
The Conjugate Gradient Method

Lecture 5, Continuous Optimisation

Oxford University Computing Laboratory, HT 2006

Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

The notion of complexity (per iteration) of an algorithm we used

so far is simplistic:

• We counted the number of ”basic computer operations”,

without taking into account that some operations are less

costly than others.

• We did not take into account the memory requirements of

an algorithm and the time a computer spends shifting data

between different levels of the memory hierarchy.

Memory requirement:

• Quasi-Newton methods create need to keep a n × n matrix

Hk (the inverse of the approximate Hessian Bk) or Lk (the

Cholesky factor of Bk) in the computer memory, i.e., O(n2)

data units.

• The steepest descent method only occupies O(n) memory

at any given time, by storing xk and ∇f(xk) and overwriting

registers with new data. Can cope with much larger n than

q.-N..

The conjugate gradient method has

• O(n) memory requirement,

• O(n) complexity per iteration,

• but converges much faster than steepest descent.

This method can be used when the memory requirement of quasi-

Newton methods exceeds the active memory of the CPU, or al-

ternatively, to solve positive definite systems of linear equations.



Let B � 0 be symmetric positive definite and consider

(P) min
x∈Rn

f(x) = xTBx + bTx + a.

Since f is convex, ∇f(x) = 0 is a sufficient optimality condition,

i.e., (P) is equivalent to solving the positive definite linear system

2Bx = −b with solution

x∗ = −(1/2)B−1b.

Let A ∈ Rn×n be real symmetric and recall:

• A has real eigenvalues λ1 ≥ · · · ≥ λn and there exists Q or-

thogonal such that A = QDiag(λ)QT.

• A−1 = QD−1QT, i.e., A is nonsingular iff λi 6= 0 ∀i,

• A is positive definite iff λi > 0∀i, and then A1/2 := QDiag(λ1/2)QT

is unique symmetric positive definite s.t. A1/2A1/2 = A.

Geometric motivation of CG: Adding a constant to the ob-

jective function of

(P) min
x∈Rn

f(x) = xTBx + bTx + a

does not change the global minimiser x∗ = −(1/2)B−1b.

Therefore, it is equivalent to solve

(P’) min f(x) = (x − x∗)TB(x − x∗) = yTy = g(y),

where y = B1/2(x − x∗).

Thus, the objective function of our minimisation problem looks

particularly simple in the transformed variables y. Use these to

understand the geometry of the method.

We aim to construct an iterative sequence (xk)k∈N such that the

corresponding sequence of yk = B1/2(xk − x∗) behaves sensibly.

Let the current iterate be xk and apply an exact line search

αk = argminα f(xk + αdk) to xk in the search direction dk.

Translated into y-coordinates,

αk = argmin
α

g(yk + αpk) = argmin
α

‖yk‖
2 + 2αpT

k yk + α2‖pk‖
2.

where pk = B
1
2dk, and

αk = −
pT
k yk

‖pk‖
2
.



If we set yk+1 = yk + αkpk, then we find

yT
k+1pk =

(

y −
pT
k yk

‖pk‖
2
pk

)T

pk = yT
k pk − yT

k pk = 0. (1)

Key observation: (1) holds independently of the location of xk.

Applying an exact line search

α∗ = argmin
α∈R

f(x + αd),

to an arbitrary point x in the search direction d = ±dk, the point

x+ = x + α∗d ends up lying in the affine hyper-plane

πk := x∗ + B−1/2p⊥k .

In subsequent searches, it therefore never makes sense to leave

πk again!

porth

yk+

y

pik

xk

x

x+ xk+

yk

dk

y+

pk

y*

x*

The requirement that all subsequent line searches are to be con-

ducted within πk amounts to the condition pj ⊥ pk for all j > k,

or equivalently expressed in x-coordinates,

dT
k Bdj = 0 ∀j ≥ k + 1. (2)

If this relation holds, we say that dk and dj are B-conjugate

(which is the same as orthogonality with respect to the Euclidean

inner product defined by B).

Observations:

• f |πk is a strictly convex quadratic function on πk. Choosing

dk+1 satisfying (2), we can thus repeat our argument and

find that xk+2 will lie in an affine hyper-plane πk+1 of πk to

which any future line-search must be restricted.

• Arguing iteratively, the dimension of the search space πk is

decreased by 1 in every iteration, thus termination occurs in

n iterations.

• Thus will have chosen mutually B-conjugate search directions

dT
i Bdj = 0 ∀ i 6= j.



Theorem 1. Let f(x) := xTBx + bTx + a, where B � 0.

For k = 0, . . . , n − 1 let dk be chosen such that

dT
i Bdj = 0 ∀ i 6= j.

Let x0 ∈ Rn be arbitrary and

xk+1 = xk + αkdk (k = 0, . . . , n − 1),

where αk = arg minα∈R f(xk + αdk).

Then xn is the global minimiser of f .

How to choose B-conjugate search directions?

Lemma 1: Gram-Schmidt orthogonalisation. Let v0, . . . , vn−1 ∈

Rn be linearly independent vectors, and let d0, . . . , dn−1 be recur-

sively defined as follows,

dk = vk −
k−1
∑

j=0

dT
j Bvk

dT
j Bdj

dj. (3)

Then dT
i Bdk = 0 for all i 6= k.

Proof: Induction over k.

• For k = 0 there is nothing to prove.

• Assume that dT
i Bdj = 0 for all i, j ∈ {0, . . . , k − 1}, i 6= j.

• For i < k,

dT
i Bdk = dT

i Bvk −
k−1
∑

j=0

dT
j Bvk

dT
j Bdj

dT
i Bdj = dT

i Bvk − dT
i Bvk = 0.

• The linear independence of the vj guarantees that none of

the dj is zero, and hence dT
j Bdj > 0 for all j.

Unfortunately, this procedure would require that we hold the vec-

tors dj (j < k) in the computer memory. Thus, as k approaches

n the method would require O(n2) memory.

A second key observation shows that we can get away with O(n)

storage if we choose the steepest descent direction as vk:

Lemma 2: Orthogonality. Choose d0 = −∇f(x0) and for

k = 1, . . . , n − 1 let dk be computed via

dk = −∇f(xk) −
k−1
∑

j=0

dT
j B(−∇f(xk))

dT
j Bdj

dj. (4)

Then ∇f(xj)
T∇f(xk) = 0 and dT

j ∇f(xk) = 0 for j < k.



Proof: Note that ∇f(xk) = 2Bxk + b for all k.

By induction over k we prove dT
j ∇f(xk) = 0 for all j < k.

• Okay for k = 0. Assume it holds for k. Then

dT
j ∇f(xk+1) = dT

j (2B(xk + αkdk) + b)

= dT
j ∇f(xk) + 2αkdT

j Bdk

= 0, (j = 0, . . . , k − 1).

• Furthermore, dT
k ∇f(xk+1) = 0 is the first order optimality

condition for the line search minα f(xk + αdk) defining xk+1.

Next, (4) implies that for all k,

span(d0, . . . , dk) = span(∇f(x0), . . . ,∇f(xk)).

For j < k there exist therefore λ1, . . . , λj such that ∇f(xj) =
∑j

i=0 λidi, and we have

∇f(xj)
T∇f(xk) =

j
∑

i=1

λdT
i ∇f(xk) = 0.

Putting the pieces together: Recall (4),

dk = −∇f(xk) −
k−1
∑

j=0

dT
j B(−∇f(xk))

dT
j Bdj

dj.

Substituting ∇f(xj+1) −∇f(xj) = 2αjBdj into (4),

dk = −∇f(xk) +
k−1
∑

j=0

∇f(xj+1)
T∇f(xk) −∇f(xj)

T∇f(xk)

∇f(xj+1)
Tdj −∇f(xj)

Tdj
dj.

Lemma 2 implies that all but the last summand in the the right

hand side expression are zero,

dk = −∇f(xk) −
∇f(xk)

T∇f(xk)

∇f(xk−1)
Tdk−1

dk−1. (5)

Multiplying (4) by ∇f(xk)
T and then replacing k by k−1, Lemma

2 implies

dT
k−1∇f(xk−1) = −‖∇f(xk−1)‖

2.

Substituting into (5),

dk = −∇f(xk) +
‖∇f(xk)‖

2

‖∇f(xk−1)‖
2
dk−1.

This is the conjugate gradient rule for updating the search di-

rection.



• In the computation of dk we only need to keep two vectors

and one number stored in the main memory: dk−1, xk, and

‖∇f(xk−1)‖
2.

• The registers occupied by these data can be overwritten dur-

ing the computation of the new data dk, xk+1, and ‖∇f(xk)‖
2.

• The method terminates in at most n iterations.

• Furthermore, in general xk approximates x∗ closely after very

few iterations, and the remaining iterations are used for fine-

tuning the result.

Algorithm 1: Conjugate Gradients. x0 ∈ Rn, d0 := −∇f(x0).

For k = 0,1, . . . , n − 1 repeat

S1 Compute αk = argminα f(xk+αdk) and set xk+1 = xk+αkdk.

S2 If k < n − 1, compute

dk+1 = −∇f(xk+1) +
‖∇f(xk+1)‖

2

‖∇f(xk)‖
2

dk.

Return x∗ = xn.

The Fletcher-Reeves Method:

Algorithm 1 can be adapted for the minimisation of an arbi-

trary C1 objective function f and is then called Fletcher-Reeves

method. The main differences are the following:

• Exact line-searches have to be replaced by practical line-
searches.

• A termination criterion ‖∇f(xk)‖ < ε has to be used to guar-

antee that the algorithm terminates in finite time.

• Since Lemma 2 only holds for quadratic functions, the con-
jugacy of dk is only be achieved approximately. To overcome

this problem, reset dk to −∇f(xk) periodically.

Reading Assignment: Lecture-Note 5.


