
A Parallel Direct Solver for Large Sparse
Highly Unsymmetric Linear Systems

IAIN S. DUFF and JENNIFER A. SCOTT
Rutherford Appleton Laboratory

The need to solve large sparse linear systems of equations efficiently lies at the heart of many
applications in computational science and engineering. For very large systems when using direct
factorization methods of solution, it can be beneficial and sometimes necessary to use multiple
processors, because of increased memory availability as well as reduced factorization time. We
report on the development of a new parallel code that is designed to solve linear systems with a
highly unsymmetric sparsity structure using a modest number of processors (typically up to about
16). The problem is first subdivided into a number of loosely connected subproblems and a variant
of sparse Gaussian elimination is then applied to each of the subproblems in parallel. An interface
problem in the variables on the boundaries of the subproblems must also be factorized. We discuss
how our software is designed to achieve the goals of portability, ease of use, efficiency, and flexibility,
and illustrate its performance on an SGI Origin 2000, a Cray T3E, and a 2-processor Compaq DS20,
using problems arising from real applications.

Categories and Subject Descriptors: G.1.0 [Numerical Analysis]: General—Numerical algo-
rithms; G.1.3 [Numerical Analysis]: Numerical Linear Algebra—Sparse, structured, and very
large systems (direct and iterative methods)

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Sparse matrices, highly unsymmetric linear systems, Gaussian
elimination, parallel processing

1. INTRODUCTION

Large-scale simulations in many areas of science and engineering involve the
repeated solution of sparse linear systems of equations

Ax = b.

Solving these systems usually dominates the computational cost of the simula-
tion. As time-dependent three-dimensional simulations are now commonplace
and workstations and computers with several CPUs are widely available, there

This work was funded by the EPSRC Grant GR/R46441.
Authors’ address: Computational Science and Engineering Department, Atlas Centre, Rutherford
Appleton Laboratory, Oxon OX11 0QX, England; email: {I.A.Duff;J.A.Scott}@rl.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0098-3500/04/0600-0095 $5.00

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004, Pages 95–117.

96 • I. S. Duff and J. A. Scott

is increasing interest in developing algorithms and software that can be used to
solve such problems efficiently on parallel computers. This article reports on the
design and development of a new parallel unsymmetric solver, HSL MP48, that
has at its heart the well-known software package MA48 from the mathematical
software library HSL (www.cse.clrc.ac.uk/nag/hsl).

MA48 is a serial code that was developed in the early 1990s by Duff and Reid
[1993]. It implements a sparse variant of Gaussian elimination, using conven-
tional sparse data structures and incorporating threshold pivoting for numeri-
cal stability. To maintain sparsity, the pivot ordering is based on a modification
of the Markowitz criterion. During the last decade MA48 and, before that, its pre-
decessor MA28 [Duff 1977], has been very widely used; it has been incorporated
into a number of commercial packages and has become a benchmark against
which other sparse direct solvers are frequently compared. MA48 has proved
particularly successful when used for solving problems where the system ma-
trix A is very sparse and highly unsymmetric. One application area in which
such systems arise is chemical process engineering. MP48 has also been found
to be extremely efficient when there is a need to solve repeatedly for different
right-hand sides.

MA48 stores both the matrix A and its factors in main memory. The size
of problem that can be solved using MA48 is therefore limited by the amount
of computer memory available. To solve larger problems, as well as to solve
problems more quickly, our aim is to develop a parallel version of MA48. Be-
cause MA48 is a well-established code that represents substantial program-
ming effort and expertise, we were anxious to exploit the existing code as far
as possible in developing a parallel version. However, there is limited scope
for parallelism within MA48, beyond that which is available through block
triangularization and through its use of high-level BLAS kernels [Dongarra
et al. 1990]. The idea behind our parallel approach is to partition the ma-
trix into a (small) number of loosely connected submatrices and to apply
a modified version of MA48 to each of the submatrices in parallel. This ap-
proach was discussed by Duff and Scott [1994] and was used successfully
by Scott [2001b, 2002] to develop parallel frontal solvers. The results re-
ported by Scott demonstrate that, for a range of practical problems, the paral-
lel frontal approach is significantly faster than using the HSL serial frontal
code MA42 [Duff and Scott 1993]. In particular, for problems arising from
chemical process engineering, speedups in the range of 3 to 8 over the se-
rial code MA42 are typically achieved on 8 processors of an Origin 2000 [Scott
2001a].

This article is organized as follows. We describe, in Section 2, the test prob-
lems and computing environment that we use for our numerical experiments.
In Section 3, we discuss our parallel approach. In Section 4, we briefly review
the algorithm implemented by MA48 and outline the modifications needed for
our parallel implementation. Software considerations in the design of our new
code are discussed in Section 5. Numerical results for our test problems are
presented in Section 6 and finally, in Section 7, some concluding remarks are
made. The new code is called HSL MP48 and is available for use under licence
from HSL (see Section 8 for details).

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

A Parallel Direct Solver for Large Sparse Highly Unsymmetric Linear Systems • 97

Table I. Test Problems. n, nz Denote the Order
of the System and the Number of Entries,

Respectively. s(A) Denotes the Symmetry Index.
Problems Marked † are Available From the

University of Florida Sparse Matrix Collection

Identifier n nz s(A)
ethylene-2 10353 78004 0.3020
ethylene-1 10673 80904 0.2973
Matrix10876 10876 77494 0.0010
4cols 11770 43668 0.0159
lhr14c† 14270 307858 0.0066
bayer04† 20545 159082 0.0016
10cols 29496 109588 0.0167
Matrix32406 32406 1035989 0.0014
lhr34c† 35152 764014 0.0015
Matrix35640 35640 146880 0.0001
bayer01† 57735 277774 0.0002
lhr71c† 70304 1528092 0.0016
icomp 75724 338711 0.0010

2. TEST PROBLEMS AND COMPUTING ENVIRONMENT

In this section, we introduce the test problems that we will use throughout this
article to illustrate the performance of our parallel approach. The test matrices
are all from chemical process engineering applications and are listed in order
of increasing size in Table I. We have selected problems that are of order at
least 10,000 and are highly unsymmetric. A † indicates that the problem is
included in the University of Florida Sparse Matrix Collection [Davis 1997].
The remaining problems were supplied by Mark Stadtherr of the University of
Notre Dame and Tony Garrett of AspenTech, UK. The symmetry index s(A) of
a matrix A is defined to be the number of matched nonzero off-diagonal entries
(that is, the number of nonzero entries aij, i 6= j , for which aji is also nonzero)
divided by the total number of off-diagonal nonzero entries. Small values of
s(A) indicate a matrix is far from symmetric while values close to 1 indicate an
almost symmetric sparsity pattern.

Unless stated otherwise, the numerical results presented in this article were
computed on an SGI Origin 2000 with 12 R10000 processors. This is a shared
memory machine with each processor having a theoretical peak performance
of 390 Mflops. We used a “cpuset” facility to give exclusive access to up to 8
processors and 3GBytes of RAM (the use of cpuset prevents significant variation
in the run times when the same problem is run more than once). The Fortran 90
compiler was used in 64 bit mode with optimization flags -O3 -OPT:Olimite=0.
Vendor-supplied BLAS were used. All reported timings are elapsed times in
seconds, measured using MPI WTIME on the host process.

3. PARALLEL APPROACH

Consider the linear system

Ax = b (1)

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

98 • I. S. Duff and J. A. Scott

where the sparse matrix A is of order n and the right-hand side vector b and
the solution vector x are length n. Our parallel approach for solving (1) is based
upon partitioning the matrix A into a singly bordered block diagonal (SBBD)
form 

A11 C1

A22 C2

... .

ANN CN

 , (2)

where the rectangular blocks on the diagonal All are ml × nl matrices with
ml ≥ nl and

∑N
k=1 ml = n, and the border blocks Cl are ml × k with k ¿ nl . We

note that in general many columns of Cl are zero so that the matrix can be stored
as an ml×kl matrix with kl ≤ k. We discuss further how to obtain this partition
in Section 3.1. The principal way that we exploit parallelism is to perform a
partial LU decomposition of each of the matrices (All, Cl) simultaneously. We
note that since the matrix A is square, we have

∑N
k=1 (ml − nl) = k, and if the

border has only a few columns, the submatrices All will be nearly square.
With the partition (2), the linear system (1) becomes


A11 C1

A22 C2

· · · ·
ANN CN




x1

x2

·
xN

xI

 =


b1

b2

·
bN

 , (3)

where xl is a vector of length nl (1 ≤ l ≤ N), xI is a vector of length k of interface
variables, and the right-hand side vectors bl are of length ml , such that(

All Cl
) (xl

xI

)
= bl , 1 ≤ l ≤ N . (4)

A partial factorization is performed on each of the block matrices, that is,(
All Cl

) = Pl

(
Ll
L̃l I

)(
Ul Ũ l

Sl

)
Ql , (5)

where Pl and Ql are permutation matrices, Ll and Ul are nl × nl lower and
upper triangular matrices, respectively, and Sl is a (ml − nl) × kl local Schur
complement matrix. Pivots can only be chosen from the columns of All since
the columns of Cl have entries in at least one other border block Cj (j 6= l).
Assuming A is nonsingular, nl pivots can be chosen. The k× k matrix S that is
obtained by summing the N local Schur complement matrices Sl (1 ≤ l ≤ N)
is termed the interface matrix.

The overall solution scheme is thus given by the following steps:

(1) Factorization
(a) partial LU decomposition (5) of each of the submatrices (All, Cl)
(b) formation of the interface matrix S

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

A Parallel Direct Solver for Large Sparse Highly Unsymmetric Linear Systems • 99

(c) factorization of the interface matrix S = PsLsUs Qs (Ps and Qs are
permutation matrices).

(2) Forward elimination
(a) forward elimination on the submatrices, that is,

Pl

(
Ll
L̃l I

)(
yl
ỹl

)
=
(

b̂l
b̃l

)
, 1 ≤ l ≤ N , (6)

where the right-hand side vectors b̂l and b̃l are of lengths nl and ml−nl ,
respectively, and (yl , ỹ l)T is the partial solution vector for the l -th
submatrix.

(b) summation of the interface partial solution vectors ỹ l to form the in-
terface right-hand side z I such that

SxI = z I , (7)
(c) forward elimination on the interface matrix, that is,

PsLs yI = z I (8)
(3) Back substitution

(a) back substitution on the interface matrix, that is,
Us QsxI = yI (9)

(b) back substitution on the submatrices, that is,
Ul Ql xl = yl − Ũ l Ql xI , 1 ≤ l ≤ N . (10)

Steps 2(c) and 3(a) can be combined as the solve step on the interface problem.
The operations on submatrices in steps 1(a), 2(a), and 3(b) can be performed in
parallel.

Using this approach has significant advantages over attempting to design a
general parallel sparse direct solver from scratch. First, each processor can be
preassigned all the matrix data required for the computations that it will per-
form before the factorization starts. Second, the factorizations on the submatri-
ces can be performed in parallel. Communications in the costly “Factorization”
step (step 1) are required only to send the Schur complement matrices Sl to the
processor responsible for the interface problem. Interprocessor communication
is thus both limited and structured. Finally, the interface matrix S, which is
much smaller than the original matrix, may be factorized using any existing
sparse direct solver.

The partial decomposition of the submatrices at step 1(a) cannot be per-
formed using a standard direct solver without some modifications. This is be-
cause a standard solver is designed to factorize the whole of the matrix A. When
factorizing a submatrix (All, Cl), the variables corresponding to the columns of
All are candidates for elimination but, as already noted, those corresponding
to the kl nonzero columns of Cl may not be eliminated. Modifications are thus
needed to enable a distinction to be made between the columns of All that may
be eliminated and those of Cl that must be passed to the interface problem.
We use a modified version of MA48 (or, more precisely, a modified version of the
code MA50 that lies at the heart of MA48) to perform the partial decompositions of
the submatrices. The modifications we have made are discussed in Section 4.2.
We use the unmodified MA48 code to solve the interface problem.

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

100 • I. S. Duff and J. A. Scott

This approach to developing a parallel version of MA48 is suitable for a rel-
atively small number, N , of submatrices and for use with no more than N
processors. In our experiments, we have used N ≤ 16. Restricting N is gen-
erally necessary because the size of the interface problem can grow rapidly as
the number of submatrices increases (see Table II in Section 3.1). The cost of
solving the interface problem thus increases and becomes a more significant
part of the total computational cost, potentially causing a serious bottleneck.

We remark that if A is singular then for at least one submatrix fewer than
nl pivots can be chosen. In this case, Sl will be of order (ml − ñl)× (kl +nl − ñl),
where ñl is the number of pivots chosen. Both MA48 and our new parallel code
are designed for singular and nonsingular systems. In the case of a singular
system, the rank of the matrix is estimated.

3.1 Preordering to Bordered Form

Our parallel approach currently solves the interface problem using a single
processor. Thus to achieve good speedups for the overall solution time, it is
crucial that the SBBD form (2) has a narrow border. The parallel code HSL MP48
requires the user to perform the preordering before the computation starts (or
at least requires the user to specify to which submatrix each row of A belongs).
The design decision not to incorporate software for preordering A within the
HSL MP48 package was made early in the code’s development. We made this
choice first because, in some applications, the matrix naturally occurs in the
required form and, second, the best approach to obtaining a good ordering is
problem dependent and the development of effective and efficient algorithms
for partitioning is still a subject of active research (see, for example, Hu and
Scott [2003]).

One possible approach to ordering an unsymmetric matrix A is to apply a
symmetric matrix ordering algorithm to the sparsity pattern of A+ AT . How-
ever, for highly unsymmetric problems it is generally better to reorder the
rows of the matrix using the pattern of AAT . In this case, a graph partitioning
algorithm such as is implemented within the well-known Metis [Karypis and
Kumar 1995, 1998] or Chaco [Hendrickson and Leland 1995] packages is ap-
plied to AAT . An alternative approach that was specifically designed for matri-
ces from chemical process engineering applications is the MONET algorithm
of Hu et al. [2000]. MONET implements a multilevel recursive bisection al-
gorithm, with the aim of minimizing the border size of the final SBBD form
for a user-chosen number of submatrices, while maintaining good row balance
(each submatrix All, l = 1, N has a similar number of rows). Starting with the
original matrix A, the multilevel approach generates a sequence of matrices of
smaller and smaller size. The matrix on the coarsest level (which is the one of
smallest order) is bisected into an SBBD form with two submatrices using sev-
eral runs of the Kernighan-Lin algorithm [Kernighan and Lin 1970], starting
with a random initial ordering. The best bisection obtained from this is prolon-
gated to the larger matrix in the sequence at the next level and the bisection
and associated ordering is further refined using the Kernighan-Lin algorithm.
This is repeated on larger matrices from successive levels in the sequence until

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

A Parallel Direct Solver for Large Sparse Highly Unsymmetric Linear Systems • 101

Table II. Number of Interface Variables in the SBBD Form Generated by HSL MC66. n is the
Order of the Problem and N is the Number of Submatrices. The Figures in Parentheses are

the Percentages of the Columns in the Border

Identifier n N = 2 N = 4 N = 8 N = 16
ethylene-2 10353 21 (0.20%) 73 (0.71%) 147 (1.42%) 271 (6.79%)
ethylene-1 10673 42 (0.39%) 118 (1.11%) 181 (1.70%) 276 (6.29%)
Matrix10876 10876 128 (1.18%) 644 (5.92%) 1123 (10.3%) 2088 (19.2%)
4cols 11770 30 (0.25%) 60 (0.51%) 184 (1.56%) 433 (3.68%)
lhr14c 14270 68 (0.68%) 266 (1.58%) 635 (4.45%) 1262 (8.84%)
bayer04 20545 185 (0.90%) 453 (2.29%) 599 (2.92%) 886 (7.71%)
10cols 29496 30 (0.10%) 137 (0.46%) 288 (0.98%) 600 (2.03%)
Matrix32406 32406 574 (1.77%) 1021 (3.15%) 1387 (4.28%) 2289 (7.06%)
lhr34c 35152 94 (0.27%) 384 (1.09%) 885 (2.52%) 1766 (5.02%)
Matrix35640 35640 312 (0.88%) 624 (1.75%) 1464 (4.11%) 2520 (7.07%)
bayer01 57735 71 (0.12%) 233 (0.46%) 354 (0.61%) 613 (1.06%)
lhr71c 70304 64 (0.09%) 252 (0.36%) 832 (1.18%) 1834 (2.61%)
icomp 75724 186 (0.25%) 250 (0.33%) 449 (0.59%) 719 (0.95%)

a bisection of the original matrix is obtained. This whole multilevel process
is then recursively applied on the partitions of the original matrix until the
desired number of submatrices, N , is achieved.

The performance of MONET as implemented in the HSL code HSL MC66 is
illustrated in Table II. In this table, we show the number of interface variables
for 2, 4, 8, and 16 submatrices. We see that for highly unsymmetric matrices
MONET is very successful at producing SBBD forms with narrow borders (for
all matrices except Matrix10876, the border represents less than 5% of the total
number of columns for up to 8 submatrices). Throughout the remainder of this
article, HSL MC66 is used to preorder to SBBD form.

We remark that, in all our tests using MONET, a good row balance between
the submatrices was achieved, although the imbalance generally increases with
N . We define the row imbalance to be the difference between the maximum
submatrix row dimension and the average submatrix row dimension, divided
by the average submatrix row dimension, expressed as a percentage. That is,
if ml is the row dimension of submatrix All, then

row imbalance = max{ml } − n/N
n/N

× 100.

For our test examples, with N = 4 the row imbalance ranges from less than
2% to 9%, while for N = 8 it ranges from 2.3% to 10.5%. Note that there is a
trade off between the row imbalance and the border size of the final ordering;
allowing a larger row imbalance tends to give a smaller border. In HSL MC66, the
desired row imbalance at each stage of the multilevel algorithm is a parameter
under user control.

4. MA48 ALGORITHM, CODE, AND MODIFICATIONS

4.1 MA48 and MA50

The HSL code MA48 is a driver for the HSL code MA50. Although it is MA50 that we
will modify, we first discuss MA48 since it is used unchanged for the factorization

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

102 • I. S. Duff and J. A. Scott

and solution of the interface problem. In common with many sparse direct
solvers, MA48 divides the computation into a number of distinct phases. The
phases of MA48 are:

—Analyze permutes A to block upper triangular form and chooses pivots us-
ing a criterion that combines good sparsity preservation with a numerical
threshold test.

—Factorize factorizes a matrix with the same sparsity pattern (but possibly
different numerical values) using a given column sequence and with row
interchanges guided by a recommended row sequence. Threshold pivoting
ensures stability.

—Fast factorize factorizes another matrix with exactly the same sparsity
pattern using exactly the same pivot sequence.

—Solve uses the LU factors generated by factorize to perform forward elimi-
nation followed by back substitution to solve the linear system.

The MA50 package that lies at the heart of MA48 factorizes a single block on the
diagonal of the block upper triangular form. It will also factorize rectangular
systems. It requires the matrix to be supplied using compressed column storage.
Duplicates are not allowed but the order of the entries within each column is
unimportant. Provided a user accepts these restrictions, MA50 may be called
directly. In our case, HSL MP48 will be the “user” of MA50, and a modified version
of MA50 will be used in the factorization and in the forward elimination and back
substitution for the submatrices (All, Cl) of (2).

The MA50 package has four user-callable subroutines:

—Initialize provides default values for the parameters that control the execu-
tion of the package. The user may reset one or more of these before passing
the parameters to the other subroutines.

—Analyze uses a sparse variant of Gaussian elimination to compute a pivot
ordering for the decomposition of A into its LU factors. When the fill-in to the
reduced matrix reaches a user-defined density, the elimination operations are
terminated and an arbitrary permutation of the remaining matrix is used to
complete the pivot ordering, putting the dense block at the end of the ordering.
The analyze subroutine thus does not complete the factorization, nor does it
keep the factors, which makes it less likely to fail through lack of storage.

—Factorize accepts a matrix A together with recommended row and column
permutations and the size of the final dense block. It performs the factor-
ization PAQ = LU, using the Gilbert and Peierls algorithm [Gilbert and
Peierls 1988] with threshold pivoting on the sparse part and slightly modi-
fied LAPACK routines on the dense part. An option exists for the subsequent
‘fast’ factorization of matrices with the same sparsity pattern under the as-
sumption that exactly the same permutations are suitable.

—Solve performs simple forward-elimination and back-substitution opera-
tions using the factors from the factorize phase. For the full matrix pro-
cessing, options are included for the use of Level 1 or Level 2 BLAS.

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

A Parallel Direct Solver for Large Sparse Highly Unsymmetric Linear Systems • 103

When MA50 is used to factorize a singular or a rectangular matrix, the com-
ponents of the solution vector corresponding to a zero pivot are set to zero.

A key feature of MA50 that enables both it and MA48 to achieve high perfor-
mance compared with the earlier MA28 code is the switch from sparse to full-
matrix processing once the reduced matrix is sufficiently dense. This allows
Level 3 BLAS to be used. The point at which the move to full-matrix processing
is made is controlled by the user; by default the switch is made when the ratio
of the number of entries in the reduced matrix to the number it would have as
a full matrix is greater than 0.5.

For stability, each pivot akj is required to satisfy the column threshold test

|akj| ≥ u max
i
|aij|

within the reduced matrix, where u is the threshold parameter that may be
set by the user (in MA48 and MA50 it has default value 0.1). Within the reduced
matrix, at each stage a pivot is chosen from the entries that satisfy the stability
test with least Markowitz cost [Markowitz 1957] (the Markowitz cost is the
product of the number of other entries in the row of the reduced matrix and the
number of other entries in the column). The strategy of Zlatev [1980] for only
searching a small number of columns of the reduced matrix (those with least
number of entries) for a pivot is offered as an option (the default is 3).

For a full discussion of the design of both MA48 and MA50, the reader is referred
to Duff and Reid [1993; 1996].

4.2 Modifications to MA50

In this section, we briefly describe some of the changes that we had to make
to MA50 in order to use it to factorize the submatrices from the SBBD form.
Although the changes were nontrivial, the majority of the code was not altered
allowing us to benefit from our earlier investment in this software. The modified
routines are presently internal to the HSL MP48 package but may later form the
basis for a user-callable HSL package.

The task for our modified factorization routine is to perform an LU factor-
ization of the rectangular matrix (All Cl) and then to use the computed factors
in forward elimination and back substitution. This corresponds to steps 1(a),
2(a), and 3(c) of our algorithm outlined in Section 3.

Although MA50will factorize rectangular matrices, we have the added compli-
cation that only nl pivots can be chosen from within the All block. The original
code did allow for a set of columns to be kept to the end of the pivoting sequence
and, although we use some of this mechanism, modifications were needed to
terminate the factorization after the selection of nl pivots and to provide the
Schur complement matrix from this partial factorization for assembly for the
interface problem. An added problem is that the rectangular matrix (All Cl) can
have dependent columns in Cl even when the whole matrix is nonsingular so
that, although we flag the dependent columns, we must allow them to be pivoted
on later, after the assemblies for the interface problem have been performed.

In our new code, it is necessary to perform the forward elimination and the
back substitution (steps 2(a) and 3(c), respectively) on the submatrices quite

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

104 • I. S. Duff and J. A. Scott

separately. The solve routines in the MA50 code combined these two steps and
so we had to disentangle these in the new code.

5. SOFTWARE DESIGN

Our aim was to design and develop a general parallel sparse direct solver that
is portable and straightforward to use, while being both flexible and efficient.
In this section, we address how each of these goals was achieved. Key features
include: a number of different options for supplying the matrix data to take
advantage of the computer architecture being used, optionally holding the LU
factors from the partial decomposition in sequential files to enable larger prob-
lems to be solved, and a fast factorization for factorizing a matrix where only
the numerical values have changed.

5.1 Portability

To ensure the code can be used on a wide range of modern computers, HSL MP48
is written in standard Fortran 90 and uses MPI for message passing. Fortran 90
was chosen not only for its efficiency for scientific computation but also because
it offers many more features than Fortran 77. In particular, our software makes
extensive use of dynamic memory allocation and this allows a much cleaner user
interface and more readable code, which in turn assists with code maintenance.
The choice of using MPI for message passing was made because the MPIStandard
[MPI 1994] is internationally recognized and today is widely available and
accepted by users of parallel computers. It is also available on most shared
memory multiprocessors. Our software does not assume that there is a single
file system that can be accessed by all the processors. This enables the code
to be used on distributed memory parallel computers as well as on shared
memory machines. The use of standard Fortran 90 and MPI, together with the
use of BLAS kernels within the modified MA50, allows us to achieve our goal of
producing portable software.

One of the options offered by HSL MP48 is to write the LU factors from the
partial decomposition to sequential files at the end of the factorization of a
submatrix. If the number N of submatrices exceeds the number p of processors,
this can allow larger problems to be solved than might otherwise be possible.
It also further increases the portability of the code by enabling it to be run on
machines where each processor has only a limited amount of main memory.

5.2 User Interface

A key design aim for HSL MP48 was a user interface that is straightforward and,
at the same time, offers flexibility through a variety of options. Our intention is
that it should be possible for the code to be used by those who have only a basic
knowledge of MPI together with limited experience of Fortran 90 programming.

Access to the module HSL MP48 requires a USE statement and an INCLUDE
statement is needed for MPI. In addition, the user must declare a structure data
of Fortran 90 derived datatype MP48 DATA defined by the module. HSL MP48 has
a single user-callable subroutine MP48A (MP48AD in the double precision version)
with data of type MP48 DATA as the only parameter. This derived datatype has

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

A Parallel Direct Solver for Large Sparse Highly Unsymmetric Linear Systems • 105

many components, only some of which are of interest to, and must be set by,
the user. These include the components that define the sparsity pattern of the
matrix and the SBBD form. Other components are used by the package to
provide the user with information on the computation (including flop counts
and the number of entries in the factors). Full details of the derived datatype
are provided in the user documentation.

The HSL MP48 code is divided into six separate phases (with all operations on
the submatrices performed in parallel):

—Initialize provides default values for the components of data that control
the execution of the package. The user may reset one or more of these before
passing the parameters to the subsequent phases.

—Preliminary analyze checks the user-supplied data, computes lists of bor-
der columns for each submatrix and optionally assigns each submatrix to a
processor.

—Analyze uses the modified MA50 analyze to compute, for each submatrix
(All, Cl), permutations Pl and Ql suitable for the partial LU factorization.

—Factorize uses the modified MA50 factorize to generate the factors for the sub-
matrices using the information from the analyze phase, altering the matrices
Pl if necessary for numerical stability. This allows the stable factorization of
submatrices with the same sparsity pattern but different numerical values
without recalling the analyze phase. The interface matrix is then assem-
bled and the analyze followed by the factorize phase of MA48 compute the
LU factors for the interface matrix. An option exists for subsequent calls for
matrices with the same sparsity pattern to be made faster on the assumption
that the same pivot sequence is still suitable.

—Solve uses the factors to solve a system of the form Ax = b. Repeated calls
may be made to solve for more than one right-hand side.

—Finalize terminates the computation by deallocating all arrays allocated
by HSL MP48 and, optionally, deletes the files holding the matrix factors (see
Section 5.3.2).

Prior to the call to the initialize phase, the user must choose the number of
processes, p, that are to be used and must initialize MPI by calling MPI INIT on
each process. The user must also define an MPI communicator for the package.
Among other things, the communicator defines the set of processes to be used by
HSL MP48. Each such process is labelled by a process rank, viz. 0, 1, 2, . . . , p−1.
The host is the process with rank zero. The host performs the initial checking
of the data, distributes data to the remaining processes, collects computed data
from the processes, factorizes and solves the interface problem, and generally
oversees the computation. The host also participates by default with the other
processes in generating the partial LU decompositions of the submatrices.

Having defined the communicator, each phase must be called in order by each
processor in the communicator; a job parameter (data%JOB) determines which
phase of the package is to be performed. The user may either do this by calling
each phase from his or her calling program or, for convenience, having called
the initialize phase there exists an option of making a single call that initiates

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

106 • I. S. Duff and J. A. Scott

calls to each remaining phase in turn. Before calling each phase, the user must
have completed all other tasks that he or she was performing with the defined
communicator (and with any other communicator that overlaps the HSL MP48
communicator). This can be ensured by using an MPI barrier. After the finalize
phase and once the user has completed any other calls to MPI routines he or
she wishes to make, the user should call MPI FINALIZE to terminate the use of
MPI.

The following pseudocode illustrates how HSL MP48 can be used.

USE HSL_MP48_DOUBLE
INCLUDE ’mpif.h’
...
INTEGER ERCODE
TYPE (MP48_DATA) :: data
...
CALL MPI_INIT(ERCODE)
...

! Set components of data, including data%JOB
...
CALL MP48AD (data)
...
CALL MPI_FINALIZE(ERCODE)

5.3 Flexibility

The call to the initialize phase of HSL MP48 assigns default parameters to the
control parameters. These parameters control the action and offer the user a
number of options. It is these options that make the package flexible. We now
discuss some of the main options; full details of all the control parameters and
options are given in the user documentation for HSL MP48.

5.3.1 Input of Matrix Data. The amount of main memory required by
HSL MP48 is influenced by how the user chooses to supply the matrix data. A
number of options are provided. By default, the submatrices (All, Cl) are held
in unformatted sequential files and the data required by a particular processor
must be readable by the processor executing the process. This has the advantage
that each processor only needs to have sufficient memory to read and generate
the LU factors of one submatrix at a time; it also minimizes the movement of
data between processors. If the user wishes to avoid the overhead of reading
data from files, he or she may instead use input arrays on each processor to
supply the data for the submatrices assigned to it. Options also exist for the
user to supply all the submatrix data on the host, either in sequential files
or in input arrays. This may be most convenient for the user but involves the
added overhead of sending the appropriate submatrix data from the host to the
other processors. Since the host is also involved in the submatrix factorizations,
this distribution of data is carried out by HSL MP48 before the factorization com-
mences, and thus each processor must have sufficient memory to store the data
for all the submatrices assigned to it.

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

A Parallel Direct Solver for Large Sparse Highly Unsymmetric Linear Systems • 107

Table III. Analyze/Factorize Times for Each Submatrix (N = 4) in Seconds on an Origin 2000

Submatrix

Identifier 1 2 3 4 Tdiff
ethylene-2 0.30/0.08 0.15/0.04 0.21/0.06 0.30/0.07 0.50/0.50
ethylene-1 0.39/0.08 0.28/0.08 0.21/0.05 0.21/0.05 0.46/0.37
Matrix10876 0.60/0.13 0.46/0.13 0.32/0.09 0.45/0.12 0.47/0.30
4cols 0.11/0.08 0.12/0.06 0.12/0.09 0.12/0.09 0.09/0.33
lhr14c 2.03/0.53 1.63/0.47 1.66/0.53 1.51/0.41 0.26/0.23
bayer04 0.42/0.16 0.40/0.14 0.34/0.13 0.28/0.11 0.33/0.31
10cols 0.68/0.20 0.72/0.21 0.76/0.22 0.43/0.14 0.46/0.36
Matrix32406 9.82/2.78 10.1/2.78 3.43/1.39 1.17/0.56 0.88/0.80
lhr34c 6.33/1.67 6.74/1.98 6.15/1.66 10.7/2.62 0.42/0.36
Matrix35640 25.1/8.60 19.1/8.03 22.5/6.97 26.2/11.6 0.27/0.40
bayer01 0.45/0.19 0.43/0.18 0.86/0.32 0.70/0.26 0.50/0.44
lhr71c 17.4/4.31 15.4/4.06 17.6/4.94 21.0/5.78 0.22/0.30
icomp 0.19/0.13 0.20/0.12 0.18/0.13 0.20/0.13 0.10/0.08

5.3.2 The Use of Files. As well as using files to supply the submatrix data,
the user may choose to hold the LU factors for the partial decompositions in
sequential files. Using files reduces storage requirements when one processor
factorizes more than one submatrix and thus allows the solution of larger prob-
lems than could otherwise be handled. However, depending upon the computing
environment, the extra I/O involved may increase the overall execution time.
Thus we suggest that files are only used if either the problem is too large to
be accommodated or if the user wishes to retain the factors to solve later for
further right-hand sides.

5.3.3 Load Balancing. By default, the submatrices are assigned to proces-
sors by the code but an option is available for the user to decide which processor
is to factorize which submatrix. For load balancing, we rely on the SBBD form
to provide a partitioning such that the factorization of each submatrix involves
a similar amount of work. If this is so and we are working in a homogeneous
computing environment, we would normally advise that N be a multiple of p.
Unfortunately, there is no obvious a priori way to determine from the order,
density, and number of interface variables the time to compute the factoriza-
tion of an unsymmetric matrix. Thus the current version of the code simply
assigns the submatrices to the processors in an arbitrary order so that each
processor has either N/p or N/p+ 1 submatrices to factorize. If the user wants
to factorize a matrix with the same sparsity pattern as an earlier matrix, he or
she should check that the assignment of the submatrices for the earlier matrix
gave good load balance. If not, the submatrix flop counts (or timings or storage)
from the earlier factorization may be used to more appropriately assign the
submatrices to processors for the subsequent factorization. The user may also
wish to assign submatrices to processors if it is known that one or more of the
processors is faster or has more memory. Moreover, if a sequence of problems is
to be solved, information from a first assignment might be used to better assign
the submatrices to processors for further problems in the sequence.

We have already seen that, with N small, the MONET algorithm is successful
in generating an SBBD form with a good row balance. In Table III, timings are

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

108 • I. S. Duff and J. A. Scott

given for the analyze and factorize phases of HSL MP48 for each submatrix of the
SBBD form obtained using MONET (N = 4). The load balancing is good if, for a
given problem, Tdiff is small, where Tdiff is defined to be the difference between
the slowest and fastest submatrix times divided by the slowest submatrix time.
We see that, for a number of our test problems (in particular, Matrix32406), we
have not achieved a good load balance; this will limit the speedup that we
obtain when running on more than one processor. Since the interface problem
is always solved on the host and can have a significant memory requirement,
the user can choose to avoid assigning any of the submatrix calculations to the
host.

5.3.4 MA48 Options. The interface and initialization phases of HSL MP48
also allow the user to exploit some of the options available in the MA48 pack-
age. In particular, the switch to full-matrix processing is a parameter under
the user’s control, as is the stability threshold and the strategy for maintaining
sparsity in the factors (see Section 4). The default value for the threshold pa-
rameter used by HSL MP48 is 0.01. The user can also use the dropping strategy
within MA48 and the modified MA50, which will allow a sparser but less accurate
factorization that may, for example, be useful as a preconditioner for iterative
methods.

6. NUMERICAL RESULTS

We now present numerical results for our test problems and compare the per-
formance of our new code HSL MP48 with the serial code MA48. Unless stated
otherwise, we do not include the time taken to preorder to the SBBD form (2)
used by HSL MP48, although we give times separately for this preordering in
Table XI. MA48 does not use the SBBD form but is called with the matrix in the
form in which it was supplied to us (as discussed in Section 4, the analyze phase
first permutes the matrix A to block upper triangular form). For both solvers,
the elapsed time (in seconds) is presented for four execution paths, namely:

(1) Analyze + Factorize + Solve (AFS). This is the time required to perform
the analyze phase to determine a pivot sequence, to compute the L and U
factors of A, and to perform the forward-elimination and back-substitution
operations to solve Ax = b for a single right-hand side b.

(2) Factorize (F2). This is the time taken to factorize a matrix having the same
sparsity pattern as one that has already been factorized but different nu-
merical values, incorporating numerical pivoting for stability.

(3) Fast Factorize (FF). As F2, but no numerical pivoting is performed.
(4) Solve (S). This is the time to solve Ax = b by performing forward-elimination

and back-substitution operations using previously computed L and U fac-
tors of A.

In all our tests, the threshold parameter was set to 0.1; otherwise default set-
tings were used for both codes. We note that, for HSL MP48 the first factorization
of a matrix with a given sparsity pattern involves calling both the analyze and
factorize phases of MA48 for the interface problem. For subsequent factorizations

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

A Parallel Direct Solver for Large Sparse Highly Unsymmetric Linear Systems • 109

Table IV. Timings for Analyze+Factorize+Solve in Seconds on an Origin 2000.
NS Denotes Not Solved. Numbers in Parentheses are Times for Analyzing and
Factorizing the Interface Problem. The Numbers in Italics are the Speedups

for HSL MP48 Compared with Using a Single Processor

HSL MP48 (N = 8)
No. processors

Identifier MA48 1 2 4 8
ethylene-2 0.77 1.15 (0.01) 0.61 1.88 0.43 2.67 0.31 3.70
ethylene-1 0.76 1.14 (0.01) 0.71 1.60 0.40 2.85 0.28 4.07
Matrix10876 3.48 5.39 (3.38) 4.66 1.15 4.28 1.25 4.11 1.31
4cols 2.47 0.67 (0.04) 0.41 1.63 0.29 2.31 0.23 2.91
lhr14c 7.23 8.87 (0.21) 4.88 1.82 2.87 3.09 1.74 5.09
bayer04 2.91 2.37 (0.39) 1.54 1.53 1.06 2.23 0.81 2.96
10cols 16.4 2.75 (0.15) 1.60 1.72 0.93 2.96 0.65 4.23
Matrix32406 40.8 28.8 (3.66) 20.2 1.42 12.6 2.28 10.3 2.80
lhr34c 24.2 30.1 (0.70) 16.2 1.85 9.80 3.07 5.89 5.11
Matrix35640 NS 50.3 (12.7) 34.8 1.44 25.6 1.96 20.7 2.43
bayer01 6.37 4.23 (0.06) 2.39 1.77 1.48 2.86 0.97 4.36
lhr71c 50.6 71.2 (0.68) 39.8 1.79 22.3 3.19 12.4 5.74
icomp 0.84 1.59 (0.01) 0.97 1.64 0.65 2.45 0.50 3.18

Table V. Timings for Factorize in Seconds on an Origin 2000. NS Denotes Not
Solved. Numbers in Parentheses are Times for Factorizing the Interface

Problem. The Numbers in Italics are the Speedups for HSL MP48 Compared
with Using a Single Processor

HSL MP48 (N = 8)
No. processors

Identifier MA48 1 2 4 8
ethylene-2 0.17 0.25 (0.00) 0.13 1.92 0.09 2.78 0.06 4.17
ethylene-1 0.17 0.25 (0.00) 0.15 1.67 0.09 2.78 0.06 4.17
Matrix10876 0.64 1.70 (1.29) 1.55 1.10 1.46 1.16 1.40 1.21
4cols 0.56 0.20 (0.01) 0.11 1.82 0.08 2.50 0.06 3.33
lhr14c 1.50 2.07 (0.11) 1.11 1.86 0.72 2.87 0.43 4.81
bayer04 0.51 0.67 (0.17) 0.45 1.49 0.32 2.09 0.26 2.58
10cols 2.65 0.64 (0.04) 0.36 1.78 0.20 3.20 0.13 4.92
Matrix32406 7.58 8.10 (1.36) 5.52 1.47 3.71 2.18 3.04 2.66
lhr34c 4.88 6.69 (0.37) 3.62 1.84 2.29 2.92 1.46 4.58
Matrix35640 NS 17.2 (4.34) 11.2 1.54 7.82 2.20 6.34 2.71
bayer01 1.22 1.05 (0.02) 0.59 1.78 0.36 2.92 0.22 4.77
lhr71c 9.99 15.1 (0.41) 8.74 1.72 4.82 3.13 2.84 5.32
icomp 0.18 0.53 (0.01) 0.30 1.77 0.18 2.94 0.12 4.45

of matrices with the same sparsity pattern, the analyze phase of MA48 does not
have to be repeated. Thus the F2 and FF times do not include the interface
problem analyze time. While F2 incorporates numerical pivoting for stability,
FF uses the pivot sequence from the first factorization. Thus FF is faster than
F2 but may be numerically unstable if the matrix entries are markedly different
from the earlier factorization.

We first present timings on the Origin 2000 for HSL MP48 run on 1, 2, 4 and 8
processors, and compare it with MA48 run on a single processor. For HSL MP48, the
number of blocks in the singly bordered block diagonal form is 8. The times for
AFS are given in Table IV. In Tables V, Tables VI, and VII, timings are presented

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

110 • I. S. Duff and J. A. Scott

Table VI. Timings for Fast Factorize in Seconds on an Origin 2000. NS
Denotes Not Solved. Numbers in Parentheses are Times for Factorizing the
Interface Problem. The Numbers in Italics are the Speedups for HSL MP48

Compared with Using a Single Processor

HSL MP48 (N = 8)
No. processors

Identifier MA48 1 2 4 8
ethylene-2 0.09 0.14 (0.00) 0.07 2.00 0.05 2.80 0.04 3.50
ethylene-1 0.08 0.14 (0.00) 0.09 1.56 0.06 2.33 0.04 3.50
Matrix10876 0.46 1.49 (1.20) 1.40 1.06 1.34 1.11 1.30 1.15
4cols 0.32 0.14 (0.01) 0.07 2.00 0.05 2.80 0.04 3.50
lhr14c 1.10 1.56 (0.10) 0.86 1.81 0.58 2.69 0.35 4.46
bayer04 0.31 0.44 (0.16) 0.32 1.37 0.25 1.76 0.21 2.09
10cols 2.07 0.39 (0.03) 0.22 1.78 0.13 3.20 0.10 3.90
Matrix32406 6.52 6.89 (1.27) 4.79 1.44 3.29 2.09 2.75 2.50
lhr34c 3.66 5.17 (0.35) 2.84 1.82 1.88 2.75 1.22 4.24
Matrix35640 NS 16.0 (4.15) 10.6 1.50 7.35 2.18 6.04 2.65
bayer01 0.65 0.61 (0.11) 0.36 1.69 0.23 2.65 0.15 4.07
lhr71c 7.56 11.7 (0.39) 7.08 1.65 3.90 3.00 2.37 4.97
icomp 0.13 0.30 (0.01) 0.18 1.67 0.11 2.72 0.08 3.75

Table VII. Timings for Solve in Seconds on an Origin 2000. NS Denotes Not
Solved. The Numbers in Italics are the Speedups for HSL MP48 Compared

with Using a Single Processor

HSL MP48 (N = 8)
No. processors

Identifier MA48 1 2 4 8
ethylene-2 0.013 0.019 0.013 1.46 0.010 1.90 0.009 2.11
ethylene-1 0.013 0.019 0.011 1.72 0.010 1.90 0.010 1.90
Matrix10876 0.024 0.045 0.037 1.22 0.032 1.41 0.028 1.61
4cols 0.017 0.017 0.012 1.42 0.010 1.70 0.010 1.70
lhr14c 0.068 0.091 0.060 1.52 0.035 2.60 0.022 2.72
bayer04 0.035 0.045 0.031 1.45 0.020 2.25 0.019 2.37
10cols 0.074 0.055 0.034 1.62 0.027 2.03 0.023 2.39
Matrix32406 0.177 0.220 0.154 1.43 0.105 2.09 0.086 2.56
lhr34c 0.195 0.243 0.167 1.45 0.101 2.41 0.071 3.42
Matrix35640 NS 0.221 0.165 1.34 0.120 1.84 0.090 2.45
bayer01 0.105 0.116 0.082 1.41 0.050 2.32 0.047 2.47
lhr71c 0.393 0.514 0.324 1.59 0.199 2.58 0.126 4.08
icomp 0.065 0.085 0.063 1.35 0.052 1.63 0.052 1.63

for the factorize (F2), fast factorize (FF), and solve (S) phases, respectively. Flop
counts (the number of floating-point operations) and the number of entries
in the factors are given in Tables VIII and IX, respectively. We did not solve
problem Matrix35640 using MA48 since the analyze phase alone took in excess
of 2100 seconds.

We first consider the AFS timings presented in Table IV. For the majority
of our test cases, using only 2 processors, HSL MP48 outperforms MA48. As the
number of processors is increased, HSL MP48 achieves good speedups for most of
our problems, with speedups on 8 processors in excess of 5 being achieved by
the lhr problems.

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

A Parallel Direct Solver for Large Sparse Highly Unsymmetric Linear Systems • 111

Table VIII. Flops (∗105) Required by MA48 and
HSL MP48. Numbers in Parentheses are the
Flops for Factorizing the Interface Problem

Identifier MA48 HSL MP48 (N = 8)
ethylene-2 47 58 (0.9)
ethylene-1 52 55 (0.8)
Matrix10876 555 1944 (1234)
4cols 276 95 (6)
lhr14c 937 1069 (90)
bayer04 161 347 (138)
10cols 1611 183 (19)
Matrix32406 4986 10585 (1178)
lhr34c 3053 3618 (399)
Matrix35640 543554 15794 (3897)
bayer01 251 268 (5)
lhr71c 6291 7531 (608)
icomp 2 189 (0.4)

Table IX. Number of Entries (∗103) in the
Factors Computed Using MA48 and HSL MP48. NS
Denotes Not Solved. Numbers in Parentheses are

the Number of Entries in the Factors for the
Interface Problem

Identifier MA48 HSL MP48 (N = 8)
ethylene-2 225 257 (4)
ethylene-1 223 269 (5)
Matrix10876 468 1086 (432)
4cols 297 217 (14)
lhr14c 1208 1423 (91)
bayer04 465 617 (98)
10cols 1053 514 (32)
Matrix32406 3215 4803 (472)
lhr34c 3194 3797 (222)
Matrix35640 NS 5066 (936)
bayer01 1007 970 (17)
lhr71c 6448 7518 (272)
icomp 378 523 (4)

In column 3 of Table IV, we include in parentheses the time required for
analyzing and factorizing the interface problem. Similarly, in Tables VIII and
IX we include the flop count and number of entries in the factors for the interface
problem. We observe that, in most cases, the interface time, the interface flop
count, and the number of entries in the interface factors are small compared
with the total AFS time, total flop count, and total number of entries in the
factors. However, for a few problems, in particular Matrix10876, the interface
represents a bottleneck and limits the speedup we can obtain when increasing
the number of processors. From Table IV, we see that for Matrix10876 with 8
submatrices, more than 10 percent of the columns are in the border. Although
the interface problem is smaller than the original problem, it is denser so that
factorizing it using MA48 requires more flops than MA48 applied to the original
matrix (see Table VIII). We conclude that as a rule of thumb for HSL MP48 to work

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

112 • I. S. Duff and J. A. Scott

Table X. Timings in Seconds and Speedups for HSL MP48 Run on 1 and 2 Processors of a Compaq
DS20. Speedups are Given in Italics

AFS F2 FF S

Identifier 1 2 1 2 1 2 1 2
ethylene-2 0.42 0.23 1.81 0.10 0.06 1.69 0.06 0.03 2.07 0.007 0.005 1.40
ethylene-1 0.42 0.26 1.60 0.09 0.05 1.84 0.05 0.03 1.59 0.008 0.005 1.60
Matrix10876 1.91 1.65 1.16 0.59 0.54 1.08 0.50 0.47 1.07 0.019 0.015 1.27
4cols 0.24 0.14 1.64 0.07 0.04 1.73 0.05 0.03 1.82 0.006 0.004 1.50
lhr14c 3.19 1.77 1.80 0.73 0.40 1.80 0.56 0.31 1.80 0.034 0.023 1.48
bayer04 0.86 0.60 1.43 0.24 0.16 1.55 0.17 0.11 1.50 0.019 0.012 1.58
10cols 1.06 1.00 1.06 0.27 0.14 1.85 0.16 0.09 1.85 0.019 0.013 1.46
Matrix32406 10.42 7.80 1.34 2.81 1.95 1.44 1.94 1.10 1.48 0.077 0.060 1.28
lhr34c 11.22 6.21 1.81 2.48 1.39 1.78 0.27 0.15 1.77 0.090 0.065 1.38
Matrix35640 18.64 13.01 1.43 6.01 3.98 1.51 4.76 2.85 1.48 0.078 0.063 1.24
bayer01 1.62 0.90 1.80 0.41 0.22 1.90 0.14 0.08 1.88 0.044 0.030 1.47
lhr71c 27.26 15.39 1.77 6.08 3.44 1.77 5.49 3.71 1.67 0.182 0.131 1.39
icomp 0.60 0.39 1.53 0.20 0.11 1.74 2.45 1.65 1.68 0.033 0.025 1.32

well, it is essential that the border is as narrow as possible; our results suggest
that less than about 5 percent of the columns should be in the border to avoid
the solution of the interface problem dominating the total cost. We also note
that this by itself does not guarantee good performance as we see in the case
of bayer04, where the interface problem is relatively expensive although the
border is small. We have performed some additional experiments on problem
Matrix10876 using the SBBD form with 4 submatrices. In this case, the AFS
times for HSL MP48 on 2 and 4 processors are reduced to 2.43 and 1.98 seconds,
respectively (the interface time is reduced to 1.15 seconds).

The factorize F2, fast factorize FF, and solve S times are reported in Tables V
to VII. Good speedups are again achieved for the factorizations, particularly for
the F2 case, but those for the solve phase are less encouraging. In particular,
for many of the problems, very little time is saved by increasing the number of
processors from 4 to 8 for the solve phase. Nevertheless, with only 2 processors,
HSL MP48 generally outperforms MA48 on both the factorize and solve phases.

On a single processor, the HSL MP48 factorize and solve times are generally
slower than those for MA48. It appears that the SBBD ordering does not preserve
sparsity as well as the ordering used by MA48, resulting in higher flop counts
and more entries in the factors (Tables VIII and IX).

6.1 Timings on Other Platforms

Experiments with HSL MP48 have also been performed on other platforms. In
Table X we present timings for HSL MP48 on a Compaq DS20 Alpha server with
a pair of EV6 processors. The Fortran 95 compiler was used with optimization
flag -O. Desktop computers with a small number of processors are increasingly
common as they become more affordable and our results illustrate the very
worthwhile speedups that can be achieved using just 2 processors.

In Table XI, we present timings for the analyze phase of MA48 and HSL MP48
on the Compaq DS20. In addition, we include timings for HSL MC66, the HSL im-
plementation of the MONET algorithm used to preorder the matrices to SBBD

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

A Parallel Direct Solver for Large Sparse Highly Unsymmetric Linear Systems • 113

Table XI. Timings for Analyze in Seconds on a Compaq
DS20. NS Denotes Not Solved

HSL MP48 (N = 8)
No. processors

Identifier MA48 HSL MC66 1 2
ethylene-2 0.24 1.73 0.31 0.17
ethylene-1 0.23 1.60 0.31 0.19
Matrix10876 1.08 1.67 0.44 0.25
4cols 0.81 0.38 0.15 0.09
lhr14c 2.09 2.22 2.35 1.29
bayer04 0.87 1.49 0.52 0.33
10cols 2.23 0.94 0.74 0.42
Matrix32406 12.18 14.68 6.45 4.65
lhr34c 6.72 5.93 8.41 4.56
Matrix35640 NS 1.80 9.62 5.90
bayer01 1.97 2.18 1.15 0.64
lhr71c 13.84 11.41 20.84 11.55
icomp 0.23 2.78 0.36 0.24

Table XII. HSL MP48 Timings in Seconds for AFS and F2 Run on 1, 2, 4, and 8
Processors of a Cray T3E. NS Denotes Not Solved. ∗Denotes Factors Stored in Files

AFS F2

Identifier 1 2 4 8 1 2 4 8
ethylene-2 1.35 0.74 0.53 0.39 0.33 0.17 0.11 0.08
ethylene-1 1.31 0.79 0.44 0.31 0.33 0.19 0.10 0.07
Matrix10876 5.97 5.06 4.55 4.31 1.71 1.39 1.25 1.21
4cols 0.74 0.44 0.28 0.20 0.22 0.12 0.07 0.05
lhr14c 10.93 5.85 3.56 2.37 3.14 1.55 0.98 0.54
bayer04 2.89 1.69 1.13 0.86 0.82 0.45 0.32 0.22
10cols 3.86 2.14 1.19 0.76 1.12 0.65 0.33 0.21
lhr34c 39.63 20.00 11.77 7.05 11.73 5.66 3.14 1.80
bayer01 5.32 2.81 1.70 1.10 1.64 0.85 0.50 0.30
Matrix35640 NS 38.32 27.86 22.41 NS 15.06 7.47 5.91
lhr71c NS 49.16 27.21 14.56 NS 13.10 7.23 3.93
icomp 2.07 1.27 0.78 0.47 1.07 0.48 0.27 0.16

Matrix35640∗ 71.47 47.98 34.33 33.93 21.63 15.03 11.22 9.31
lhr71c∗ 107.61 59.30 33.78 18.42 30.59 20.72 9.78 5.65

form before running HSL MP48. We see that for some problems the HSL MC66 time
can be greater than the time for the analyze phase of HSL MP48, resulting in the
total analyze cost (that is, the preordering time plus the time for the analyze
phase of HSL MP48) being greater than the MA48 analyze cost. Since HSL MC66 is
a serial code, these findings suggest that, if only a single AFS is wanted, it may
be important to develop either a parallel version of the preordering routine or
cheaper preordering algorithms.

In Tables XII and XIII timings are given for HSL MP48 when run on 1, 2, 4 and
8 processors of the Cray T3E-1200E at Manchester, UK. This is a distributed
memory machine with 816 processors, each processor having 256 MBytes of
memory and a theoretical peak performance of 1.2Gflops. The Cray f90 compiler
was used with flags -dp -O3. As in the other experiments reported in this article,

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

114 • I. S. Duff and J. A. Scott

Table XIII. HSL MP48 Timings in Seconds for FF and S Run on 1, 2, 4, and 8 Processors
of a Cray T3E. NS Denotes Not Solved. ∗Denotes Factors Stored in Files

FF S

Identifier 1 2 4 8 1 2 4 8
ethylene-2 0.23 0.12 0.08 0.05 0.027 0.015 0.010 0.007
ethylene-1 0.23 0.13 0.07 0.05 0.028 0.017 0.010 0.007
Matrix10876 1.32 1.16 1.04 1.02 0.041 0.030 0.024 0.022
4cols 0.14 0.08 0.05 0.03 0.021 0.013 0.009 0.007
lhr14c 2.46 1.28 0.79 0.46 0.087 0.070 0.026 0.018
bayer04 0.61 0.36 0.25 0.18 0.048 0.028 0.019 0.015
10cols 0.74 0.40 0.22 0.14 0.060 0.032 0.021 0.015
lhr34c 8.30 4.33 2.58 1.48 0.205 0.110 0.065 0.044
bayer01 1.20 0.62 0.37 0.22 0.121 0.069 0.042 0.030
Matrix35640 NS 9.17 6.64 5.34 NS 0.118 0.080 0.064
lhr71c NS 10.76 6.01 3.22 NS 0.223 0.128 0.079
icomp 0.72 0.40 0.23 0.14 0.085 0.055 0.036 0.028

Matrix35640∗ 21.54 15.78 10.75 9.35 6.256 5.179 3.054 2.989
lhr71c∗ 30.45 16.88 9.40 5.49 12.929 6.775 4.191 2.033

Table XIV. HSL MP48 Timings in Seconds for AFS and F2 Run on 1, 2, 4, 8, and 16 Processors of a
Cray T3E. NS Denotes Not Solved. ∗Denotes that Factors are Stored in Files. †Denotes that the

Host Process is Run on a Separate (Extra) Processor

AFS F2

Identifier 1 2 4 8 16 1 2 4 8 16
ethylene-2 1.03 0.55 0.34 0.23 0.18 0.23 0.13 0.07 0.05 0.03
ethylene-1 1.26 0.57 0.36 0.21 0.16 0.25 0.14 0.09 0.05 0.03
Matrix10876 14.80 14.03 13.70 13.57 13.52 3.59 3.40 3.32 3.29 3.28
4cols 0.59 0.39 0.30 0.29 0.23 0.15 0.10 0.07 0.06 0.05
lhr14c 6.90 4.17 2.71 2.00 1.60 1.81 1.11 0.72 0.54 0.43
bayer04 2.55 1.78 1.41 1.24 1.16 0.69 0.46 0.34 0.30 0.27
10cols 2.45 1.47 0.95 0.70 0.57 0.66 0.38 0.23 0.19 0.13
lhr34c 32.94 18.05 10.67 6.41 4.29 10.51 4.90 2.93 1.73 1.15
bayer01 4.70 2.62 1.47 0.96 0.65 1.40 0.76 0.40 0.24 0.16
Matrix35640† 64.20 45.12 49.04 46.30 44.12 17.37 14.32 12.82 11.95 15.92
lhr71c NS NS 24.50 15.76 9.93 NS NS 6.75 4.08 2.50
icomp 2.19 1.21 0.71 0.49 0.36 0.84 0.46 0.24 0.15 0.09

lhr71c∗ 96.40 55.84 31.61 27.73 16.15 29.90 16.64 9.97 7.06 5.43

the factors were held in main memory and no use was made of sequential files.
Working in main memory, it was not possible to solve test problems Matrix35640
and lhr71c using a single processor (denoted by NS). For these problems, we
also experimented with holding the factors in files and timings for these runs
are included at the end of the tables. We see that using files can add a significant
overhead, particularly to the solve phase, and hence our recommendation is that
this option is used only when the user wishes to retain the factors for future
use or the memory requirements are too large. In order to demonstrate the
scalability of our code on our test problems on up to 16 processors, we show in
Tables XIV and XV the results of running on 1, 2, 4, 8, and 16 processors of the
Cray T3E with a partitioning of the matrices into an SBBD form with 16 blocks
on the diagonal. Because of the size of the interface problem for Matrix35640, we

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

A Parallel Direct Solver for Large Sparse Highly Unsymmetric Linear Systems • 115

Table XV. HSL MP48 Timings in Seconds for FF and S Run on 1, 2, 4, 8, and 16 Processors of a
Cray T3E. NS Denotes Not Solved. ∗Denotes that Factors are Stored in Files. †Denotes that the

Host Process is Run on a Separate (Extra) Processor

FF S

Identifier 1 2 4 8 16 1 2 4 8 16
ethylene-2 0.16 0.09 0.05 0.03 0.02 0.027 0.016 0.010 0.008 0.006
ethylene-1 0.21 0.10 0.06 0.03 0.03 0.034 0.016 0.011 0.008 0.006
Matrix10876 3.12 2.98 2.91 2.90 2.88 0.057 0.048 0.043 0.041 0.041
4cols 0.10 0.07 0.07 0.04 0.04 0.021 0.014 0.010 0.008 0.007
lhr14c 1.52 0.92 0.61 0.46 0.37 0.074 0.044 0.030 0.023 0.019
bayer04 0.50 0.34 0.26 0.23 0.21 0.047 0.029 0.020 0.017 0.015
10cols 0.43 0.16 0.25 0.11 0.09 0.053 0.031 0.021 0.017 0.014
lhr34c 7.36 4.06 2.42 1.42 0.94 0.209 0.114 0.069 0.048 0.036
bayer01 1.00 0.55 0.29 0.18 0.12 0.114 0.065 0.040 0.030 0.025
Matrix35640† 15.41 12.94 11.67 10.93 10.53 0.201 0.146 0.116 0.103 0.097
lhr71c NS NS 5.61 3.33 2.09 NS NS 0.141 0.088 0.064
icomp 0.73 0.37 0.19 0.12 0.08 0.099 0.056 0.036 0.029 0.025

lhr71c∗ 34.80 18.00 10.25 7.30 5.54 10.911 7.347 4.090 3.702 3.270

were unable to run subsequent factorizations of this problem as an allocation
error was returned by the host. However, when we used the host process to
solve only the interface problem and not for solving any of the subproblems,
we obtained the results shown in Tables XIV and XV. We see that, for many
examples, we still have good scalability on up to 16 processors, although in
nearly half the cases the larger interface system causes the times (on the same
number of processors) to be worse than the partitioning with 8 blocks. We thus
conclude that, for our set of test problems, we can sometimes, but not always,
benefit from using 16 processors.

7. CONCLUDING COMMENTS

We have designed and developed an algorithm and code for the solution of large
sparse unsymmetric systems on parallel computers. We have seen that our new
code HSL MP48 performs well in all phases of the solution and achieves good
speedup on our realistic test problems for up to 8 and sometimes 16 processors.

It is crucial to first order the matrix to Singly Bordered Block Diagonal form
(2), and we have used the HSL implementation HSL MC66 of the MONET algo-
rithm to effect an a priori permutation to this form. Contrary to earlier exper-
iments of Arioli and Duff [1990] on ordering to bordered form, we find that, for
most of our problems, HSL MC66 is able to keep the border small while balancing
the size of the subproblems. This is in part due to the fact that the partitioning
algorithm leaves rectangular blocks on the diagonal. These rectangular blocks
are a powerful tool for obtaining a dynamic and stable decomposition to dou-
bly bordered form of a similar kind to that obtained in domain decomposition
partitioning. We plan to further investigate this relationship to domain decom-
position in a separate study. Our results in Section 6 show that the ordering to
SBBD form can be so effective that a single processor factorization that exploits
this form can be faster and less memory demanding than using a Markowitz
threshold algorithm on the whole matrix. However, the cost of ordering a matrix

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

116 • I. S. Duff and J. A. Scott

to SBBD form using the present serial code can be more expensive than the sub-
sequent analyze phase and thus represents a significant overhead. Thus, if we
are only going to do a single analyze/factorize/solve, it is important to develop
either cheaper reordering algorithms or a parallel partitioning routine.

The performance of HSL MP48 is very sensitive to the amount of work in solv-
ing the interface problem. Currently, HSL MP48 uses the serial code MA48 for
the interface problem. Although, the time needed by MA48 cannot in general
be predicted in advance, we note that the proportion of columns in the border
generally gives a good indication of performance. As a rule of thumb, our nu-
merical experiments suggest that the algorithm works well if less than 5% of
the columns lie in the border. This is the principal reason that the performance
of HSL MP48 does not normally improve if the number of subdomains and pro-
cessors is increased beyond about 16. If the structure of the matrix prevents us
from obtaining a sufficiently narrow border or if we are working on machines
with more processors and hence want to partition into a greater number of
subdomains, solving the interface problem using MA48 may cause a severe bot-
tleneck. Indeed, the interface problem may become too large to solve using a
direct method on a single processor, and other methods must be used.

In a recent report, Giraud et al. [2002] consider using either a parallel direct
code (specifically the MUMPS package of Amestoy et al. [2001]) or an iterative
method to solve the interface problem in the context of domain decomposition
in the solution of problems in semiconductor device modelling. We plan to in-
vestigate the use of iterative methods both for solving the interface problem
and for developing a block Jacobi preconditioner for preconditioning the whole
system.

8. AVAILABILITY

HSL MP48 is written in standard Fortran 90 and calls the MPI package for mes-
sage passing. HSL MC66 is written in standard Fortran 95. Both codes are dis-
tributed through HSL. Further information on HSL can be obtained from the
Web page www.cse.clrc.ac.uk/nag/hsl.

ACKNOWLEDGMENTS

We are indebted to the Department of Computer Science at The University
of Manchester and, in particular, to Milan Mihajlovic and Michael Bane, for
providing us with access to their SGI Origin 2000 and use of a cpuset facility.
We are also grateful to the three anonymous referees for their comments and
suggestions for improvements.

REFERENCES

AMESTOY, P. R., DUFF, I. S., KOSTER, J., AND L’EXCELLENT, J.-Y. 2001. A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. and Appl. 23, 1,
15–41.

ARIOLI, M. AND DUFF, I. S. 1990. Experiments in tearing large sparse systems. In Reliable Nu-
merical Computation, M. G. Cox and S. Hammarling, Eds. Oxford University Press, Oxford,
207–226.

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

A Parallel Direct Solver for Large Sparse Highly Unsymmetric Linear Systems • 117

DAVIS, T. 1997. University of Florida Sparse Matrix Collection. NA Digest 97, 23. Full details
from www.cise.ufl.edu/∼davis/sparse/.

DONGARRA, J., DUCROZ, J., DUFF, I., AND HAMMARLING, S. 1990. A set of Level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Soft. 16, 1, 1–17.

DUFF, I. 1977. MA28—a set of Fortran subroutines for sparse unsymmetric systems. Report
AERE R8730, Her Majesty’s Stationery Office, London.

DUFF, I. AND REID, J. 1993. MA48, a Fortran code for direct solution of sparse unsymmetric linear
systems of equations. Report RAL-93-072, Rutherford Appleton Laboratory.

DUFF, I. AND REID, J. 1996. The design of MA48, a code for the direct solution of sparse unsym-
metric linear systems of equations. ACM Trans. Math. Soft. 22, 187–226.

DUFF, I. AND SCOTT, J. 1993. MA42—a new frontal code for solving sparse unsymmetric systems.
Tech. Rep. RAL-93-064, Rutherford Appleton Laboratory.

DUFF, I. AND SCOTT, J. 1994. The use of multiple fronts in Gaussian elimination. In Proceedings
of the Fifth SIAM Conference Applied Linear Algebra, J. Lewis, Ed. SIAM, 567–571.

GILBERT, J. R. AND PEIERLS, T. 1988. Sparse partial pivoting in time proportional to arithmetic
operations. SIAM J. Sci. Statis. Comput. 9, 862–874.

GIRAUD, L., MARROCCO, A., AND RIOUAL, J.-C. 2002. Iterative versus direct parallel substructur-
ing methods in semiconductor device modeling. Tech. Rep. TR/PA/02/114, CERFACS, Toulouse,
France.

HENDRICKSON, B. AND LELAND, R. 1995. The Chaco user’s guide: Version 2.0. Tech. Rep. SAND94-
2692, Sandia National Laboratories, Albuquerque, NM.

HU, Y., MAGUIRE, K., AND BLAKE, R. 2000. A multilevel unsymmetric matrix ordering for parallel
process simulation. Comput. Chem. Eng. 23, 1631–1647.

HU, Y. AND SCOTT, J. 2003. Ordering techniques for singly bordered block diagonal forms for
parallel direct solvers. Tech. Rep. RAL-TR-2003-020, Rutherford Appleton Laboratory.

KARYPIS, G. AND KUMAR, V. 1995. METIS: Unstructured graph partitioning and sparse matrix
ordering system. Tech. Rep. TR 95-035, University of Minnesota.

KARYPIS, G. AND KUMAR, V. 1998. METIS: A software package for partitioning unstructured
graphs, partitioning meshes and computing fill-reducing orderings of sparse matrices—version
4.0.

KERNIGHAN, B. AND LIN, S. 1970. An efficient heuristic procedure for partitioning graphs. Bell Syst.
Tech. J. 49, 291–308.

MARKOWITZ, H. 1957. The elimination form of the inverse and its application to linear program-
ming. Management Science 3, 255–269.

MPI. 1994. A message-passing interface standard. Inter. J. Supercomp. Applics. 8. Special edition
on MPI.

SCOTT, J. 2001a. The design of a portable parallel frontal solver for chemical process engineering
problems. Comput. Chem. Eng. 25, 1699–1709.

SCOTT, J. 2001b. A parallel solver for finite element applications. Inter. J. Num. Meth. Eng. 50,
1131–1141.

SCOTT, J. 2002. Parallel frontal solvers for large sparse linear systems. Tech. Rep. RAL-TR-2002-
012, Rutherford Appleton Laboratory.

ZLATEV, Z. 1980. On some pivotal strategies in Gaussian elimination by sparse technique. SIAM
J. Numer. Anal. 17, 18–30.

Received March 2003; revised October 2003; accepted January 2004

ACM Transactions on Mathematical Software, Vol. 30, No. 2, June 2004.

