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Memory requirement:

e Quasi-Newton methods create need to keep a n x n matrix
H,;, (the inverse of the approximate Hessian Bj) or L; (the
Cholesky factor of B;) in the computer memory, i.e., O(n?)
data units.

e The steepest descent method only occupies O(n) memory
at any given time, by storing z;, and Vf(z;) and overwriting
registers with new data. Can cope with much larger n than
qg.-N..

The notion of complexity (per iteration) of an algorithm we used
so far is simplistic:

e \We counted the number of "basic computer operations”,
without taking into account that some operations are less
costly than others.

e We did not take into account the memory requirements of
an algorithm and the time a computer spends shifting data
between different levels of the memory hierarchy.

The conjugate gradient method has

e O(n) memory requirement,

e O(n) complexity per iteration,

e but converges much faster than steepest descent.

This method can be used when the memory requirement of quasi-
Newton methods exceeds the active memory of the CPU, or al-
ternatively, to solve positive definite systems of linear equations.



Let A € R®™*"™ be real symmetric and recall:
Let B = 0 be symmetric positive definite and consider

(P) m]iRr)1 f(x)=2"Bz+b"z+a. e A has real eigenvalues \; > --- > )\, and there exists Q or-
e thogonal such that A = Q Diag(\)QT.

Since f is convex, Vf(z) = 0 is a sufficient optimality condition,
i.e., (P) is equivalent to solving the positive definite linear system e A1 =QD71QT, i.e., A is nonsingular iff \; # 0V,
2Bx = —b with solution

¥ = —(1/2)B~1b. e Ais positive definite iff A; > 0Vi, and then A1/2 := Q Diag(Al/2)
is unique symmetric positive definite s.t. A1/241/2 = A,

Geometric motivation of CG: Adding a constant to the ob-

iactive function of We aim to construct an iterative sequence (zj)xen Such that the
Jjective functi

corresponding sequence of y;, = Bl/Q(ock — z*) behaves sensibly.

(P) min f(x)=2"Bxz+b'z+a
e Let the current iterate be z; and apply an exact line search
does not change the global minimiser z* = —(1/2)B—1b.

ap = arg ming f(xy, + ady) to z; in the search direction dj.
Therefore, it is equivalent to solve

(P") min f(z) = (z —2*) "Bz —2*) =y Ty = g(v),
where y = B1/2(z — z*).

Translated into y-coordinates,
— ; — ; 2 T 2 2
ag = arg min g(yy + apg) = argmin [|lyg||~ + 2apy, yx, + o[|pg|*

1
where p,. = B2d;, and

Thus, the objective function of our minimisation problem looks
particularly simple in the transformed variables y. Use these to
understand the geometry of the method.
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If we set yj41 = yj, + ogpg, then we find

T Py Yk ’ T T
Ypt 1Pk = (y - Wm) Pk = Yg Pk — Yg Pk = O- (1)

Key observation: (1) holds independently of the location of zy.
Applying an exact line search

o = argmin f(xz + ad),
a€cR

to an arbitrary point x in the search direction d = +d, the point
Ty =z+ a*d ends up lying in the affine hyper-plane

=2+ B—1/2le€_'

The requirement that all subsequent line searches are to be con-
ducted within 7 amounts to the condition p; L p; for all 5 > k,
or equivalently expressed in z-coordinates,

dj Bdj =0 Vi>k+ 1. (2)

If this relation holds, we say that d; and dj are B-conjugate
(which is the same as orthogonality with respect to the Euclidean
inner product defined by B).

In subsequent searches, it therefore never makes sense to leave
T, again!

Observations:

e fl|r, is a strictly convex quadratic function on m. Choosing
di41 satisfying (2), we can thus repeat our argument and
find that x4 will lie in an affine hyper-plane w41 of m; to
which any future line-search must be restricted.

e Arguing iteratively, the dimension of the search space =, is
decreased by 1 in every iteration, thus termination occurs in
n iterations.

e Thus will have chosen mutually B-conjugate search directions

d] Bd; =0 Vi # j.



Theorem 1. Let f(z) ;=2 "Bz +b'z+ a, where B > 0.

For k=0,...,n—1 let d; be chosen such that
d] Bd;=0  Vi#j.
Let xg € R™ be arbitrary and

xk+1=xk+akdk (kZO,...,’)’L—l),

where aj = arg min,cg f(z + ady).

Then z, is the global minimiser of f.

Proof: Induction over k.

e For k. = 0 there is nothing to prove.

e For i <k,
k— 1dTB Vg
dTBd

d Bdy, = d By, —

e The linear independence of the v; guarantees that none of

the d; is zero, and hence d}rij > 0 for all j.

Assume that d, Bd; = 0 for all 4,5 € {0,...,k — 1}, i # j.

d; Bd; = d Bvy, — dj Bu, = 0.

How to choose B-conjugate search directions?

Lemma 1: Gram-Schmidt orthogonalisation. Letvg,...,v,_1 €
R"™ be linearly independent vectors, and let dg,...,d,_1 be recur-
sively defined as follows,
k=1 dTka
d, = v — 3
k= Uk Z dTBd 3)

Then d Bd, = 0 for all i # k.

Unfortunately, this procedure would require that we hold the vec-
tors d; (j < k) in the computer memory. Thus, as k approaches

n the method would require O(n?) memory.

A second key observation shows that we can get away with O(n)

storage if we choose the steepest descent direction as vg:

Lemma 2: Orthogonality. Choose dy = —Vf(xg) and for
k=1,...,n—1 let d; be computed via
K1 d] B(=V f(xy))
=-V — J i 4
k f(z) j;o d;—ij J (4)

Then Vf(z;)TVf(z;) =0 and djTVf(xk) =0 for j < k.



Proof: Note that Vf(z,) = 2Bz + b for all k.

By induction over k we prove d}er(a:k) =0 for all j < k.

e Okay for Kk = 0. Assume it holds for k. Then

df Vf(zp41) = d] (2B(zy + oydy,) + b)
= d] Vf(xy) + 2a4d; Bdy,
=0, (G=0,...,k—1).

e Furthermore, dZVf(:ck+1) = 0 is the first order optimality
condition for the line search ming f(xy + ady) defining xj41.

Putting the pieces together: Recall (4),

k=1 dTB(=V f(zy))
dp ==V f(zp) — > -2 .
k Tk =0 d;—ij J

Substituting Vf(:L‘j_|_1) — Vf(l‘j) = QOLdej into (4),

dy = — f(ap) + kz_:l Vi(zj41) V() - Vf(xj)TVf(xk)d.‘
=0

Vi(@jy1)Tdj = Vi(z;)Td; g

Lemma 2 implies that all but the last summand in the the right
hand side expression are zero,

Vf(z) TV f(2r)
Vi ) Tdp g " Y

dp = =V f(xp) — (5)

Next, (4) implies that for all k,

span(do, . ., di) = span(V f(xo), .., V.f(zp)).

For j < k there exist therefore Ay,...,\; such that Vf(z;) =
>J_oNid;, and we have

J
V@) TV () = Y A V() = 0. O

=1

Multiplying (4) by Vf(:ck)T and then replacing k by k—1, Lemma
2 implies

df_1V (1) = =V f(@p—1)]1?

Substituting into (5),

IV £ (i) |I2

dy==Vf(zp) + o7 v5%—1-
IV f(xp—1)I2

This is the conjugate gradient rule for updating the search di-

rection.



e In the computation of d; we only need to keep two vectors
and one number stored in the main memory: di_1, =, and

IV f(zr—1)]2.

e The registers occupied by these data can be overwritten dur-
ing the computation of the new data dy, zp41, and |V f(zy)||.

e The method terminates in at most n iterations.

e Furthermore, in general z;, approximates x* closely after very
few iterations, and the remaining iterations are used for fine-
tuning the result.

The Fletcher-Reeves Method:

Algorithm 1 can be adapted for the minimisation of an arbi-
trary C1 objective function f and is then called Fletcher-Reeves
method. The main differences are the following:

e Exact line-searches have to be replaced by practical line-
searches.

e A termination criterion ||V f(z)| < € has to be used to guar-
antee that the algorithm terminates in finite time.

e Since Lemma 2 only holds for quadratic functions, the con-
jugacy of d;, is only be achieved approximately. To overcome
this problem, reset d;, to —V f(x;) periodically.

Algorithm 1: Conjugate Gradients. zg € R", dg := —V f(zq).

For k=0,1,...,n— 1 repeat
S1 Compute oy, = arg ming f(zp+ady) and set x4 1 = xp+oydy.

S2 If k<n—1, compute

IV f(zg1)I2

d = -V .
k+1 f(xp41) + Yol

Return z* = zp,.

Reading Assignment: Lecture-Note 5.



