exploit ideas from numerical analysis to
construct new schemes which, in important applications,
give σ2

n = O(1).
We demonstrate the relevance of our results for infinite
dimensional sampling applications.
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The Family of Targets

We consider changes of measure from product measures:

π̃n(x) =
n∏

j=1

1
λj

f
(

xj

λj

)
λj is standard deviation of xj .
Our target πn is defined as:

dπn

d π̃n
(x) = exp

(
−Gn(x)

)
for Gn : Rn 7→ R.
Motivated by applications, we assume that

λj = j−κ, j = 1, 2, . . . n

for integer κ ≥ 0.
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Infinite-Dimensional Motivation

We find that if π̃n is the target then:

RWM: σ2
n = O(λ2

nn−1)

MALA: σ2
n = O(λ2

nn−1/3)

We anticipate similar MALA, RWM behaviour for πn, π̃n, in
the presence of absolute continuity in the limit n = ∞:

dπ∞
d π̃∞

(x) = exp
(
−G∞(x)

)
Such systems appear in many applications: conditioned
diffusions, conditioned Gaussian random fields.
In such applications πn is then a discretization of π∞.
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Theorems

Note: For MALA we use proposal as if target was π̃n.

Theorem (MALA): Assume

∃M > 0 : for all n, |Gn| ≤ M

and conditions on f . Then the average acceptance probability
of MALA in stationarity satisfies:

lim infn→∞ E[an(x , y)] > 0, if σ2
n ≤ O(λ2

nn−1/3),

limn→∞ E [an(x , y)] = 0, if σ2
n > O(λ2

nn−1/3).

Theorem (RWM): Similar; replace O(λ2
nn−1/3) → O(λ2

nn−1).



INTRODUCTION RESULTS APPLICATIONS CONCLUSIONS

Sketch of Proof

Average acceptance probability:

αn = Ean = E
(

1 ∧ eRn
)

σ2
n ≤ O(λ2

nn−1/3): we have supn E|Rn| < ∞ and, for any
γ > 0,

αn ≥ e−γP(|Rn| ≤ γ) ≥ e−γ

(
1− E|Rn|

γ

)
> 0.

σ2
n > O(λ2

nn−1/3): we get E Rn = −2cn ↓ −∞ and

αn ≤ e−cn + P
(

Rn ≥ −cn)
)
≤ e−cn +

E |Rn − E Rn |
cn

.
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Special Case: MALA + Gaussian Reference Measure

Target: πn(x) = exp
(
−Gn(x)

)
π̃n(x) with

π̃n =
n∏

j=1

N(0, λ2
j )

Proposal: Implicit MALA (θ = 0 in previous)

y = x − (1− θ)
σ2

n
2

Ln x − θ
σ2

n
2

Ln y + σn Z , Z ∼ N (0, In)

θ ∈ [0, 1], Ln diagonal n × n with j-th diagonal element λ−2
j .

Theorem: If θ 6= 1/2 then σ2
n = O(λ2

nn−1/3).
If θ = 1/2 then σ2

n = O(1).
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Conditioned Diffusions

Sample X (t) ∈ L2([0, 1], R):

dX
dt

= f (X ) +
dW
dt

Given
X (0) = X− & X (1) = X+

Target measure: π∞
Reference measure: Brownian Bridge (f ≡ 0): π̃∞
From the Girsanov theorem:

dπ∞
d π̃∞

(x) = exp
(
−G∞(x)

)
for G∞ : L2([0, 1], R) 7→ R.
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Unveil Product Structure

Karhunen-Loève representation of x ∈ L2 from Gaussian
measure N (0, C) is

x(t) =
∞∑

j=1

xjej(t).

Here xj ∼ N (0, λ2
j ) and C has evalues/evectors (λj , ej(t)).

For Brownian bridge

λ2
j =

(
πj

)−2
, ej(t) = sin(jπt).

Using the isometry between L2 and `2 this (random)
Fourier series shows

N (0, C) ↔
∞∏

j=1

N (0, λ2
j ).
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Conditioned Diffusions

Infinite-Dimensional diffusion-bridge target π∞:

π∞(x) = exp
(
−G∞(x)

)
π̃∞(x), π̃∞ =

∞∏
i=1

N (0, λ2
i )

with Brownian bridge eigenvalues λ2
i = π−2i−2.

Spectral Method πn:
Use Fourier expansion truncation:

x =
∞∑

j=1

xjej ≈
n∑

j=1

xjej

Theory suggests implicit MALA with θ = 1/2 giving
σ2

n = O(1).
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Example - MALA Results

We applied implicit MALA to sample a non-Gaussian
bridge.
We verified σ2

n = O(λ2
nn−1/3) = O(n−7/3) for θ 6= 1/2.

And at θ = 1/2, σ2
n = O(1).

Average Acceptance Probability in Stationarity
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What We Have Shown

1 We have found scaling of step σ2
n in Metropolis-Hastings

proposals for non-product targets in high dimensions.
2 We have thus extended existing results in literature in a

manner which makes them much more applicable.
3 When the reference measure is Gaussian, an implicit

scheme gives MALA with scaling σ2
n = O(1).

4 Changes of measure from Gaussian law appears in many
applications.
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What Remains Open

1 Relax conditions on {Gn} for theorems:

|G∞(x)|β ≤ M|x |γ ∀x .
|G∞(x)−G∞(y)|β ≤ M|x − y |γ ∀x , y .

2 Does the step scaling O(n−ρ) imply mixing O(nρ)?

For product measure MCMC method has an SDE limit for
any fixed component xj (Roberts et al);
this facilitates proof of mixing time;
we conjecture existence of a limiting SPDE for entire vector
x in non-product case.
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