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2 Sketches of proofs for Part 2

2.1 Proof of Theorem 2.1

From Taylor’s theorem (Theorem 1.1), and using the bound

α ≤
2(β − 1)g(x)T p

γ(x)‖p‖2
2

,

we have that
f(x + αp) ≤ f(x) + αg(x)T p + 1

2
γ(x)α2‖p‖2

≤ f(x) + αg(x)T p + α(β − 1)g(x)T p

= f(x) + αβg(x)T p

2.2 Proof of Corollary 2.2

Theorem 2.1 shows that the linesearch will terminate as soon as α(l) ≤ αmax. There are two

cases to consider. Firstly, it may be that αinit satisfies the Armijo condition, in which case

αk = αinit. If not, there must be a last linesearch iteration, say the lth, for which α(l) > αmax

(if the linesearch has not already terminated). Then αk ≥ α(l+1) = τα(l) > ταmax. Combining

these two cases gives the required result.

2.3 Proof of Theorem 2.3

We shall suppose that gk 6= 0 for all k and that

lim
k→∞

fk > −∞

From the Armijo condition, we have that

fk+1 − fk ≤ αkβpT
k gk

for all k, and hence summing over the first j iterations

fj+1 − f0 ≤
j
∑

k=0

αkβpT
k gk.
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Since the left-hand side of this inequality is, by assumption, bounded below, so is the sum on

right-hand-side As this sum is composed of negative terms, we deduce that

lim
k→∞

αk|p
T
k gk| = 0.

Now define the two sets

K1 =

{

k | αinit >
2τ(β − 1)gT

k pk

γ‖pk‖
2
2

}

and

K2 =

{

k | αinit ≤
2τ(β − 1)gT

k pk

γ‖pk‖
2
2

}

,

where γ is the assumed uniform Lipschitz constant. For k ∈ K1,

αk ≥
2τ(β − 1)gT

k pk

γ‖pk‖
2
2

in which case

αkp
T
k gk ≤

2τ(β − 1)

γ

(

gT
k pk

‖pk‖

)2

< 0.

Thus

lim
k∈K1→∞

|pT
k gk|

‖pk‖2

= 0. (2.1)

For k ∈ K2,

αk ≥ αinit

in which case

lim
k∈K2→∞

|pT
k gk| = 0. (2.2)

Combining (2.1) and (2.2) gives the required result.

2.4 Proof of Theorem 2.4

Follows immediately from Theorem 2.3, since

min
(

|pT
k gk|, |p

T
k gk|/‖pk‖2

)

= ‖gk‖2 min (1, ‖gk‖2)

and thus

lim
k→∞

min
(

|pT
k gk|, |p

T
k gk|/‖pk‖2

)

= 0

implies that limk→∞ gk = 0.

2.5 Proof of Theorem 2.5

Let λmin(Bk) and λmax(Bk) be the smallest and largest eigenvalues of Bk. By assumption, there

are bounds λmin > 0 and λmax such that

λmin ≤ λmin(Bk) ≤
sT Bks

‖s‖2
≤ λmax(Bk) ≤ λmax
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and thus that

λ−1
max ≤ λ−1

max(Bk) = λmin(B
−1
k ) ≤

sT B−1
k s

‖s‖2
≤ λmax(B

−1
k ) = λ−1

min(Bk) ≤ λ−1
min

for any nonzero vector s. Thus

|pT
k gk| = |gT

k B−1
k gk| ≥ λmin(B

−1
k )‖gk‖

2
2 ≥ λ−1

max‖gk‖
2
2

In addition

‖pk‖
2
2 = gT

k B−2
k gk ≤ λmax(B

−2
k )‖gk‖

2
2 ≤ λ−2

min‖gk‖
2
2,

and hence

‖pk‖2 ≤ λ−1
min‖gk‖2

which leads to
|pT

k gk|

‖pk‖2

≥
λmin

λmax
‖gk‖2

Thus

min
(

|pT
k gk|, |p

T
k gk|/‖pk‖2

)

≥ λ−1
max‖gk‖2 min (λmin, ‖gk‖2) .

and hence

lim
k→∞

min
(

|pT
k gk|, |p

T
k gk|/‖pk‖2

)

= 0

implies, as before, that limk→∞ gk = 0.

2.6 Proof of Theorem 2.6

Consider the sequence of iterates xk, k ∈ K, whose limit is x∗. By continuity, Hk is positive

definite for all such k sufficiently large. In particular, we have that there is a k0 ≥ 0 such that

pT
k Hkpk ≥ 1

2
λmin(H∗)‖pk‖

2
2

for all k ∈ K ≥ k0, where λmin(H∗) is the smallest eigenvalue of H(x∗). We may then deduce

that

|pT
k gk| = −pT

k gk = pT
k Hkpk ≥ 1

2
λmin(H∗)‖pk‖

2
2. (2.3)

for all such k, and also that

lim
k∈K→∞

pk = 0

since Theorem 2.5 implies that at least one of the left-hand sides of (2.3) and

|pT
k gk|

‖pk‖2
= −

pT
k gk

‖pk‖2
≥ 1

2
λmin(H∗)‖pk‖2

converges to zero for such k.

From Taylor’s theorem, there is a zk between xk and xk + pk such that

f(xk + pk) = fk + pT
k gk + 1

2
pT

k H(zk)pk.

Thus, the Lipschitz continuity of H gives that

f(xk + pk) − fk − 1

2
pT

k gk = 1

2
(pT

k gk + pT
k H(zk)pk)

= 1

2
(pT

k gk + pT
k Hkpk) + 1

2
(pT

k (H(zk) − Hk)pk)

≤ 1

2
γ‖zk − xk‖2‖pk‖

2
2 ≤ 1

2
γ‖pk‖

3
2

(2.4)
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since Hkpk + gk = 0. Now pick k sufficiently large so that

γ‖pk‖2 ≤ λmin(H∗)(1 − 2β).

In this case, (2.3) and (2.4) give that

f(xk + pk) − fk ≤ 1

2
pT

k gk + 1

2
λmin(H∗)(1 − 2β)‖pk‖

2
2 ≤ 1

2
(1 − (1 − 2β))pT

k gk = βpT
k gk,

and thus that a unit stepsize satisfies the Armijo condition for all sufficiently large k ∈ K.

Now note that ‖H−1
k ‖2 ≤ 2/λmin(H∗) for all sufficiently large k ∈ K. The iteration gives

xk+1 − x∗ = xk − x∗ − H−1
k gk = xk − x∗ − H−1

k (gk − g(x∗)) = H−1
k (g(x∗) − gk − Hk(x∗ − xk)) .

But Theorem 1.3 gives that

‖g(x∗) − gk − Hk (x∗ − xk) ‖2 ≤ γ‖x∗ − xk‖
2
2.

Hence

‖xk+1 − x∗‖2 ≤ γ‖H−1
k ‖2‖x∗ − xk‖

2
2

which is (iii) when κ = 2γ/λmin(H∗) for k ∈ K. Result (ii) follows since once an iterate becomes

sufficiently close to x∗ for sufficiently large k ∈ K, this implies k + 1 ∈ K, and hence K = IN.

Thus (i) and (iii) are true for all k sufficiently large.

2.7 Conjugate Gradient methods

All of the results given here are easy to verify, and may be found in any of the books of suggested

background reading material. The fact that any pk = pi is a descent direction follows immediately

since the identity

gi−1 T di−1 = di−1 T (g + Bpi−1) = di−1 T g +
i−2
∑

j=0

αjd
i−1 T Bdj = di−1 T g

shows that if pi minimizes q(p) in Di then

pi = pi−1 −
gi−1 T di−1

di−1 T Bdi−1
di−1 = pi−1 −

gT di−1

di−1 T Bdi−1
di−1.

Thus

gT pi = gT pi−1 −
(gT di−1)2

di−1 T Bdi−1
,

from which it follows that gT pi < gT pi−1. The result then follows by induction, since

gT p1 = −
‖g‖4

2

gT Bg
< 0.
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