Part 5: SQP methods for equality constrained optimization

Nick Gould (RAL)

minimize \(f(x) \) subject to \(c(x) = 0 \)

MSc course on nonlinear optimization

EQUALLITY CONSTRAINED MINIMIZATION

minimize \(f(x) \) subject to \(c(x) = 0 \)

where the objective function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \)
and the constraints \(c : \mathbb{R}^n \rightarrow \mathbb{R}^m \) \((m \leq n)\)

- assume that \(f, c \in C^1 \) (sometimes \(C^2 \)) and Lipschitz
- often in practice this assumption violated, but not necessary
- easily generalized to inequality constraints ... but may be better to use interior-point methods for these
1st order optimality:
\[g(x, y) \equiv g(x) - A^T(x)y = 0 \text{ and } c(x) = 0 \]

nonlinear system (linear in \(y \))
\[\Rightarrow \]
use Newton’s method to find a correction \((s, w)\) to \((x, y)\)
\[\Rightarrow \]
\[
\begin{pmatrix}
H(x, y) - A^T(x) & 0 \\
A(x) & 0
\end{pmatrix}
\begin{pmatrix}
s \\
w
\end{pmatrix}
= -
\begin{pmatrix}
g(x, y) \\
c(x)
\end{pmatrix}
\]

ALTERNATIVE FORMULATIONS

unsymmetric:
\[
\begin{pmatrix}
H(x, y) - A^T(x) & 0 \\
A(x) & 0
\end{pmatrix}
\begin{pmatrix}
s \\
w
\end{pmatrix}
= -
\begin{pmatrix}
g(x, y) \\
c(x)
\end{pmatrix}
\]
or symmetric:
\[
\begin{pmatrix}
H(x, y) & A^T(x) \\
A(x) & 0
\end{pmatrix}
\begin{pmatrix}
s \\
w
\end{pmatrix}
= -
\begin{pmatrix}
g(x, y) \\
c(x)
\end{pmatrix}
\]
or \((\text{with } y^+ = y + w)\) unsymmetric:
\[
\begin{pmatrix}
H(x, y) - A^T(x) & 0 \\
A(x) & 0
\end{pmatrix}
\begin{pmatrix}
s \\
y^+
\end{pmatrix}
= -
\begin{pmatrix}
g(x) \\
c(x)
\end{pmatrix}
\]
or symmetric:
\[
\begin{pmatrix}
H(x, y) & A^T(x) \\
A(x) & 0
\end{pmatrix}
\begin{pmatrix}
s \\
y^+
\end{pmatrix}
= -
\begin{pmatrix}
g(x) \\
c(x)
\end{pmatrix}
\]
Often approximate with symmetric \(B \approx H(x, y) \implies \) e.g.

\[
\begin{pmatrix}
B & A^T(x) \\
A(x) & 0
\end{pmatrix}
\begin{pmatrix}
s \\
-y^+
\end{pmatrix}
= -
\begin{pmatrix}
g(x) \\
c(x)
\end{pmatrix}
\]

solve system using

\(\circ \) unsymmetric (LU) factorization of \(\begin{pmatrix}
B & -A^T(x) \\
A(x) & 0
\end{pmatrix} \)

\(\circ \) symmetric (indefinite) factorization of \(\begin{pmatrix}
B & A^T(x) \\
A(x) & 0
\end{pmatrix} \)

\(\circ \) symmetric factorizations of \(B \) and the Schur Complement \(A(x)B^{-1}A^T(x) \)

\(\circ \) iterative method (GMRES(k), MINRES, CG within \(\mathcal{N}(A), \ldots \))

AN ALTERNATIVE INTERPRETATION

\(\text{QP} : \) minimize \(g(x)^T s + \frac{1}{2} s^T Bs \) subject to \(A(x)s = -c(x) \)

\(\circ \) QP = quadratic program

\(\circ \) first-order model of constraints \(c(x + s) \)

\(\circ \) second-order model of objective \(f(x + s) \ldots \) but \(B \) includes curvature of constraints

solution to QP satisfies

\[
\begin{pmatrix}
B & A^T(x) \\
A(x) & 0
\end{pmatrix}
\begin{pmatrix}
s \\
-y^+
\end{pmatrix}
= -
\begin{pmatrix}
g(x) \\
c(x)
\end{pmatrix}
\]
or **successive** quadratic programming
or **recursive** quadratic programming (RQP)

Given \((x_0, y_0)\), set \(k = 0\)
Until “convergence” iterate:

- Compute a suitable symmetric \(B_k\) using \((x_k, y_k)\)
- Find
 \[
 s_k = \arg \min_{s \in \mathbb{R}^n} g_k^T s + \frac{1}{2} s^T B_k s \quad \text{subject to} \quad A_k s = -c_k
 \]
 along with associated Lagrange multiplier estimates \(y_{k+1}\)
- Set \(x_{k+1} = x_k + s_k\) and increase \(k\) by 1

ADVANTAGES

- simple
- fast
 - quadratically convergent with \(B_k = H(x_k, y_k)\)
 - superlinearly convergent with good \(B_k \approx H(x_k, y_k)\)
 - don’t actually need \(B_k \rightarrow H(x_k, y_k)\)

PROBLEMS WITH PURE SQP

- how to choose \(B_k\)?
- what if \(\text{QP}_k\) is unbounded from below? and when?
- how do we globalization this iteration?
QP SUB-PROBLEM

\[
\begin{align*}
\text{minimize} & \quad g^T s + \frac{1}{2} s^T B s \\
\text{subject to} & \quad As = -c
\end{align*}
\]

○ need constraints to be consistent
 ◦ OK if \(A \) is full rank

○ need \(B \) to be positive (semi-) definite when \(As = 0 \)

\[\iff \]

\[N^T B N \text{ positive (semi-) definite where the columns of } N \]

\[\text{form a basis for } \text{null}(A) \]

\[\iff \]

\[
\begin{pmatrix}
B & A^T \\
A & 0
\end{pmatrix}
\]

(is non-singular and) has \(m \) -ve eigenvalues

LINESEARCH SQP METHODS

\[
\begin{align*}
s_k &= \arg \min_{s \in \mathbb{R}^n} g_k^T s + \frac{1}{2} s^T B_k s \\
& \quad \text{subject to } A_k s = -c_k
\end{align*}
\]

Basic idea:

○ Pick \(x_{k+1} = x_k + \alpha_k s_k \), where
 ◦ \(\alpha_k \) is chosen so that
 \[
 \Phi(x_k + \alpha_k s_k, p_k) \overset{\prec}{=} \Phi(x_k, p_k)
 \]
 ◦ \(\Phi(x, p) \) is a “suitable” merit function
 ◦ \(p_k \) are parameters

○ vital that \(s_k \) is a descent direction for \(\Phi(x, p_k) \) at \(x_k \)

○ normally require that \(B_k \) is positive definite
SUITABLE MERIT FUNCTIONS. I

The quadratic penalty function:

\[\Phi(x, \mu) = f(x) + \frac{1}{2\mu}\|c(x)\|_2^2 \]

Theorem 5.1. Suppose that \(B_k \) is positive definite, and that \((s_k, y_{k+1})\) are the SQP search direction and its associated Lagrange multiplier estimates for the problem

\[
\min_{x \in \mathbb{R}^n} f(x) \text{ subject to } c(x) = 0
\]

at \(x_k \). Then if \(x_k \) is not a first-order critical point, \(s_k \) is a descent direction for the quadratic penalty function \(\Phi(x, \mu_k) \) at \(x_k \) whenever

\[
\mu_k \leq \frac{\|c(x_k)\|}{\|y_{k+1}\|}
\]

PROOF OF THEOREM 5.1

SQP direction \(s_k \) and associated multiplier estimates \(y_{k+1} \) satisfy

\[B_k s_k - A_k^T y_{k+1} = -g_k \] (1)

and

\[A_k s_k = -c_k. \] (2)

(1) + (2) \(\implies \) \(s_k^T g_k = -s_k^T B_k s_k + s_k^T A_k^T y_{k+1} = -s_k^T B_k s_k - c_k^T y_{k+1} \) (3)

(2) \(\implies \) \(\frac{1}{\mu_k} s_k^T A_k^T c_k = -\frac{\|c_k\|^2_2}{\mu_k} \) (4)

(3) + (4), the positive definiteness of \(B_k \), the Cauchy-Schwarz inequality, the required bound on \(\mu_k \), and \(s_k \neq 0 \) if \(x_k \) is not critical \(\implies \)

\[s_k^T \nabla_x \Phi(x_k) = s_k^T \left(g_k + \frac{1}{\mu_k} A_k^T c_k \right) = -s_k^T B_k s_k - c_k^T y_{k+1} - \frac{\|c_k\|^2_2}{\mu_k} \]

\[< -\|c_k\|_2 \left(\frac{\|c_k\|^2_2}{\mu_k} - \|y_{k+1}\|_2 \right) \leq 0 \]
The non-differentiable exact penalty function:

$$\Phi(x, \rho) = f(x) + \rho \|c(x)\|$$

for any norm $\| \cdot \|$ and scalar $\rho > 0$.

Theorem 5.2. Suppose that $f, c \in C^2$, and that x_* is an isolated local minimizer of $f(x)$ subject to $c(x) = 0$, with corresponding Lagrange multipliers y_*. Then x_* is also an isolated local minimizer of $\Phi(x, \rho)$ provided that

$$\rho > \|y_*\|_D,$$

where the dual norm

$$\|y\|_D = \sup_{x \neq 0} \frac{y^T x}{\|x\|}.$$
PROOF OF THEOREM 5.3
Taylor’s theorem applied to f and $c + (2) \implies$ (for small α)

$$\Phi(x_k + \alpha s_k, \rho_k) - \Phi(x_k, \rho_k) = \alpha s_k^T g_k + \rho_k \left(\|c_k + \alpha A_k s_k\| - \|c_k\|\right) + O(\alpha^2)$$

$$= \alpha s_k^T g_k + \rho_k \left(\|(1 - \alpha)c_k\| - \|c_k\|\right) + O(\alpha^2)$$

$$= \alpha \left(s_k^T g_k - \rho_k \|c_k\|\right) + O(\alpha^2)$$

$+$ (3), the positive definiteness of B_k, the Hölder inequality, and $s_k \neq 0$

if x_k is not critical \implies

$$\Phi(x_k + \alpha s_k, \rho_k) - \Phi(x_k, \rho_k) = -\alpha \left(s_k^T B_k s_k + c_k^T y_{k+1} + \rho_k \|c_k\|\right) + O(\alpha^2)$$

$$< -\alpha \left(-\|c_k\|\|y_{k+1}\|_D + \rho_k \|c_k\|\right) + O(\alpha^2)$$

$$= -\alpha \|c_k\| \left(\rho_k - \|y_{k+1}\|_D\right) + O(\alpha^2) < 0$$

because of the required bound on ρ_k, for sufficiently small α. Hence

sufficiently small steps along s_k from non-critical x_k reduce $\Phi(x, \rho_k)$.

THE MARATOS EFFECT

\[\ell_1 \text{ non-differentiable exact penalty function } (\rho = 1): \]
\[f(x) = 2(x_1^2 + x_2^2 - 1) - x_1 \]
and $c(x) = x_1^2 + x_2^2 - 1$

solution: $x_* = (1, 0)$, $y_* = \frac{3}{2}$

Maratos effect: merit function may prevent acceptance of the

SQP step arbitrarily close to $x_* \implies$ slow convergence
AVOIDING THE MARATOS EFFECT

The Maratos effect occurs because the curvature of the constraints is not adequately represented by linearization in the SQP model:

\[c(x_k + s_k) = O(\|s_k\|^2) \]

\[\implies \text{need to correct for this curvature} \]
\[\implies \text{use a second-order correction from } x_k + s_k: \]
\[c(x_k + s_k + s^C_k) = o(\|s_k\|^2) \]

also do not want to destroy potential for fast convergence \[s^C_k = o(s_k) \]

POPULAR 2ND-ORDER CORRECTIONS

\(\circ \) minimum norm solution to \[c(x_k + s_k) + A(x_k + s_k)s^C_k = 0 \]
\[\begin{pmatrix} I & A^T(x_k + s_k) \\ A(x_k + s_k) & 0 \end{pmatrix} \begin{pmatrix} s^C_k \\ -y^C_{k+1} \end{pmatrix} = - \begin{pmatrix} 0 \\ c(x_k + s_k) \end{pmatrix} \]

\(\circ \) minimum norm solution to \[c(x_k + s_k) + A(x_k)s^C_k = 0 \]
\[\begin{pmatrix} I & A^T(x_k) \\ A(x_k) & 0 \end{pmatrix} \begin{pmatrix} s^C_k \\ -y^C_{k+1} \end{pmatrix} = - \begin{pmatrix} 0 \\ c(x_k + s_k) \end{pmatrix} \]

\(\circ \) another SQP step from \(x_k + s_k \)
\[\begin{pmatrix} H(x_k + s_k, y^+_k) & A^T(x_k + s_k) \\ A(x_k + s_k) & 0 \end{pmatrix} \begin{pmatrix} s^C_k \\ -y^C_{k+1} \end{pmatrix} = - \begin{pmatrix} g(x_k + s_k) \\ c(x_k + s_k) \end{pmatrix} \]

\(\circ \) etc., etc.
\[\ell_1 \text{ non-differentiable exact penalty function } (\rho = 1): \]
\[f(x) = 2(x_1^2 + x_2^2 - 1) - x_1 \]
and \[c(x) = x_1^2 + x_2^2 - 1 \]
solution: \(x_* = (1, 0), \ y_* = \frac{3}{2} \)

\(\bigcirc \) (very) fast convergence

\(\bigcirc \) \(x_k + s_k + s^c_k \) reduces \(\Phi \implies \) global convergence

TRUST-REGION SQP METHODS

Obvious trust-region approach:

\[s_k = \arg \min_{s \in \mathbb{R}^n} g^T_k s + \frac{1}{2}s^T B_k s \text{ subject to } A_k s = -c_k \text{ and } \|s\| \leq \Delta_k \]

\(\bigcirc \) do not require that \(B_k \) be positive definite

\[\implies \text{ can use } B_k = H(x_k, y_k) \]

\(\bigcirc \) if \(\Delta_k < \Delta_{\text{crit}} \) where

\[\Delta_{\text{crit}} \overset{\text{def}}{=} \min \|s\| \text{ subject to } A_k s = -c_k \]

\[\implies \text{ no solution to trust-region subproblem} \]

\[\implies \text{ simple trust-region approach to SQP is flawed if } c_k \neq 0 \implies \]
need to consider alternatives
INFEASIBILITY OF THE SQP STEP

ALTERNATIVES

- the Sl_pQP method of Fletcher
- composite step SQP methods
 - constraint relaxation (Vardi)
 - constraint reduction (Byrd–Omojokun)
 - constraint lumping (Celis–Dennis–Tapia)
- the filter-SQP approach of Fletcher and Leyffer
THE $\mathbf{S}\ell_p\mathbf{QP}$ METHOD

Try to minimize the ℓ_p-(exact) penalty function

$$\Phi(x, \rho) = f(x) + \rho \|c(x)\|_p$$

for sufficiently large $\rho > 0$ and some ℓ_p norm ($1 \leq p \leq \infty$), using a trust-region approach

Suitable model problem: $\ell_p\mathbf{QP}$

$$\minimize_{s \in \mathbb{R}^n} (f_k) g_k^T s + \frac{1}{2} s^T B_k s + \rho \|c_k + A_k s\|_p \text{ subject to } \|s\| \leq \Delta_k$$

○ model problem always consistent
○ when ρ and Δ_k are large enough, model minimizer = SQP direction
○ when the norms are polyhedral (e.g., ℓ_1 or ℓ_∞ norms), $\ell_p\mathbf{QP}$ is equivalent to a quadratic program . . .

THE $\ell_1\mathbf{QP}$ SUBPROBLEM

$\ell_1\mathbf{QP}$ model problem with an ℓ_∞ trust region

$$\minimize_{s \in \mathbb{R}^n} g_k^T s + \frac{1}{2} s^T B_k s + \rho \|c_k + A_k s\|_1 \text{ subject to } \|s\|_\infty \leq \Delta_k$$

But

$$c_k + A_k s = u - v, \text{ where } (u, v) \geq 0$$

\implies $\ell_1\mathbf{QP}$ equivalent to quadratic program (QP):

$$\minimize_{s \in \mathbb{R}^n, u, v \in \mathbb{R}^m} g_k^T s + \frac{1}{2} s^T B_k s + \rho (e^T u + e^T v)$$

subject to $A_k s - u + v = -c_k$

$u \geq 0, \ v \geq 0$

and $-\Delta_k e \leq s \leq \Delta_k e$

○ good methods for solving QP
○ can exploit structure of u and v variables
PRACTICAL ℓ_1QP METHODS

- Cauchy point requires solution to ℓ_1LP model:
 \[
 \minimize_{s \in \mathbb{R}^n} g_k^T s + \rho \| c_k + A_k s \|_1 \text{ subject to } \| s \|_\infty \leq \Delta_k
 \]

- approximate solutions to both ℓ_1LP and ℓ_1QP subproblems suffice
- need to adjust ρ as method progresses
- easy to generalize to inequality constraints
- globally convergent, but needs second-order correction for fast asymptotic convergence
- if $c(x) = 0$ are inconsistent, converges to (locally) least value of infeasibility $\| c(x) \|$

COMPOSITE-STEP METHODS

Aim: find composite step

\[
s_k = n_k + t_k
\]

where

the **normal step** n_k moves towards feasibility of the linearized constraints (within the trust region)

\[
\| A_k n_k + c_k \| < \| c_k \|
\]

(model objective may get worse)

the **tangential step** t_k reduces the model objective function (within the trust-region) without sacrificing feasibility obtained from n_k

\[
A_k (n_k + t_k) = A_k n_k \implies A_k t_k = 0
\]
NORMAL AND TANGENTIAL STEPS

The linearized constraint

Nearest point on linearized constraint

Close to nearest point

Points on dotted line are all potential tangential steps

CONSTRAINT RELAXATION — VARDI

normal step: relax

\[
A_k s = -c_k \quad \text{and} \quad \|s\| \leq \Delta_k
\]

to

\[
A_k n = -\sigma_k c_k \quad \text{and} \quad \|n\| \leq \Delta_k
\]

where \(\sigma_k \in [0, 1] \) is small enough so that there is a feasible \(n_k \)

tangential step:

(approximate) arg min

\[
_{t \in \mathbb{R}^n} \ (g_k + B_k n_k)^T t + \frac{1}{2} t^T B_k t
\]

subject to \(A_k t = 0 \) and \(\|n_k + t\| \leq \Delta_k \)

Snags:

° choice of \(\sigma_k \)

° incompatible constraints
normal step: replace

\[A_k s = -c_k \text{ and } \| s \| \leq \Delta_k \]

by

approximately minimize \(\| A_k n + c_k \| \) subject to \(\| n \| \leq \Delta_k \)

tangential step: as in Vardi

○ use conjugate gradients to solve both subproblems
 \[\implies \text{Cauchy points in both cases} \]

○ globally convergent using \(l_2 \) merit function

○ basis of successful KNITRO package

CONSTRAINT LUMPING — CELIS–DENNIS–ТАPIA

normal step: replace

\[A_k s = -c_k \text{ and } \| s \| \leq \Delta_k \]

by

\[\| A_k n + c_k \| \leq \sigma_k \text{ and } \| n \| \leq \Delta_k \]

where \(\sigma_k \in [0, \| c_k \|] \) is large enough so that there is a feasible \(n_k \)

tangential step:

(approximate) arg min \(t \in \mathbb{R}^n \)

\[(g_k + B_k n_k)^T t + \frac{1}{2} t^T B_k t \]

subject to \(\| A_k t + A_k n_k + c_k \| \leq \sigma_k \text{ and } \| t + n_k \| \leq \Delta_k \)

Snags:

○ choice of \(\sigma_k \)

○ tangential subproblem is (NP?) hard
FILTER METHODS — FLETCHER AND LEYFFER

Rationale:

○ trust-region and linearized constraints compatible if c_k is small enough so long as $c(x) = 0$ is compatible
 \implies if trust-region subproblem incompatible, simply move closer to constraints

○ merit functions depend on arbitrary parameters
 \implies use a different mechanism to measure progress

Let $\theta = ||c(x)||$

A filter is a set of pairs $\{(\theta_k, f_k)\}$ such that no member dominates another, i.e., it does not happen that

$$\theta_i < \theta_j \text{ and } f_i < f_j$$

for any pair of filter points $i \neq j$

A FILTER WITH FOUR ENTRIES

\[
\begin{array}{c}
\text{f(x)} \\
\hline
\text{0} & 1 & 2 & 3 & 4 & \text{\theta(x)} \\
\end{array}
\]
BASIC FILTER METHOD

○ if possible find

\[s_k = \arg \min_{s \in \mathbb{R}^n} g_k^T s + \frac{1}{2} s^T B_k s \text{ subject to } A_k s = -c_k \text{ and } \|s\| \leq \Delta_k \]

otherwise, find \(s_k \):

\[\theta(x_k + s_k) \leq \theta_i \text{ for all } i \leq k \]

○ if \(x_k + s_k \) is “acceptable” for the filter, set \(x_{k+1} = x_k + s_k \) and possibly increase \(\Delta_k \) and “prune” filter

○ otherwise reduce \(\Delta_k \) and try again

In practice, far more complicated than this!