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Abstract. A new primal-dual algorithm is proposed for the minimization of non-convex objective functions
subject to general inequality and linear equality constraints. The method uses a primal-dual trust-region model
to ensure descent on a suitable merit function. Convergence is proved to second-order critical points from
arbitrary starting points. Numerical results are presented for general quadratic programs.

1. Introduction

In this paper, we consider algorithms for solving general (perhaps, non-convex), con-
strained, differentiable optimization problems. We shall distinguish between linear
equality constraints and general inequality constraints. We thus consider the problem

minimize f(x)
subject toAx= b
and c(x) ≥ 0,

(1)

where f is a real valued function of the variablesx ∈ IRn, A is an m× n matrix,
b is a vector of IRm, c(x) a function from IRn into IRp and the inequalities are meant
componentwise. An important instance of this problem is whenc(x) = x, in which case
the inequality constraints reduce to bound constraints. If furthermoref(x) is quadratic,
we obtain general quadratic programs, which is the framework in which we will present
numerical results. Thus throughout the paper general (nonlinear) equality constraints are
excluded. Most likely they would be best handled using augmented Lagrangian terms
or one of the alternative penalty function terms designed for equality constraints.

At variance with our previous paper for the casec(x) = x, (Conn, Gould and Toint,
1999), we shall assume that we have a strictly feasible starting pointx0, i.e. strictly with
respect to the inequalities. Thus we require that
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AS.1 There is anx0 such thatAx0 = b andc(x0) > 0.

We do this for a number of reasons. In our experience, good primal-dual methods applied
to the pure feasibility (phase-1) problem, when the only general nonlinear constraints
are bound constraints, are usually very effective. Either a point satisfying AS.1 is rapidly
determined in this case, or when this is not so, this is because the feasible region is small
and thus the resulting point is close to its optimal value – of course, AS.1 may not hold,
either because there is no feasible point, which will be detected by the phase-1 algorithm,
or the feasible region has no relative interior, in which case it is sometimes possible to
remove one or more offending constraints. More importantly, knowing a strictly feasible
point leads to considerable simplifications over our previous algorithm. Indeed, most of
the complications were due to the need to balance feasibility and objective improvement.
Furthermore, by staying on the manifoldAs= 0, it is easier to ensure that the natural
curvature of the problem (that is, the projected Hessian in the corresponding null-space)
is reflected in the direction-finding subproblems.

Besides covering general nonlinear inequality constraints instead of simply bounds
on the variables, this paper differs from its predecessor in another, significant way. The
algorithm considered in our previous paper is of the linesearch variety. That is, a search
direction is computed from the current estimate of the solution, and a suitable step then
taken along this direction with the aim of reducing a merit function. The approach we
consider here is an iterative trust-region method, in which the computation of search
direction and step are combined. While in practice the two approaches often behave
very similarly, a trust-region algorithm combines simplicity with strong convergence
properties. In particular, trust-region methods can often be shown to be convergent to
second-order critical points. It is these convergence guarantees that we find particularly
attractive for non-convex problems.

Readers of our previous paper will also notice that we shall make a stronger distinc-
tion between the “outer” iteration, in which the parameters which define the particular
merit function used are changed, and the “inner” iteration, in which a trust-region method
is used to approximately minimize the merit function for a particular choice of the para-
meters. The distinction we use here makes it easier to distinguish the convergence of
the inner iterates from the overall convergence of the method.

Not surprisingly, given the success of primal-dual interior point methods in linear
programming, there has been considerable interest in extending such approaches to
the general nonlinear case. However, the non-convex problem is considerably more
difficult. A good discussion of some of the issues that arise in the non-convex case is
given in Wright (1992, Sect. 3.4). We mention here some of the more recent work.
Because of the increased complexity, details are important. In particular, the role of
the merit function, treatment of indefinite Hessians and the implementation are criti-
cal. Yamashita, Yabe and Tanabe (1997), use a trust-region method with exact second
derivatives. Equality constraints are handled via anl1 penalty and simple bounds by
means of a log-barrier. Inequalities are converted to equalities with slack/surplus vari-
ables. They motivate taking a trust-region approach by the need to handle indefinite
Lagrangian Hessians. By contrast, Forsgren and Gill (1998) take a linesearch approach
that uses a classical quadratic penalty and log-barrier term to handle general equality and
inequality constraints respectively, but augmented by terms that measure the proximity
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to the central path. Directions of negative curvature are determined via inertia con-
trolling symmetric indefinite factorizations. Bakry, Tapia, Tsuchiya and Zhang (1996)
use a linesearch framework and handle inequalities with slack/surplus variables. Their
computational results are given with a merit function that is thel2 norm of the residual
for the first-order necessary conditions. Because of the tendency of this approach to
converge to critical points that are not minima, Vanderbei and Shanno (1997) prefer
using a merit function that handles the equality constraints as quadratic penalties and
the slacks as barrier terms. Their context is also that of a linesearch, and indefiniteness
is handled by modified Hessians. Gay, Overton and Wright (1998) also use a linesearch
and handle indefiniteness using modified Hessians. Their merit function is a classical
barrier function with an augmented Lagrangian to handle general equality constraints.
In addition they use a watchdog technique. Finally, Byrd, Hribar and Nocedal (1997) use
a sequential quadratic programming trust-region approach and a barrier function. Es-
sentially, inequality constraints are transformed to equality constraints that are handled
explicitly and the slacks are incorporated into the merit function as log-barrier terms.
This problem is solved approximately (using multipliers corresponding to a shifted
(augmented) Lagrangian plus the barrier function) with a merit function corresponding
to a threshold on anl∞ norm of the residual of the first order optimality conditions.
This in turn is solved by means of an SQP method and the Byrd-Omojokun trust-region
approach. Both primal and primal-dual versions are proposed.

2. Notation and assumptions

2.1. Basic notation and assumptions on the problem

Let P = {x | c(x) ≥ 0} be the set of points satisfying the inequality constraints,
L = {x | Ax= b} be the set of points satisfying the linear equality constraints, and so the

intersectionF
def= P ∩L is the set of feasible points. Also let strict{·} denote the strictly

feasible set with respect to its argument, which means that strict{P} = {x | c(x) > 0}.
If we denote the Euclidean inner product by〈·, ·〉 and letebe the vector of all ones, we
shall assume that

AS.2 the functionsf(·) andc(·) are twice continuously differentiable in their
argument over some open set containingF ,

AS.3 the matrixA has full rank, and

AS.4 the function f(x) − µ〈e, log(c(x))〉 is bounded below onF for every
µ > 0.

Assumption AS.2 (along with the later assumption AS.5 simply ensures thatf(x)
is well behaved in the region of interest. Since under AS.1, the constraintsAx = b
are consistent, AS.3 may be guaranteed by preprocessing the rows ofA to remove
redundancies (although we do not pretend that this is necessarily an easy task in practice).
Assumption AS.4 might at first seem strong, but it is intended merely to rule out
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functions which grow more slowly at infinity than the log function. For such functions,
the logarithmic barrier approach we consider in this paper is unlikely to succeed as the
global minimizer of the barrier function is unbounded. In practice AS.4 can be expected
to rule out few problems of interest.

In what follows, thei -th component of a vectorx is denoted by[x]i . We denote
the diagonal matrix whosei -th diagonal is thei -th component of the vectorc(x),
ci (x) = [c(x)]i , by C(x). Then by n identity matrix is diag(e) = I , and itsi -th column
is ei . The vectorgk will be shorthand forg(xk), whereg(x) denotes the gradient of the
objective function atx, ∇x f(x). We let the columns of then by n − m matrix N be
an orthonormal basis for the nullspace ofA (so AN = 0 andNT N = I ). Finally, any
continuous functionω : IR+ → IR+ is a said to be aforcing function ifω(µ) = 0 if and
only if µ = 0.

We denote the smallest and largest eigenvalues of the symmetric matrixM byλmin[M]
andλmax[M]. Such a matrix is said to besecond-order sufficient(with respect toA) if and
only if the reduced matrixNT MN is positive definite (see, for instance, Gould, 1985).

2.2. Norms

Because proper scaling is crucial in our algorithm, we need to consider a number of
different norms whose purpose is to reflect the geometry of the problem. The first is
simply the Euclideaǹ2 norm, which we shall denote by the symbol‖ ·‖. For this norm,
we have the relationship

‖X‖ = max
i

∣∣[x]i ∣∣ ≤ ‖x‖, (2)

for any vectorx. If S is a symmetric positive definite matrix, our second norm is theS
norm ofx, ‖x‖S, for which‖x‖2S= 〈x, Sx〉.

It what follows, we shall choose to measure gradients and related quantities in
a seminorm induced by a second-order sufficient iteration-dependent scaling matrixMk,
wherek is the index of the current iteration of our algorithm. We define thek-seminorm
of a vectorg, ‖g‖[k], by

‖g‖2[k] def= 〈y, g〉, (3)

wherey solves the system (
Mk AT

A 0

)(
y
z

)
=
(

g
0

)
.

This is actually a norm on the nullspace ofA if g lies in this nullspace, and measures
deviations from its range-space. In particular‖g‖[k] = 0 if and only if‖NT g‖ = 0. It is
easy to show that (3) may be expressed as

‖g‖[k] = ‖NT g‖(NT MkN)−1. (4)

In addition, because the gradients can be interpreted as linear forms on the space
of the problem variables, it is natural to measure quantities directly involving these
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variables, such as the size of the trust region, in a seminorm corresponding to the dual
of ‖ · ‖[k] in the nullspace ofA. It is easy to verify that such a seminorm is given by
‖s‖k def= ‖NT s‖NT MkN, and is, in fact, a norm in the nullspace ofA. As a consequence,
for all v, s ∈ IRn such thatAs= 0, i.e. such thats= NNT s, we have that

|〈v, s〉| = ∣∣〈(NT MkN
)− 1

2 NTv,
(
NT MkN

) 1
2 NTs

〉∣∣ ≤ ‖v‖[k]‖s‖k, (5)

because of the Cauchy-Schwarz inequality. We stress that there is no need forMk itself
to be positive definite, merely thatNT MkN should be. IfU is any symmetric matrix,
we also define the reduced matrix

R[U,Mk] def= (
NT MkN

)− 1
2 NTUN

(
NT MkN

)− 1
2 ,

its smallest eigenvalueλmin
Mk
[U] = λmin [ R[U,Mk]] and

‖U‖{k} def= ‖R[U,Mk]‖.
We note that, again because of the Cauchy-Schwarz inequality,

|〈s,Us〉| = ∣∣〈(NT Mk N
) 1

2 NTs, R[U,Mk]
(
NT MkN

) 1
2 NTs

〉∣∣ ≤ ‖U‖{k}‖s‖2k (6)

for everys such thatAs= 0. We also note that the inertia ofR[U,Mk] andR[U, I ] ≡
NTUN are the same. In particular, we have that

λmin
Mk
[U] ≥ 0 is equivalent toλmin

I [U] ≥ 0. (7)

We finally write‖v‖� def= ‖NTv‖ = ‖NNTv‖, the Euclidean norm of the projection of
v onto the nullspace ofA, and observe that‖ · ‖� is a self-dual norm in this nullspace.

3. The algorithm

Our algorithm is basically a sequential minimization of a logarithmic barrier function
subject to linear constraints, i.e. we propose to (approximately) solve

minimize φ(x, µk)

subject toAx= b,
(8)

where

φ(x, µk) = f(x)− µk〈e, log((c(x))〉, (9)

for a sequence of barrier parametersµk > 0, k = 1,2, . . . , whose limiting value is
zero. An approximate minimizer of problem (8),xk+1, defines anouter iterate, and the
associated adjustment of the barrier parameter and other tolerances defines theouter
iteration. Outer iterations will be indexed by the subscriptk ≥ 0. Each outer iterate
xk+1 is computed by using an appropriateinner iterationalgorithm to approximately
solve (8), with a corresponding sequence ofinner iterates{xk, j }. We now consider the
inner and outer iterations in turn.
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3.1. The inner iteration

We start by examining the inner iteration, whose purpose is to approximately solve (8)
for a given valueµk > 0. The idea behind the algorithm we propose for this purpose
is simply to apply a standard Newton-like trust-region method with the restriction that
the iterates lie in the nullspace ofA. At iteration(k, j), such a method would typically
attempt to decrease the value of a quadratic model of the log-barrier function of the form

mk, j (xk, j + s) = f(xk, j )+ 〈gk, j , s〉 + 1
2〈s, Hk, j s〉

−µk〈e, log(c(xk, j ))〉 − µk
〈
JT
k, j C

−1
k, j e, s

〉
+ 1

2µk
〈
s, JT

k, j C
−2
k, j Jk, j s

〉− 1
2µk

p∑
i=1

1

ci (xk, j )
〈s,∇xxQi,k, j s〉,

(10)

within a trust region, where the first three terms constitute a quadratic model of the
objective functionf with Hk, j being an approximation of∇xx f(xk, j ), where we write
Jk, j = J(xk, j ), Ck, j = C(xk, j ) and whereQi,k, j approximates∇xxci (xk, j ). However,
when applying this method in practice, one often notices that convergence of the iterates
xk, j slows down considerably whenever they happen to be close to the boundary ofP .
This is because the singularity of the logarithm then plays a dominant role, which means
that quadratic models of the log-barrier function, while very adequate locally, do not fit
the barrier function well. One way of alleviating this numerical problem is to abandon
the analytic expression for the local second-order behaviour of the barrier term and to
replace it by a term whose growth would be, we hope, less dominant. In primal-dual
methods, we choose to replace

Hk, j + µk JT
k, j C

−2
k, j Jk, j −

p∑
i=1

µk

ci (xk, j )
Qi,k, j by Hk, j + Bk, j −

p∑
i=1

[zk, j ]i Qi,k, j ,

where

Bk, j
def= JT

k, j C
−1
k, j Zk, j Jk, j (11)

for some bounded positive diagonal matrixZk, j . In other words, we consider the model

mk, j (xk, j + s) = f(xk, j )+ 〈gk, j , s〉 + 1
2〈s, Hk, j s〉

−µk〈e, log(c(xk, j ))〉 − µk
〈
JT
k, j C

−1
k, j e, s

〉
+ 1

2〈s, Bk, j s〉 − 1
2

p∑
i=1

[zk, j ]i 〈s,Qi,k, j s〉

instead of (10). Defining

Gk, j
def= Hk, j −

p∑
i=1

[zk, j ]i Qi,k, j , (12)

we obtain that our model has the form

mk, j (xk, j + s) = φ(xk, j , µk)+
〈
gk, j − µk JT

k, j C
−1
k, j , s

〉 + 1
2〈s, [Gk, j + Bk, j ]s〉. (13)
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Note thatGk, j is an approximation of the Hessian of the Lagrangian function

ψ(x, z) = f(x)− 〈z, c(x)〉
at (xk, j , zk, j ) with respect tox, that isGk, j ≈ ∇xxψ(xk, j , zk, j ).

Interestingly, as is well-known, there is another way to motivate this modification
of the barrier model’s Hessian, using a perturbation argument. Consider the first-order
necessary conditions for the problem of minimizing the model of the objective function
on the feasible set, namely

g(x)+ AT y− J(x)Tz= 0, Ax= b, C(x)z= 0, c(x) ≥ 0, z≥ 0, (14)

wherez is the vector of dual variables (Lagrange multipliers) for the inequality con-
straints andy is the vector of Lagrange multipliers associated with the equality con-
straints. The third equation of (14) is known as the problem’scomplementarity condition.
Notice that it expresses a true combinatorial requirement: “if a constraint is non-zero,
then its corresponding dual variable must be zero” and vice-versa. As combinatorial
conditions may be very hard to satisfy, especially for large problems, we perturb them.
Introducing a small perturbation parameterµ > 0, we then write

g(x)+ AT y− J(x)Tz= 0, Ax= b, C(x)z= µe, c(x) ≥ 0, z≥ 0.

Newton’s equation for this system of nonlinear equations at some inner iterate(xk, j, zk, j )

and for some valueµk of the perturbation parameter are

Gk, j1xk, j + AT yk, j+1− JT
k, j1zk, j = −gk, j + zk, j ,

A1xk, j = 0

Ck, j1zk, j + Zk, j Jk, j1xk, j = µke−Ck, j Zk, j e,

(15)

whereZk, j = diag([zk, j ]1, . . . , [zk, j ]n) and where we have writtenyk, j+1 = yk, j +
1yk, j . Ignoring the non-negativity conditions and eliminating1zk, j in (15), we obtain
the system (

Gk, j + Bk, j AT

A 0

)(
1xk, j
yk, j+1

)
= −

(
gk, j − µk JT

k, j C
−1
k, j e

0

)
(16)

and

1zk, j = −zk, j −C−1
k, j Zk, j Jk, j1xk, j + µkC−1

k, j e. (17)

We then note that the first component of right-hand side of this relation is nothing but the
negative gradient of the log-barrier function,−∇xφ(x, µk). Moreover, these equations
are precisely the first-order optimality conditions for the problem of minimizing the
model (13), subject to the constraintsA1xk, j = 0. Hence1xk, j may be interpreted as
a constrained Newton-type step forφ(x, µk). This is exactly what we proposed above,
and we would like to emphasize that we now interpretzk, j as the vector of dual variables.

We may therefore wish to compute the step from (16)–(17), but some additional
precautions are necessary. Note that (16) fully defines1xk, j , andyk, j+1 provided AS.3
holds and the matrixGk, j + Bk, j is nonsingular on the nullspace ofA. This is obviously
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the case iff(x) is strictly convex, but may not be true in general. More significantly,
(16) is inappropriate ifGk, j + Bk, j is not second-order sufficient, as then1xk, j at best
defines a saddle point for the model. Thus the model should either be modified, as we
proposed for the case of bound constraints in a previous paper (Conn et al., 1999), or
restricted by a trust-region constraint, as we propose here. Observe also that, if1xk, j

is well defined,1zk, j is in turn well defined by (17). Of course, there is no automatic
guarantee that(c(xk, j +1xk, j ), zk, j +1zk, j ) > 0 so we would need to be careful before
allowing such a step. Moreover, the fact thatb(x, µk) = µk〈e, log(c(x))〉 is undefined
whereverx does not belong to strict{P} creates a difficulty, for nothing in the above
derivation prevents from predicting a step1xk, j such thatxk, j +1xk, j 6∈ strict{P}. The
valueb(xk, j +1xk, j , µk), and thereforeφ(xk, j +1xk, j , µk), are then undefined, and
the algorithm breaks down. Fortunately, such undesirable algorithmic behaviour can be
circumvented quite simply. The idea is to observe that, ifxk, j +1xk, j lies outsideP ,
this is merely an indication that the modelmk, j does not approximate the objective
φ(xk, j + s, µk) very well. In particular, this indicates that a smaller step fromxk, j

(which must lie insideP) is necessary. A simple technique is to restrict the trust-region
radius enough to ensure thatxk, j +1xk, j ∈ strict{P}, which must occur when1k, j is
small enough to enforce that

Bk, j
def= {xk, j + s ∈ IRn | As= 0 and ‖s‖k, j ≤ 1k, j } ⊂ strict{P}.

The crucial point is that this restriction may be decided without even trying to compute
the (undefined) function value atxk, j + sk, j , therefore avoiding the situation where the
algorithm breaks down. Thus iterationj is viewed as unsuccessful and1k, j is reduced
wheneverxk, j +1xk, j falls in the region where the barrier function is undefined. If this
is not the case, the trial stepsk, j = 1xk, j is acceptable.

It is important to notice that we are prepared to solve the trust-region subproblem

minimize mk, j (xk, j + s)
subject toAs= 0
and ‖s‖k, j ≤ 1k, j ,

(18)

only approximately, in that we merely aim to improvemk, j (xk, j + s) while satisfying
the remaining constraints. In particular, there is no evidence in general that finding
an accurate solution is especially beneficial. Thus, we may be satisfied to find an
approximation which guarantees convergence, knowing that any extra effort may be
expended when necessary. To this end, we assume that the stepsk, j is chosen so that

mk, j (xk, j + sk, j ) ≤ mk, j (xk, j )

− θmax

{
‖∇xφ(xk, j , µk)‖[k, j ]min

[‖∇xφ(xk, j , µk)‖[k, j ]
βk, j

,1k, j

]
, (19)

− τk, j min
[
τ2

k, j ,1
2
k, j

]}
whereθ ∈ (0, 1

2),

βk, j = 1+ ‖Gk, j + Bk, j ‖{k, j } and τk, j = λmin
Mk, j
[Gk, j + Bk, j ]. (20)
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This assumption is usual in trust-region methods. Becauseβk, j gives a bound on
the curvature of the quadratic model, in the reduced space and scaled, the first term in
the maximum guarantees that the model reduction is at least a fraction of that obtained
at the Cauchy point, while the second term ensures that negative curvature is exploited
when present. Projected conjugate-gradient/Lanczos-like methods are able to produce
such a step at a reasonable cost (see Gould, Lucidi, Roma and Toint, 1999).

The actual choice of norm in the second constraint of (18) is important. We believe
that the norm defining the trust-region shape should reflect the underlying geometry
of the problem, and the freedom of choice of the matrixMk, j defining this norm
will allow us to capture this geometry. A natural choice in this context is to choose
Mk, j = ∇xxmk, j (xk, j ) = Gk, j + Bk, j . However, this matrix may not be second-order
sufficient, in which case we may have to modifyGk, j to ensure this property (remember
that, by definition,Bk, j is positive semidefinite). To reflect this possible modification,
we define

Mk, j = Wk, j + Bk, j , (21)

where, for instance,Wk, j = Gk, j wheneverGk, j + Bk, j is second-order sufficient.
The algorithm that we propose for the inner iterations is presented as Algorithm 3.1.

Algorithm 3.1: Inner iteration

Step 0: Initialization. An initial pointxk,0 ∈ strict{P} ∩ L, a vectorzk,0 > 0 of dual variables and an
initial trust-region radius1k,0 are given. The constantsςk, η1, η2, γ1, andγ2 are also given and
satisfy the conditions 0< ςk < 1, 0< η1 ≤ η2 < 1 and 0< γ1 ≤ γ2 < 1. Computef(xk,0) and
c(xk,0) (if not already known) and setj = 0.

Step 1: Model definition. Choose the scaling matrixMk, j according to (21) and define, inBk, j , a model
mk, j of φ(xk, j + s,µk) which is of the form (13).

Step 2: Step calculation. Compute a stepsk, j such thatxk, j + sk, j ∈ Bk, j and such that it sufficiently
reduces the modelmk, j in the sense of (19).

Step 3: Acceptance of the trial point. If

c(xk, j + sk, j ) ≥ ςkc(xk, j ), (22)

computeφ(xk, j + sk, j , µk) and define the ratio

ρk, j =
φ(xk, j , µk)− φ(xk, j + sk, j , µk)

mk, j (xk, j )−mk, j (xk, j + sk, j )
;

else setρk, j = −∞. Then ifρk, j ≥ η1, definexk, j+1 = xk, j + sk, j ; otherwise definexk, j+1 =
xk, j .

Step 4: Trust-region radius update. Set

1k, j+1 ∈
 [1k, j ,∞) if ρk, j ≥ η2,
[γ21k, j ,1k, j ] if ρk, j ∈ [η1, η2),
[γ11k, j , γ21k, j ] if ρk, j < η1.

Step 5: Update the dual variables. Definezk, j+1 > 0. Incrementj by one and go to Step 1.



224 Andrew R. Conn et al.

The only differences between this algorithm and a standard trust-region method,
besides the fact that the objective function is nowφ(x, µk) instead of f(x) and we are
accounting for the linear equality constraints by working in the corresponding reduced
space, are the requirement that the initial point must lie inL and the interior ofP and the
fact that an iterate is rejected if (22) does not hold. We have intentionally not specified
how the parameterςk is chosen for each inner minimization. This parameter specifies the
minimum relative value of the inequality constraints which is acceptable in the course
of the current minimization. The fact that it is not fixed but may itself tend to zero as
k increases makes fast asymptotic convergence of the outer iterates possible, but we
do not discuss this question in detail. Also note that the possibility of choosing1k, j+1
as large as one wishes on successful iterations may be important in practice, because
it allows the trust-region radius to return to a reasonable value as soon as a successful
step is made, instead of being constrained to remain of the order of magnitude of the
distance ofxk, j to the boundary ofP .

Iterations at whichρk, j ≥ η1, and thus the current iterate is redefined, are called
successful. We denote byS the set consisting of the indices of all successful iterations.

3.2. The outer iteration

After describing the mechanism of the inner iterations for finding an approximate
minimizer of (8), we now consider the outer iteration to solve (1), which we formally
state as Algorithm 3.2.

Algorithm 3.2: Outer iteration

Step 0: Initialization. An initial pointx0 > 0 that satisfiesAxk = b, a vector of initial dual variables
z0 > 0 and an initial barrier parameterµ0 > 0 are given. The forcing functionsεC(µ), εD(µ) and
εE(µ) are also given. Setk = 0.

Step 1: Inner minimization. Choose a valueςk∈ (0,1). Minimize the log-barrier functionφ(x, µk) =
f(x)−µk〈e, log(c(x))〉 starting fromxk. Stop this inner algorithm as soon as an iterate(xk, j , zk, j ) =
(xk+1, zk+1) is found such that

Axk+1 = b (23)

(c(xk+1), zk+1) > 0 (24)

‖C(xk+1)Zk+1− µkI‖ ≤ εC(µk) (25)∥∥gk+1 − JT
k+1zk+1

∥∥[k+1] ≤ εD(µk) and (26)

λmin
Mk+1

[
Gk+1 + Bk+1

] ≥ −εE(µk), (27)

whereMk+1 = Mk, j . Incrementk by one, and repeat Step 1.

Our intention is to find a point which satisfies (23)–(27) by applying Algorithm 3.1 to
approximately solve (8), assuming for now that it converges to a second-order critical
point, that is a point at which first- and second-order necessary optimality hold, for this
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subproblem. For, ifxk,∗ were such a point, the conditions

Axk,∗ = b (28)

c(xk,∗) > 0 (29)

NT∇xφ(xk,∗, µk) ≡ NT
(
g(xk,∗)− µk J(xk,∗)TC(xk,∗)−1e

) = 0 and (30)

λmin
[
NT∇xxφ(xk,∗, µk)N

] ≥ 0 (31)

must occur. On defining

zk,∗ = µkC(xk,∗)−1e> 0, (32)

we see from (30) that

NT(g(xk,∗)− J(xk,∗)Tzk,∗
) = 0,

and by definition

C(xk,∗)Zk,∗ − µk I = 0.

Moreover

∇xxφ(xk,∗, µk) = ∇xx f(xk,∗)+ µk J(xk,∗)TC(xk,∗)−2J(xk,∗)

− µk

p∑
i=1

1

ci (xk,∗)
∇xxci (xk,∗)

and thus, taking (32) into account and assuming that the matrixGk converges to
∇xxψ(xk,∗, zk,∗), we see thatGk + Bk converges to∇xxφ(xk,∗, µk). Combining these
conclusions, we therefore obtain that any inner iterate sufficiently close toxk,∗ provides
a suitable terminating value satisfying (23)–(27).

We should also add a comment on the terminating condition (27). The aim here
is to ensure that second-order necessary conditions for the solution of (1) are implied
by requiring that similar conditions hold for (8). However, one naturally expects that
second-order conditions for (8) would involve the matrix

NT∇xxφ(xk, µk)N (33)

not

NT (Gk + Bk
)

N. (34)

The reason we base our terminating condition (27) on (34) rather than (33) is simply
that Algorithm 3.1 uses this matrix rather than (33) at its core – spectral information
will thus be conveniently available for (34) but not for (33). Of course (33) and (34)
coincide whenzk is defined via (32), and the two matrices can be expected to be close
whenεC(µk) in (25) is small.

The variableszk computed by the algorithm are estimates of the dual variables
associated with the inequality constraints at a solution of (1). The particular choice (32)
is appropriate at a critical point of (8), while it is less suitable away from such a critical
point. As we shall see, there are better choices in this latter case.
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The seminorm used in (26) is the appropriate measure of convergence of the gradient
since, as we mentioned above, the trust region is defined in the dual to this seminorm in
the nullspace ofA, ‖ · ‖k+1. At first sight, we may question whether it is reasonable to
expect global convergence properties of both the inner and outer algorithms if we use
the scaled norms. The question arises because the matricesMk+1 blow up when, as is
highly likely, the iterates approach the boundary of the feasible set. It is fortunate that
global convergence to critical points may still be proved with the scaled formulations,
as we will shortly see.

4. Convergence theory

In this section, we consider the convergence of Algorithm 3.2, where we intend to use
the inner-iteration Algorithm 3.1 to calculate each of the iterates.

4.1. Further assumptions

AS.5 The iterates generated by the algorithm remain in some region� over

which the Hessian,∇xx f(x), of f(x), as well as the JacobianJ(x)
def=

∇xc(x) and each of the Hessians∇xxci (x) are uniformly bounded in
Euclidean norm.

As we already mentioned in the introduction, assumption AS.5 is required to ensure that
the functions of the problem are well behaved in the region of interest.

In addition, in order to prove the desired results, we must state our assumptions on
the dual variables and on the matrixGk, j .

AS.6 For eachk ≥ 0, there exists a constantκzi(k) > 0 such that, for allj ≥ 0
and alli = 1, . . . , p,

[zk, j ]i ≤ κzi(k)max
[

1

ci (xk, j )
,1
]
.

AS.7 the approximate Hessian of the Lagrangian remains bounded, i.e.

‖Gk, j ‖{k, j } ≤ κG

for all k, j ≥ 0, and for someκG > 0,

Note that, because of AS.2, AS.5 and AS.6, AS.7 is automatically satisfied if the
appropriate exact values are chosen forHk, j andQi,k, j . We finally state the assumptions
on the scaling matrices and require that

AS.8 there existsεM ∈ (0,1) andκW > 0 such that, for allk and all j , the
scaling matrixMk, j = Wk, j + Bk, j and its componentWk, j satisfy

λmin
[
NT Mk, j N

] ≥ εM (35)

and ∥∥NT Wk, j N
∥∥ ≤ κW. (36)
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As a consequence of the first part of this last assumption, we note that

‖U‖{k, j } =
∥∥(NT Mk, j N

)− 1
2 NTUN

(
NT Mk, j N

)− 1
2
∥∥ ≤ 1

εM
‖U‖ (37)

for every symmetric matrixU.

4.2. Convergence of the inner iteration

We first prove that conditions (23)–(27) will eventually be satisfied after a finite number
of iterations of Algorithm 3.1. The main idea is that we may apply a variation on
a traditional trust-region algorithm for unconstrained optimization in the subspaceL of
all vectors satisfying the linear constraints. Unless otherwise stated, we assume in this
section thatεC = εD = εE = 0.

We start our analysis by showing that, as expected, the iterates generated by Algo-
rithm 3.1 will never become infinitely close to the boundary ofP .

Lemma 1. Suppose that AS.1–AS.5 hold, and that{xk, j } is a sequence of iterates
generated by Algorithm 3.1. Then there exists a constantκb(k) ∈ (0,1) depending only
onk such that, for allj ,

min
i=1,... ,n

ci (xk, j ) ≥ κb(k), (i = 1, . . . , p).

Proof. Clearly, the level set{x ∈ P | b(x, µ) ≤ b(xk,0, µ)}, and thus ofφ(xk,0, µ),
must be bounded away from∂P . The existence ofκb(k) then results from the inequality
φ(xk, j , µk) ≤ φ(xk,0, µk)which is true for allj ≥ 0. Moreover, it can always be chosen
small enough to ensure that it belongs to(0,1).

ut
This result is crucial because it states that all arguments that use a sequence of trust-

region radii1k, j converging to zero will not be hindered by the restriction of remaining
in the interior ofP . Note that AS.6 and Lemma 1 together ensure that, for fixedk and
all i and j ,

[zk, j ]i ≤ κzi(k)

κb(k)
def= κz(k), (38)

whereκz(k) only depends onk. Also note that the first part of (20), the triangle inequality,
(37), AS.7, Lemma 1 and (38) together imply that, for allk and j ,

βk, j ≤ 1+ ‖Gk, j ‖{k, j } + ‖Bk, j ‖{k, j } ≤ 1+ κG + κz(k)κ2
J

εMκb(k)
def= κβ(k), (39)

whereκJ > 0 is the upper bound on‖J(x)‖ implied by AS.5. The bound (38) is
important because it guarantees, together with Lemma 1, that all scaled norms used
during a single inner minimization are uniformly equivalent, as we now show.
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Lemma 2. Suppose that{xk, j } is a sequence of iterates generated by Algorithm 3.1 and
that AS.1–AS.6 hold. Suppose furthermore thatMk, j satisfies AS.8. Then there exists
a constantκn(k) ≥ 1 only depending onk such that, for allj (and fixedk) the seminorms
‖ · ‖k, j and‖ · ‖[k, j ] satisfy

1

κn(k)
‖v‖k, j ≤ ‖v‖� ≤ κn(k)‖v‖k, j ,

and
1

κn(k)
‖v‖[k, j ] ≤ ‖v‖� ≤ κn(k)‖v‖[k, j ],

for all v ∈ IRn.

Proof. We start by proving the first series of inequalities. First notice that the result
obviously holds ifNTv = 0. We therefore restrict our attention to vectorsNTv 6= 0.
Suppose first that〈

NTv,
(
NT Wk, j N

)
NTv

〉 ≤ 〈NTv,
(
NT Bk, j N

)
NTv

〉
. (40)

Then, using (38), Lemma 1 and AS.5,

‖v‖2k, j = ‖NTv‖2
NT Mk, j N

= 〈NTv, NT [Wk, j + Bk, j ]NNTv
〉

≤ 2
〈
NNTv,

(
JT
k, j C

−1
k, j Zk, j Jk, j

)
NNTv

〉
≤ 2κz(k)κ2

J

κb(k)
‖NNTv‖2

= 2κz(k)κ2
J

κb(k)
‖v‖2�.

(41)

If, on the other hand, (40) does not hold, then

‖v‖2k, j =
〈
NTv, NT [Wk, j + Bk, j ]NTv

〉
≤ 2

〈
NTv,

(
NT Wk, j N

)
NTv

〉
≤ 2κW‖NTv‖2
= 2κW‖v‖2�,

(42)

because of (36). Combining (41) and (42), we obtain that

min

[
κb(k)

2κz(k)κ2
J

,
1

2κW

]
‖v‖2k, j ≤ ‖v‖2�. (43)

Turning to the other inequality for the seminorm‖ · ‖k, j , (35) implies that, for allv 6= 0,

if we letw = (NT Mk, j N)
1
2 NTv,

‖v‖2�
‖v‖2k, j

=
〈(

NT Mk, j N
)− 1

2w,
(
NT Mk, j N

)− 1
2w
〉

〈(
NT Mk, j N

) 1
2 NTv,

(
NT Mk, j N

) 1
2 NTv

〉
≤ ∥∥(NT Mk, j N

)−1∥∥
≤ 1

εM
.
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This inequality and (43) together prove the desired inequality for the‖ · ‖k, j seminorm
with

κn(k)
def=
√√√√max

[
1

εM
,

2κz(k)κ2
J

κb(k)
,2κW

]
.

The proof of the second set of inequalities in the theorem is obtained by a similar
argument involving(NT Mk, j N)−1 instead ofNT Mk, j N, since the eigenvalues of the
former are then contained in the interval[

min

[
κb(k)

2κz(k)κ2
J

,
1

2κW

]
,

1

εM

]
instead of

[
εM,max

[
2κz(k)κ2

J

κb(k)
,2κW

]]

for the latter.
ut

A last useful consequence of Lemma 1 is that there is a neighbourhoodof each iterate
xk, j whose diameter only depends onk such that (22) holds in this neighbourhood.

Lemma 3. Suppose that AS.1–AS.6 and AS.8 hold, and that{xk, j } is a sequence of iter-
ates generated by Algorithm 3.1. Then there exists a constantκx(k) ∈ (0,1) depending
only onk such that, for allj ,

ci (w) ≥ ςkci (xk, j ) (i = 1, . . . , p)

for everyw ∈ F such that

‖w− xk, j ‖k, j ≤ κx(k).

Proof. Assume, for the purpose of obtaining a contradiction that there exists some
w ∈ F , somei ∈ {1, . . . , p} and some iteratexk, j generated by Algorithm 3.1 such
that

‖w− xk, j ‖k, j ≤ (1− ςk)κb(k)

2κn(k)κJ

def= κx(k) (44)

and

ci (w) < ςkci (xk, j ) (45)

for somei ∈ {1, . . . , p}. Let v ∈ [xk, j , w] be the point in that segment which is such
that ci (v) = ςkci (xk, j ) and which is closest (in the‖ · ‖k, j seminorm) toxk, j . Note
that v must exist because of AS.2 and is unique because of AS.8. AS.2 also implies
that

ςkci (xk, j ) = ci (v) = ci (xk, j )+ 〈∇xci (ξ), v− xk, j 〉 (46)

≥ ci (xk, j )− ‖∇xci (ξ)‖[k, j ]‖v− xk, j ‖k, j (47)
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for someξ ∈ [xk, j , v], where we used (5) to deduce the last inequality. But the definition
of v and the inclusionxk, j ∈ F imply that the segment[xk, j , v] is also included inF .
Henceξ ∈ F and we may apply AS.5 and Lemma 2 to bound‖∇xci (ξ)‖[k, j ] above by
κn(k)κJ, which implies, using (47), the bound‖v− xk, j ‖k, j ≤ ‖w− xk, j ‖k, j , Lemma 1
and (44), that

0 ≥ (1− ςk)ci (xk, j )− κn(k)κJ‖v− xk, j ‖k, j
≥ (1− ςk)κb(k)− κn(k)κJ‖w− xk, j ‖k, j
≥ 1

2(1− ςk)κb(k)

> 0,

which is impossible. Hence no suchw, i and j can exist and the lemma is proved.
ut

We now consider the error between the predicted and the exact objective value at
the trial point as follows.

Theorem 1. Assume that AS.1–AS.8 hold. Assume also thatsk, j is generated as in
Algorithm 3.1 and that

1k, j ≤ κx(k) (48)

then we have that,

|φ(xk, j + sk, j , µk)−mk, j (xk, j + sk, j )| ≤ κφ(k)12
k, j . (49)

where

κφ(k)
def= 1

2κG + 1

2εM

[
κ f + µkκ

2
J

ς2
kκb(k)2

+ p
µkκc

κb(k)
+ κz(k)κ2

J

κb(k)

]
, (50)

where the constantsκ f andκc are, respectively, the upper bounds on‖∇xx f(x)‖ and
‖∇xxci (x)‖ implied by AS.5.

Proof. Taking the difference of the second-order Taylor’s expansion ofφ andmk, j and
considering absolute values yields that, for someξk, j in [xk, j , xk, j + sk, j ],

|φ(xk+ sk, µk)−mk, j (xk, j + sk, j )| = 1
2 |〈sk, j ,∇xxφ(ξk, j , µk)sk, j 〉
−〈sk, j ,∇xxmk, j (xk, j )sk, j 〉|, (51)

because of AS.2 and (13). Lemma 3, the bound‖sk, j ‖k, j ≤ 1k, j and (48) then ensure
that (22) holds and that the segment[xk, j , xk, j + sk, j ] belongs toF . Thus AS.1, AS.5
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and (37) imply, using Lemma 1, that

‖∇xxφ(ξk, j , µk)‖{k, j } ≤ ‖∇xx f(ξk, j )‖{k, j } + µk
∥∥J(ξk, j )TC(ξk, j )−2J(ξk, j )

∥∥{k, j }
+ µk

p∑
i=1

1

ci (xk, j )
‖∇xxci (ξk, j )‖{k, j }

≤ 1

εM

[
‖∇xx f(ξk, j )‖ + µk

∥∥J(ξk, j )
TC(ξk, j )

−2J(ξk, j )
∥∥

+ µk

p∑
i=1

1

ci (xk, j )
‖∇xxci (ξk, j )‖

]
≤ 1

εM

[
κ f + µkκ

2
J

ς2
kκb(k)2

+ p
µkκc

ςkκb(k)

]
def= κ1(k).

Similarly, using (38) and (13), we obtain that

‖∇xxmk, j (xk, j )‖{k, j } ≤ ‖Gk, j ‖{k, j } + ‖Bk, j ‖{k, j } ≤ κG + κz(k)κ2
J

εMκb(k)
def= κ2(k).

Thus (51) yields that

|φ(xk+ sk, µk)−mk, j (xk, j + sk, j )| ≤ 1
2 |〈sk, j ,∇xxφ(ξk, j )sk, j 〉|
+ 1

2 |〈sk, j ,∇xxmk, j (xk, j )sk, j 〉|
≤ 1

2(κ1(k)+ κ2(k))‖sk, j ‖2k, j
≤ κφ(k)12

k, j ,

(52)

as required, where we successively used AS.7, the triangle inequality, (6) and the fact
thatxk, j + sk, j ∈ Bk, j imply that‖sk, j ‖k, j ≤ 1k, j .

ut
We therefore see that the error between the objective function and the model de-

creases quadratically with the trust-region radius. The smaller this radius becomes, the
better the model approximates the objective, which intuitively guarantees that minimiz-
ing the model within a sufficiently small trust region will also decrease the objective
function, as desired.

We next show that an iteration must be successful if the current iterate is not first-
order critical and the trust-region radius is small enough.

Lemma 4. Assume that AS.1–AS.8 hold and there exists aκg > 0 such that

‖∇xφ(xk, j , µk)‖[k, j ] ≥ κg (53)

for all j and givenk. Then there is a constantκ1(k) > 0 only depending onk such that,
for all j ,

1k, j ≥ κ1(k).



232 Andrew R. Conn et al.

Proof. Assume that iteratioǹ is the first such that

1k,`+1 ≤ γ1 min

[
κx(k),

θκg(1− η2)

max[κβ(k), κφ(k)]
]
, (54)

whereθ is as in (19),κx(k) is as in Lemma 3 andκφ(k) is as in Theorem 1. But we have
from Step 4 of Algorithm 3.1 thatγ11k,` ≤ 1k,`+1, and hence that

1k,` ≤ min

[
κx(k),

θκg(1− η2)

max[κβ(k), κφ(k)]
]
. (55)

This latter inequality implies the last part of‖sk, j ‖k,` ≤ 1k,` ≤ κx(k). Lemma 3
now implies that the constraint (22) holds and therefore the value ofφ(xk,` + sk,`, µk)

is evaluated. Moreover, since the conditionsη2 ∈ (0,1) and θ ∈ (0, 1
2) imply that

θ(1− η2) < 1, we deduce from (53) and the boundβk,` ≤ κβ(k) that

1k,` <
‖∇xφ(xk,`, µk)‖[k,`]

βk,`
.

As a consequence, (19) and (53) immediately give that

m`(xk,`)−m`(xk,` + s̀ ) ≥ θ‖∇xφ(xk,`, µk)‖[k,`]min

[‖∇xφ(xk,`, µk)‖[k,`]
βk,`

,1k,`

]
= θ‖∇xφ(xk,`, µk)‖[k,`]1k,`

≥ θκg1k,`.

On the other hand, we apply Theorem 1 and deduce from this last bound and (55) that

|ρk,` − 1| = |φ(xk,` + sk,`, µk)−mk,`(xk,` + sk,`)|
|mk,`(xk,`)−mk,`(xk,` + sk,`)| ≤ κφ(k)1k,`

θκg
≤ 1− η2.

Thereforeρk,` ≥ η2 and1k,`+1 ≥ 1k,` by Step 4 of Algorithm 3.1. This contradicts
our assumption that̀ is the index of the first iteration at which (54) holds. Hence (54)
is impossible, which yields the desired conclusion with

κ1(k) = γ1 min

[
κx(k),

θκg(1− η2)

max[κβ(k), κφ(k)]
]
.

ut
The proof of the convergence of Algorithm 3.1 follows the pattern which is now

classical for trust-region methods. We first consider the case where Algorithm 3.1 has
only a finite number of successful iterates.

Lemma 5. Assume that AS.1–AS.8 hold and that there are only finitely many successful
iterates in Algorithm 3.1. Then, for a givenk

‖∇xφ(xk,`+ j , µk)‖[k,`+ j ] = ‖∇xφ(xk,`+ j , µk)‖� = 0,

for all j > 0, where` is the index of the last successful iteration.
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Proof. The mechanism of Algorithm 3.1 ensures thatxk,`+ j remains constant for all
j ≥ 0, where(k, `) is the index of the last successful inner iteration. Moreover, since all
inner iterations(k, ` + j) are unsuccessful forj > 0, Step 4 of Algorithm 3.1 implies
that1k,`+ j converges to zero whenj tends to infinity. If‖∇xφ(xk,`+ j , µk)‖[`+ j ] is
bounded away from zero, Lemma 4 implies that this is also the case for1k,`+ j , which is
impossible. The desired conclusion then follows from the fact that all‖·‖[k, j ] seminorms
are uniformly equivalent to‖ · ‖� for fixedk because of Lemma 2.

ut
If there are infinitely many successful iterations, a similar conclusion holds in the

limit, as we now verify.

Lemma 6. Assume that AS.1–AS.8 hold and that there are infinitely many successful
iterates in Algorithm 3.1. Then

lim inf
j→∞ ‖∇xφ(xk, j , µk)‖[k, j ] = lim inf

j→∞ ‖∇xφ(xk, j , µk)‖� = 0. (56)

Proof. Assume, for the purpose of deriving a contradiction, that (53) holds for allj .
Now consider a successful inner iteration(k, `). For this iteration, (19), (53), (39), the
inequalityρk,` ≥ η1 and Lemma 4 imply that

φ(xk,`, µk)− φ(xk,`+1, µk) ≥ η1[mk,`(xk,`)−mk,`(xk,` + s̀ )]
≥ θκgη1 min

[
κg

κβ(k)
, κ1(k)

]
def= δ1 > 0.

Summing over all successful iterations from 0 to`, we deduce that

φ(xk,0, µk)− φ(xk,`+1, µk) =
∑̀
j=0

′[φ(xk, j , µk)− φ(xk, j+1, µk)] ≥ σ`δ1,

where the
∑ ′ is restricted to successful iterations andσ` is the number of successful

(inner) iterations from iteration(k,0) up to iteration(k, `). Our assumption then gives
that σ` tends to plus infinity wheǹ grows, and thus we obtain thatφ(xk,`+1, µk) is
unbounded below onF , which contradicts AS.4. Thus (53) cannot hold for all`, and
the proof is concluded by using Lemma 2.

ut
This result states that at least one limit point of Algorithm 3.1 is first-order critical.

We now prove that this property holds forall such limit points.

Theorem 2. Assume that AS.1–AS.8 hold. Then

lim
j→∞‖∇xφ(xk, j , µk)‖[k, j ] = lim

j→∞‖∇xφ(xk, j , µk)‖� = 0. (57)
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Proof. Lemma 5 shows that the conclusion holds if there are only finitely many success-
ful iterations. Assume now that this is not the case, and assume, again for the purpose
of obtaining a contradiction, that there is a subsequence of successful (inner) iterates
indexed by{k, ti } such that

‖∇xφ(xk,ti , µk)‖[k,ti ] ≥ 3ε (58)

for someε > 0 and for all i . Lemma 6 then ensures the existence, for eachti , of
a successful iteration(k, p(ti )) with p(ti ) > ti and ‖∇xφ(xk,p(ti ), µk)‖[k,p(ti )] < ε.
Denotingpi = p(ti ), we thus obtain that there exists another subsequence of successful
iterates indexed by(k, pi ) such that

‖∇xφ(xk, j , µk)‖[k, j ] ≥ ε for ti ≤ j < pi and ‖∇xφ(xk,pi , µk)‖[k,pi ] < ε. (59)

We now restrict our attention to the subsequence of successful iterations whose indices
are in the set

J = {(k, j) ∈ S | ti ≤ j < pi },
whereti andpi belong to the two subsequences defined above. Using (19), the fact that
all iterations inJ are successful, (39) and (59), we deduce that for(k, j) ∈ J ,

φ(xk, j , µk)− φ(xk, j+1, µk) ≥ η1[mk, j (xk, j )−mk, j (xk, j + sk, j )] (60)

≥ θεη1 min
[

ε

κβ(k)
,1k, j

]
. (61)

But the sequence{φ(xk, j , µk)}∞j=0 is monotonically decreasing and bounded below
because of AS.4. Hence it is convergent and the left-hand side of (61) must tend to zero
when j tends to infinity. This gives that

lim
j→∞

(k, j)∈J
1k, j = 0.

As a consequence, the second term dominates in the minimum of (61) and we deduce
that, for(k, j) ∈ J and j sufficiently large,

1k, j ≤ 1

θεη1
[φ(xk, j , µk)− φ(xk, j+1, µk)].

We then obtain from this inequality, the observation that‖xk,ti −xk,pi ‖ = ‖xk,ti −xk,pi ‖�
becausexk,ti andxk,pi both belong toL, and Lemma 2 that, fori sufficiently large,

‖xk,ti − xk,pi ‖ ≤ κn(k)
pi−1∑
j=ti

′‖xk, j − xk, j+1‖k, j

≤ κn(k)
pi−1∑
j=ti

′1k, j

≤ κn(k)

θεη1
[φ(xk,ti , µk)− φ(xk,pi , µk)].
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Using AS.4 and the monotonicity of the sequence{φ(xk, j , µk)}∞j=0 again, we observe
that the right-hand side of this last inequality must converge to zero, and therefore that
‖xk,ti − xk,pi ‖ tends to zero wheni tends to infinity. We then deduce from the continuity
of ∇xφ(x, µk) and Lemma 2 that∣∣∣‖∇xφ(xk,ti , µk)‖[k,ti ] − ‖∇xφ(xk,pi , µk)‖k,pi ]

∣∣∣ ≤ ε
for i sufficiently large. Using this last bound, (58) and (59), we then have that

2ε = 3ε − ε
≤ ‖∇xφ(xk,ti , µk)‖[k,ti ] − ‖∇xφ(xk,pi , µk)‖[k,pi ]

≤
∣∣∣‖∇xφ(xk,ti , µk)‖[k,ti ] − ‖∇xφ(xk,pi , µk)‖[k,pi ]

∣∣∣
≤ ε,

which is impossible. Hence no subsequence satisfying (53) can exist and the theorem is
proved.

ut
This concludes the convergence theory for the inner algorithm, at least as far as

convergence to first-order critical points is concerned. However, the tests (23)–(27) are
based on convergence to points satisfying second-order necessary conditions. In order
to obtain the necessary results in this direction, we need to strengthen our assumptions
on the Hessian of the Lagrangian’s model and on the dual variables, as suggested in
Sect. 3.2. More specifically, we assume that,

AS.9 for all k,

lim
j→∞‖Gk, j −∇xxψ(xk, j , zk, j )‖{k, j } = 0 when lim

j→∞‖∇xφ(xk, j , µk)‖[k, j ] = 0,

AS.10 for all k,

lim
j→∞

∥∥zk, j − µkC−1
k, j e

∥∥ = 0 when lim
j→∞‖∇xφ(xk, j , µk)‖[k, j ] = 0.

Note that these two assumptions together imply that

lim
j→∞‖Gk, j −∇xx f(xk, j )+

p∑
i=1

µk

ci (xk, j )
∇xxci (xk, j )‖{k, j } = 0 (62)

when limj→∞ ‖∇xφ(xk, j , µk)‖[k, j ] = 0.
We are now in position to prove that the model is asymptotically convex, at least

along some subsequence.
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Theorem 3. Assume that AS.1–AS.10 hold. Then

lim sup
j→∞

λmin
Mk, j

[∇xxmk, j (xk, j )
] = lim sup

j→∞
λmin

Mk, j
[Gk, j + Bk, j ] ≥ 0 (63)

and

lim sup
j→∞

λmin
Mk, j

[∇xxφ(xk, j , µk)
] ≥ 0.

Proof. Assume first, for the purpose of deriving a contradiction, that there exists an
ε > 0 such that

λmin
Mk, j
[Gk, j + Bk, j ] ≤ −ε, (64)

for all j sufficiently large. Using this definition, (19) and (57), we then obtain that

mk, j (xk, j )−mk, j (xk, j + sk, j ) ≥ θεmin
[
ε2,12

k,`

] ≥ θε12
k, j (65)

for j sufficiently large and1k, j sufficiently small. We may then again consider the ratio
of predicted versus achieved reduction and deduce that, for suchj and1k, j and for some
ξk, j in [xk, j , xk, j + sk, j ] ⊂ F (where the last inclusion holds because of Lemma 3),

|ρk, j − 1| =
∣∣∣∣φ(xk, j + s̀ )−mk, j (xk, j + sk, j )

mk, j (xk, j )−mk, j (xk, j + sk, j )

∣∣∣∣
≤ 1

θε12
k, j

[
|〈sk, j ,∇xxφ(ξk, j , µk)sk, j 〉 − 〈sk, j , (Gk, j + Bk, j )sk, j 〉|

]
≤ 1

θε
‖∇xxφ(ξk, j , µk)− Gk, j − Bk, j ‖{k, j },

(66)

where we have used (10), (13), (6) and the bound‖sk, j ‖k, j ≤ 1k, j . In order to derive an
upper bound on the last right-hand side of this last inequality, we first note that, because
of Theorem 2 and AS.10,

lim
j→∞

∥∥zk, j − µkC−1
k, j e

∥∥ = 0. (67)

Morever,

‖ξk, j − xk, j ‖k, j ≤ ‖sk, j ‖k, j ≤ 1k, j

and we therefore obtain, using (67), that

lim
1k, j→0

j→∞

∥∥µk J(ξk, j )
TC(ξk, j )

−2J(ξk, j ) − Bk, j
∥∥{k, j }

= lim
1k, j→0

j→∞

∥∥µk J(ξk, j )
TC(ξk, j )

−2J(ξk, j ) − J(xk, j )
TC(xk, j )

−1Zk, j J(xk, j )
∥∥{k, j }

= µk lim
1k, j→0

j→∞

∥∥J(ξk, j )
TC(ξk, j )

−2J(ξk, j ) − J(xk, j )
TC(xk, j )

−2J(xk, j )
∥∥{k, j }

= 0 (68)
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and also that

lim
1k, j→0

‖∇xx f(ξk, j )−
p∑

i=1

µk

ci (ξk, j )
∇xxci (ξk, j )

−∇xx f(xk, j )+
p∑

i=1

µk

ci (xk, j )
∇xxci (xk, j )‖{k, j } = 0. (69)

Now observe that for anyv inRn,

‖∇xxφ(v,µk)− Gk, j − Bk, j ‖{k, j }

≤ ‖∇xx f(v) −
p∑

i=1

µk

ci (v)
∇xxci (v)

− ∇xx f(xk, j )+
p∑

i=1

µk

ci (xk, j )
∇xxci (xk, j )‖{k, j }

+ ‖∇xx f(xk, j )−
p∑

i=1

µk

ci (xk, j )
∇xxci (xk, j )− Gk, j ‖{k, j } (70)

+ ‖µk J(v)TC(v)−2 J(v) − Bk, j ‖{k, j }
using the definition of the Hessian of the logarithmic barrier function, (11), (12) and
the triangle inequality. Substituting now (62), (68) and (69) in this last inequality with
v = ξk, j , we obtain that

lim
1k, j→0

j→∞

‖∇xxφ(ξk, j , µk)− Gk, j − Bk, j ‖{k, j } = 0 (71)

and thus the last right-hand side of (66) is arbitrarily small whenj is sufficiently large
and1k, j sufficiently small. Thusρk, j ≥ η2 for such j and1k, j . Hence there must exist
a δ1 ∈ (0, ε] and a j0 > 0 such that

ρk, j ≥ η2 for all j ≥ j0 such that1k, j ≤ δ1. (72)

Therefore, each iteration such that this condition hold ensures that1k, j+1 ≥ 1k, j by
Algorithm 3.1. This in turn implies that, forj ≥ 0,

1k, j0+ j ≥ min[γ1δ1,1k, j0] def= δ2. (73)

Combining (65) and this lower bound, we obtain that

φ(xk, j0+ j , µk)− φ(xk, j0+ j+1, µk) ≥ η1θεδ
2
2 > 0. (74)

whenever iterationj0 + j is successful. If there are only finitely many successful
iterations, the mechanism of the algorithm implies that the trust-region radius converges
to zero, which is impossible because of (73). Hence there must be an infinite number
of successful iterations. But (74) now contradicts AS.4. Hence our assumption (64)
must be false and (63) is proved. The second inequality in the theorem’s statement then
immediately results from (11), (70) withv = xk, j , (62), Theorem 2 and (67).

ut
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We conclude our analysis of Algorithm 3.1 by returning to the case where the
stopping tolerancesεC, εD andεE are positive instead of being zero, and show that the
stopping conditions of Algorithm 3.1 will eventually be satisfied.

Theorem 4. Assume that AS.1–AS.10 hold and that

εC > 0, εD > 0 and εE > 0.

Then conditions (25)–(27) hold after a finite number of iterations of Algorithm 3.1.

Proof. Theorems 2 and AS.10 together imply that

‖∇xφ(xk, j , µk)‖[k, j ] → 0 and Ck, j zk, j − µke→ 0

when j tends to infinity. As a consequence (25) and (26) both hold after finitely many
iterations. Theorem 3 then guarantees that (27) will also be satisfied eventually, which
concludes the proof.

ut
We note that Theorem 3 does not assume that the sequence of iterates of Algo-

rithm 3.1 converges, or even that it has limit points. If this additional assumption is
made, then the result may be extended to show that all these limit points satisfy second-
order necessary conditions for optimality.

4.3. Updating the vector of dual variables

We now indicate how the dual variableszk, j+1 may be updated in practice at Step 5 of
the primal-dual barrier algorithm, while ensuring AS.6 and AS.10. A simple idea is to
use the value predicted in the middle part of the Newton equations (15), which is

zk, j+1 = zk, j +1zk, j = µkC−1
k, j e−C−1

k, j Zk, j Jk, j sk, j . (75)

However, there is no guarantee that the choicezk, j+1 = zk, j+1 maintains feasibility of
the dual variables (zk, j+1 ≥ 0), nor that it satisfies AS.6 or AS.10. We thus need to
safeguard it, which can be achieved by projecting (componentwise) the value (75) into
the interval

I =
[
κzl min

(
e, zk, j , µkC−1

k, j+1e
)
,max

(
κzue, zk, j , κzuµ

−1
k e, κzuµkC−1

k, j+1e
)]
, (76)

whereκzl andκzu are constants such that

0< κzl < 1< κzu. (77)

This is to say that

zk, j+1 =
{

PI [zk, j+1] if xk, j+1 = xk, j + sk, j
zk, j if xk, j+1 = xk, j ,

(78)

where PI [v] is the componentwise projection of the vectorv onto the intervalI. In
practice,κzl = 1

2 andκzu = 1020 appear to work satisfactorily. Does this safeguarded
value satisfy the required conditions? We now verify that this is usually the case.
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Theorem 5. Suppose that AS.2–AS.5 and AS.7–AS.8 hold. Suppose also that
{xk, j , zk, j } is a sequence of primal and dual iterates generated, at a given outer iter-
ationk, by Algorithm 3.1 wherezk, j+1 is updated according to (78), withI being given
by (76) andzk, j+1 by (75). Thenzk, j+1 > 0 and AS.6 holds. If, furthermore,

lim
j→∞‖sk, j ‖k, j = 0 when lim

j→∞‖∇xφ(xk, j , µk)‖[k, j ] = 0 (79)

then AS.10 is also satisfied.

Proof. The positivity of the vector of dual variables immediately results from the fact
that the lower end of the intervalI is always positive. To obtain AS.6, we notice that
the definition ofI and this bound implies that

[zk, j+1]i ≤ max

[
κzu, [zk,0]i , κzu

µk
,

κzuµk

ci (xk, j+1)

]
and AS.6 follows with

κzi(k)
def= max

[
κzu, [zk,0]i , κzu

µk
, κzuµk

]
.

We now show that AS.10 is also satisfied if (79) holds. Suppose therefore that
‖∇xφ(xk, j , µk)‖[k, j ] converges to zero, which must eventually occur because of Theo-
rem 2. This implies, because of Lemma 2, the fact thatAsk, j = 0 and (79), that

lim
j→∞‖sk, j ‖ = lim

j→∞‖sk, j ‖� = lim
j→∞‖sk, j ‖k, j = 0. (80)

Then Lemma 1, (80) and AS.2 ensure that

lim
j→∞
(k, j)∈S

∥∥C−1
k, j −C−1

k, j+1

∥∥ = 0. (81)

But ∥∥zk, j+1− µkC−1
k, j+1e

∥∥ ≤ ∥∥zk, j+1 − µkC−1
k, j e

∥∥+ µk
∥∥(C−1

k, j −C−1
k, j+1

)
e
∥∥

≤ ∥∥C−1
k, j Zk, j Jk, j

∥∥ ‖sk, j ‖ + µk
√

n
∥∥C−1

k, j −C−1
k, j+1

∥∥,
where we have used (75). We thus obtain from Lemma 1, (80), (38), AS.2 and (81) that

lim
j→∞
(k, j)∈S

∥∥zk, j+1 − µkC−1
k, j+1e

∥∥ = 0.

Now this limit and (77) give that, for(k, j) ∈ S and j sufficiently large,

κzlµkC−1
k, j+1e≤ zk, j+1 ≤ κzuµkC−1

k, j+1e.

Hence, from the definition ofzk, j+1, we have thatzk, j+1 = zk, j+1 for j ∈ S sufficiently
large. Thus (75) yields that

Ck, j+1Zk, j+1e= Ck, j+1C−1
k, j (−Zk, j Jk, j sk, j + µke). (82)
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On the other hand, we deduce from AS.2, Lemma 3 and (80) that

lim
j→∞
(k, j)∈S

Ck, j+1C−1
k, j = I.

We then obtain from this limit, AS.5, AS.6 and (82) that

lim
j→∞
(k, j)∈S

Ck, j+1Zk, j+1e= µke.

AS.10 then follows becausezk, j+1 = zk, j for (k, j) 6∈ S, that is exactly when
xk, j+1 = xk, j .

ut
Observe that the first part of the proof implies that any value ofzk, j+1 chosen inI

satisfies AS.6. In particular, this is true for the choices

zk, j+1 = zk, j and zk, j+1 = µkC−1
k, j+1e,

the latter corresponding to the pure primal method, that is to the model (10). Also
note that, because of Theorem 2, the choice of norms in (79) is in fact irrelevant: the
Euclidean norm would have been just as adequate, but we have chosen the scaled norms
for consistency.

4.4. Convergence of the outer iteration

Having proved that its iterates are well-defined, we now consider the convergence of
Algorithm 3.2. In order to state our result, we need the following definition. We say
that a subsequence of outer iterates{xk`} is consistently active if, for eachi = 1, . . . , p
either

lim
`→∞ ci (xk` ) = 0 or lim inf

`→∞ ci (xk` ) > 0.

This is to say that each constraint is asymptotically active or inactive for the com-
plete subsequence. We also define the set of asymptotically active constraints for such
a subsequence by

A{xk`} def= {i ∈ {1, . . . ,n} | lim
`→∞ ci (xk` ) = 0}.

In other words, the set of asymptotically active constraints is fixed for the iterates
of a consistently active subsequence. Since there are only a finite number of such
sets, as each constraint is asymptotically active or is not, the number of consistently
active subsequences is finite for any sequence{xk} of non-negative iterates. Further-
more, the complete sequence of iterates may be partitioned into disjoint consistently
active subsequences. Observe also that, if{xk} has limit points, then each subse-
quence converging to a specific limit pointx∗ is consistently active, as the set of
asymptotically active constraints is then determined by the components ofx∗, that is
A{xk`} = {i ∈ {1, . . . ,n} | ci (x∗) = 0}.
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We then have the following result.

Theorem 6. Suppose that AS.1–AS.10 hold. Suppose also that, for someκµ > 0,

lim
k→∞

εC(µk)

µk
≤ κµ, (83)

that

lim
k→∞

εD(µk)
√
µk

mini ci (xk+1)
= 0 (84)

and that{xk} is a sequence of iterates generated by Algorithm 3.2. Then, we have that

lim
k→∞

[
NT∇x f(xk)

]
i −

[
NT JT

k zk
]
i = 0, (i = 1, . . . ,m). (85)

Furthermore, we also have that, for every consistently active subsequence of iterates
{xk`},

lim
`→∞[zk` ]i = 0, (i 6∈ A{xk`}) (86)

and

lim inf
`→∞

〈
uk` , NT∇xxψ(xk` )Nuk`

〉 ≥ 0 (87)

for every sequence{uk` } in IRm for which [Jk` Nuk` ]i = 0 wheneveri ∈ A{xk` }.
Proof. We start by choosing a subsequence of{xk} indexed byK such that

lim
k→∞

[zk]i
ci (xk)

= +∞ (i ∈ E) and lim sup
k→∞

[zk]i
ci (xk)

<∞ (i ∈ R), (88)

for some subsetsE andR of {1, . . . , p}. The contraints whose index is inE converge
quickly to zero (they are “eager”), while those whose index is inR are “reluctant” to
do so, if they converge to zero at all. Note that the complete sequence of iterates may
again be partitioned into a finite set of subsequences satisfying (88) (for different setsE
andR). Let κ3 > 0 be such that

κ3 ≥ max
i∈R

lim sup
k→∞
k∈K

[zk]i
ci (xk)

.

Writing rk = NT [∇x f(xk)− JT
k Zke] and using (4), the definition of thek-seminorm,

condition (26) then becomes∥∥(NT MkN
)− 1

2 rk
∥∥ ≤ εD(µk−1) (89)

for all k. But, sinceNT MkN is positive definite,

∥∥(NT MkN
)− 1

2 rk
∥∥2 ≥ ‖rk‖2

λmax[NT MkN] =
‖rk‖2∥∥NT Mk N

∥∥ .
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Now, we have, using (36), that, fork ∈ K sufficiently large,∥∥NT Mk N
∥∥ ≤ ∥∥NT WkN

∥∥ + ∥∥NT BkN
∥∥ = κW + κ2

J max
i

[zk]i
ci (xk)

.

Assume first thatE = ∅. Then,∥∥NT MkN
∥∥ ≤ κW + κ2

Jκ3

for k ∈ K sufficiently large, and therefore, using (26) and (89),

εD(µk−1) ≥
∥∥(NT MkN

)− 1
2 rk
∥∥ ≥ ‖rk‖√

κW + κ2
Jκ3

for suchk. This implies that

lim
k→∞
k∈K
‖rk‖ = lim

k→∞
k∈K

∥∥NT∇x f(xk)− NT JT
k zk

∥∥ = 0. (90)

On the other hand, ifE 6= ∅, we first observe that, for eachi ,

[zk]i
ci (xk)

≤ µk−1

ci (xk)2
+ |ci (xk)[zk]i − µk−1|

ci (xk)2
≤ µk−1

ci (xk)2
+ ε

C(µk−1)

ci (xk)2
≤ (1+ κµ) µk−1

ci (xk)2
,

where we have used the triangle inequality, (25) and (83) successively. Thus we obtain
that∥∥NT MkN

∥∥ ≤ 2κ2
J max

i

[zk]i
ci (xk)

≤ 2(1+ κµ)κ2
J

µk−1

mini ci (xk)2
def= κ2

4
µk−1

mini ci (xk)2

for k ∈ K sufficiently large. In this case,∥∥(NT Mk N)−
1
2 rk
∥∥ ≥ ‖rk‖mini ci (xk)

κ4
√
µk−1

and hence, using (89),

‖rk‖ ≤ κ4
εD(µk−1)

√
µk−1

mini ci (xk)
,

which, together with (84), again yields (90). Thus (85) holds sinceK was chosen
arbitrarily.

Suppose now that{xk` } is a consistently active subsequence whose set of asymptot-
ically active constraints isA. Then, if i 6∈ A, (25) yields (86).

The final step of our proof is to show (87), that is that the Hessian of the Lagrangian
is, along a consistently active subsequence, asymptotically positive semi-definite in the
plane tangent to the asymptotically active constraints. We first notice that (27), the
forcing nature ofεE(µ) and the convergence ofµk to zero implies that

lim inf
j→∞ inf

v6=0
v∈IRm

〈
v,
(
NT Mk` N

)− 1
2 NT [Gk` + Bk` ]N

(
NT Mk` N

)− 1
2v
〉

‖v‖2 ≥ 0.
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Hence we deduce from (25), AS.9, (26) and the convergence ofµk to zero that

lim inf
j→∞ inf

v6=0
v∈IRm

〈
v,
(
NT Mk` N

)− 1
2 NT [∇xxψ(xk` , zk` )+ Bk` ]N

(
NT Mk` N

)− 1
2v
〉

‖v‖2 ≥ 0.

Thus, if we definew = (NT Mk` N)
− 1

2v ∈ IRm, we obtain that

lim inf
`→∞ inf

w6=0

〈
w, NT [∇xxψ(xk` , zk` )+ Bk` ]Nw

〉
‖w‖2

NT Mk` N

= lim inf
`→∞ inf

v 6=0

〈
v,
(
NT Mk` N

)− 1
2 NT [∇xxψ(xk` , zk` )+ Bk` ]N

(
NT Mk` N

)− 1
2v
〉

‖v‖2
≥ 0, (91)

where we have used the identity‖w‖NT Mk` N = ‖(NT Mk` N)
1
2w‖ = ‖v‖.

We now assume that (87) does not hold, which means that we can pick a sequence
of unit vectors{uk`t } and a subsequence{xk`t } ⊆ {xk` } such that

[Jk`t Nuk`t ]i = 0 for i ∈ A and (92)

lim inf t→∞
〈
uk`t , NT∇xxψ(xk`t , zk`t )Nuk`t

〉 = −ε (93)

for someε > 0. Using (92), (25), (11), the convergence ofµk to zero, AS.10 and the
fact thatci (xk`t ) is bounded away from zero fori 6∈ A, we now observe that

lim
t→∞

〈
uk`t , NT Bk`t Nuk`t

〉 = lim
`→∞µk`t−1

〈
uk`t , NT JT

k`t
C−2

k`t
Jk`t

Nuk`t

〉 = 0,

and hence, taking (36) into account, that

‖uk`t ‖2NT Mk` N =
〈
uk`t , NT Wk` Nuk`t

〉+ 〈uk`t , NT Bk`t Nuk`t

〉 ≤ 2κW

for t sufficiently large. Combining these conclusions, we obtain that

−ε = lim inf
t→∞

〈
uk`t , NT∇xxψ(xk`t , zk`t )Nuk`t

〉
= lim inf

t→∞
〈
uk`t , NT∇xxψ(xk`t , zk`t )Nuk`t

〉+ lim inf
t→∞

〈
uk`t , NT Bk`t Nuk`t

〉
= lim inf

t→∞
〈
uk`t , NT (∇xxψ(xk`t , zk`t )+ Bk`t )Nuk`t

〉
≥ 2κW lim inf

t→∞

〈
uk`t , NT (∇xxψ(xk`t , zk`t )+ Bk`t )Nuk`t

〉
‖uu`t ‖2NT Mk`t

N

≥ 0,

where we used (91) to obtain the last inequality. This is impossible sinceε > 0. Hence
no vector satisfying (92)–(93) can exist, (87) holds and the proof of the theorem is
complete.

ut
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Necessary optimality conditions for (1) are that the primal variablesx∗ and dual
variablesz∗ satisfy the first-order optimality conditions

Ax∗ = b, (x∗, z∗) ≥ 0,C(x∗)z∗ = 0 and NT(g(x∗)− J(x∗)Tz∗) = 0, (94)

and the second-order conditions

〈s,∇xxψ(x∗, z∗)s〉 ≥ 0 for all s ∈ U, (95)

where

U =
{

s

∣∣∣∣ As= 0,
[J(x∗)s]i = 0 if ci (x∗) = 0

}
(96)

(see, for example, Gill, Murray and Wright, 1981, p. 81). This definition ofU corres-
ponds to the “weak” second-order necessary conditions. Ideally, we would like to obtain
their “strong” counterpart, in which (95) holds for

U =
s

∣∣∣∣∣∣
As= 0,

[J(x∗)s]i = 0 if ci (x∗) = 0 and [z∗]i > 0, and
[J(x∗)s]i ≥ 0 if ci (x∗) = 0 and [z∗]i = 0

 (97)

(see, for example, Fletcher, 1981, Sects. 9.2 and 9.3), but we know from Gould and
Toint (1999) that this is in general impossible in the framework of log-barrier functions.
Thus every finite limit point(x∗, z∗) of Algorithm 3.2 is first-order critical and satisfies
second-order conditions that are as strong as can reasonably be expected.

We conclude our analysis by commenting on condition (84). Since Mifflin (1975) has
shown that, under reasonable conditions, the quantity mini ci (xk+1) is of the order ofµk

orµ
1
2
k depending respectively upon whether strict complementarity hold or not, we may

then deduce that requiring thatεC(µ) andεD(µ) converge to zero faster thanµ (which is
our choice in the next section) is usually sufficient in practice to ensure convergence of
the outer iteration. However, a stopping rule based on (84) might be preferable especially
when the Jacobian of the contraints is (asymptotically) rank deficient.

5. Numerical experience

Although the algorithm we have developed in this paper is intended for problems with
linear equality constraints and general inequality constraints, to date we have only tested
it on the narrower class of non-convex quadratic programming (QP) problems. This was
quite deliberate since we have a large number of test examples in this case, and since we
already have numerical results for these examples using other QP algorithms. We view
non-convex QP as prototypical linearly constrained optimization problems, and thus we
hope to see that our new algorithm is effective in at least this case. Furthermore, such
problems occur both in their own right, and as subproblems within algorithms for more
general constrained optimization.

VE12 is the new primal-dual non-convex QP Fortran 90 package from the Harwell
Subroutine Library (HSL). It is exactly the algorithm we analysed in this paper (spe-
cialized to the case of a quadratic objective function), but of course in addition there are
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a large number of linear algebra tricks and other issues to enhance efficiency. General
simple boundsl ≤ x ≤ u are allowed with some/all ofl or u being infinite. All fixed
variables are removed automatically and the minimization is performed with respect to
the remaining variables. The resulting trust-region subproblem (18) is (approximately)
solved using the generalized Lanczos trust-region (GLTR) algorithm proposed by Gould
et al. (1999) and implemented within the HSL asVF05. This method was originally
proposed for unconstrained problems, but the extra requirementAs= 0 is imposed via
the preconditioner. That is, lettingM = Mk, j , the basic preconditioning step requires
the solution of the system (

M AT

A 0

)(
si

yi

)
= −

(
gi

0

)
(98)

to find a correctionsi , given the gradientgi of the model at thei -th GLTR iteration –
some form of iterative refinement or residual adjustment is needed to ensure that the
condition As= 0 is satisfied very accurately (see Gould, Hribar and Nocedal, 1998).
VE12 offers the option of a large variety of preconditioners of the form

K =
(

M AT

A 0

)
,

where M varies from the simplest (M = I ) to the exact form (M = H + X−1Z).
However,M is required to be second-order sufficient, and this is enforced by factorizing
K and, if K has more than rank(A) negative eigenvalues, adding‖M‖ to M and re-
factorizingK . While such a modification strategy is undoubtedly simplistic, it has been
effective in our experiments.

The results we present here were obtained using an “automatic” preconditioning
strategy that we will now describe. We start with just a diagonal Hessian based on
the barrier terms, i.e,M = X−1Z. This is often sufficient, but if the CPU time per
iteration seems to be increasing significantly, we switch to a full factorizationM =
H + X−1Z for the next iteration. If the cost of this is much higher, we revert to the
original preconditioner until the cost again rises to the (now known) value for the full
factorization. Of course, we might conceive of adding other levels of preconditioner, but
the above seems to perform adequately in most cases. Two other points are important.
Firstly, if the model Hessian is itself diagonal, then this is used at every stage. Secondly,
if M is diagonal (and nonsingular) and so long as the constraints do not have columns
with more than (in our case) 10 nonzeros, we solve the normal equations

s= −M−1(AT yi + gi ), where AM−1 AT yi = −AM−1gi , (99)

using the factors ofAM−1 AT , rather than solving the augmented system (98). At some
stage we intend to handle denser columns and zero diagonal terms in the normal equation
case.

The initial strictly feasible point is found (as the analytic centre of the feasible region
when the region is bounded) using another new HSL code,VE13. More precisely,VE13
converges to the analytic center once a feasible point has been found. However, in the
event that the size of the iterate exceedes some prescribed upper bound, the last point
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with a norm smaller than this bound is taken for the initial point. This code is based
on the primal-dual infeasible interior point algorithm considered by Conn et al. (1999),
and is used in the special case where the objective function is absent. In principle, any
good interior-point method would suffice, but in any event, this part of the calculation
is usually very efficient.

The initial dual variablesz0 are simply those calculated at the analytic centrex0,
while the initial value of the barrier parameter is the smallest power of 10 larger than
〈z0, x0〉/n. The barrier parameter is updated so that

µk+1 = min
(
0.1µk, µ

1.5
k

)
with the intention of encouraging asymptotic superlinear convergence. The forcing
functions which control the inner-iteration convergence are defined to be

εC(µ) = εD(µ) = µ1.01 = −εE(µ).

The algorithm is halted as soon as an inner-iteration has been terminated with each of
these tolerances below 0.0001, or if more than 1000 iterations have been performed.
Valuesη1 = 0.01,η2 = 0.9 are used to accept and reject steps in the inner-iteration,
and the trust-region is updated according to the usual rule

1k, j+1 =
min[1020,max(2‖sk, j ‖k, j ,1k, j )] if ρk, j ≥ η2,

1k, j if ρk, j ∈ [η1, η2),
1
21k, j if ρk, j < η1;

the initial radius for each inner iteration is1k,0 = 1000µk.
To test our algorithm, we have selected all of the larger quadratic programs in the

CUTE test set (see, Bongartz, Conn, Gould and Toint, 1995). Although it is desirable in
practice to preprocess the problems (for instance, to remove redundant constraints and
scale the problem, see for example Andersen, Gondzio, Mészáros and Xu, 1996), we
have not done so.

In Tables 1–3, we give the results of our preliminary tests. They were performed in
double precision on an IBM RISC System/6000 3BT workstation with 64 Megabytes
of RAM, using the xlf90 compiler and optimization level -O3. For each example, we
report its name along with its dimensions (n is the number of variables,m the number
of constraints), the problem type (C for convex, SOS for second-order sufficient and
NC for non-convex and not second-order sufficient), the number of iterations performed
(its), and the time taken in seconds (time). For comparison, the tables also show the
number of iterations and time taken by a Fortran 90 version ofVE09, a quadratic
programming subroutine from the HSL. This latter algorithm is designed to handle
non-convex problems and is of the active-set type, each of its iterations corresponding
to a pivoting operation. The reader is referred to Gould (1991) for further details
on this method. Note that since iterations mean completely different things for the
two approaches, they are not directly comparable, and we include them simply for
information. All runs were terminated after 1800 seconds, and any exceeding this limit
may be regarded as failures.

In Table 1, we report results for what are, by today’s standards, relatively small
problems. We indicate the better of the two CPU times for each problem in bold.
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Observe that in the majority of cases the new algorithm outperforms its active-set rival,
and that the algorithm is just as successful when the problem is non-convex as it is in the
convex case. Such behaviour is at variance with our previous linesearch-based primal-
dual method (see Conn et al., 1999) which was far less successful in the non-convex
case. We believe that this is likely because negative curvature is better handled in the
trust-region subproblem than through the ad-hoc matrix modification strategy which
lays at the heart of our previous linesearch algorithm. Of course, the new algorithm is
not uniformly better thanVE09; the PRIMAL* andDUAL* problems, which require
very few changes of active-set, and theQP* problems, which need a relatively large
number of primal-dual iterations, being cases in point. In addition,VE12 is currently
unable to cope with rank-deficientA, and we are presently investigating the best ways
of dealing with this defect.

Table 1. Preliminary numerical results: small problems

VE12 VE09
Name n m type its time its time
AUG2DCQP 3280 1600 C 25 6 3112 133
AUG2DQP 3280 1600 C 30 7 3019 127
AUG3DCQP 3873 1000 C 23 9 3056 106
AUG3DQP 3873 1000 C 24 9 2097 71
BLOCKQP1 2006 1001 NC 23 10 1006 28
BLOCKQP2 2006 1001 NC 29 8 1006 40
BLOCKQP3 2006 1001 NC 157 46 1006 28
BLOWEYA 2002 1002 C 7 3 1597 68
BLOWEYB 2002 1002 C 8 2 1497 67
BLOWEYC 2002 1002 C 5 3 1697 53
CVXQP1 1000 500 C 39 35 861 70
CVXQP2 1000 250 C 37 12 370 13
CVXQP3 1000 750 C 89 41 1389 107
DUALC1 223 215 C 35 1 12 0
DUALC2 235 229 C 28 1 14 0
DUALC5 285 278 C 17 1 10 0
DUALC8 510 503 C 25 2 11 0
GOULDQP2 699 349 C 3 0 251 1
GOULDQP3 699 349 C 10 0 463 2
KSIP 1021 1001 C 30 7 1388 36
MOSARQP1 1500 600 C 50 8 5859 91
MOSARQP2 1500 600 C 43 7 1679 27
NCVXQP1 1000 500 NC 76 5 1561 51
NCVXQP2 1000 500 NC 66 4 1840 61
NCVXQP3 1000 500 NC 112 17 too ill-cond. basis
NCVXQP4 1000 250 NC 48 1 649 2
NCVXQP5 1000 250 NC 42 1 565 2
NCVXQP6 1000 250 NC 59 10 532 3
NCVXQP8 1000 750 NC 49 6 1901 141
NCVXQP7 1000 750 NC 56 6 1567 120
NCVXQP9 1000 750 NC 75 22 too ill-cond. basis
PRIMALC1 239 9 C 130 1 20 0
PRIMALC2 238 7 C 28 4 4 0
PRIMALC5 295 8 C 100 1 14 0
PRIMALC8 528 8 C 129 128 20 0
PRIMAL1 410 85 C 31 4 361 4
PRIMAL2 745 96 C 35 6 677 12
PRIMAL3 856 111 C 37 27 798 35
PRIMAL4 1564 75 C 27 18 1515 40
QPCBOEI1 726 351 C 87 9 823 6
QPCBOEI2 305 166 C 81 3 303 1
QPCSTAIR 614 356 C 222 18 987 16
QPNBOEI1 726 351 NC > 1000 132 736 5
QPNBOEI2 305 166 NC 165 7 299 1
QPNSTAIR 614 356 NC 300 38 993 15
SOSQP1 2000 1001 SOS 10 2 996 14
STCQP1 4097 2052 NC A rank deficient 2845 67
STCQP2 4097 2052 NC 22 81 2040 98
STNQP1 4097 2052 NC A rank deficient 3158 68
STNQP2 4097 2052 NC 25 1 1408 39
UBH1 909 600 C 5 0 315 5
YAO 1002 500 C 72 3 3 2
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In Tables 2 and 3, we exhibit specimen results for medium and large-scale instances
of the variable-dimensional problems. We include these simply to show that the ad-
vantages of interior-point methods over conventional active-set approaches are now
clear.

Table 2. Preliminary numerical results: specimen medium problems

VE12 VE09
Name n m type its time its time
AUG2DCQP 20200 10000 C 31 69 - >1800
AUG2DQP 20200 10000 C 35 77 - >1800
AUG3DCQP 27543 8000 C 35 744 - >1800
AUG3DQP 27543 8000 C 26 598 - >1800
BLOCKQP1 20006 10001 NC 26 673 - >1800
BLOWEYB 20002 10002 C 7 48 5156 893
CVXQP3 15000 11250 C 24 104 - >1800
GOULDQP2 19999 9999 C 1 1 - >1800
GOULDQP3 19999 9999 C 1 2 1331 730
KSIP 10021 10001 C 32 110 - >1800
MOSARQP1 30000 10000 C 57 455 not enough memory
NCVXQP4 10000 2500 NC 53 33 6588 343
SOSQP1 20000 10001 SOS 7 54 9996 1551
STCQP1 8193 4095 NC A rank deficient 5769 268
STCQP2 8193 4095 NC 18 246 4320 613
UBH1 18009 12000 C 5 13 - >1800
YAO 20002 10000 C 107 118 not enough memory

Table 3. Preliminary numerical results: specimen large problems

VE12 VE09
Name n m type its time its time
GOULDQP2 100001 50000 C 3 32 - >1800
GOULDQP3 100001 50000 C 10 98 - >1800

We cannot give results for our other variable dimensional problems in the large category
(say 105 variables) simply because we do not have enough memory to form the factors
of the preconditioner. Clearly, this indicates some limitations of our approach, but since
we are able to report successful results for larger problems than we have seen before,
we believe that this is an indication that our approach is an important advance in the
methods for the numerical solution of large-scale non-convex quadratic programs, with,
hopefully, implications for general nonlinear problems.

6. Conclusion

We have introduced a primal-dual algorithm for solving nonlinear non-convex mathe-
matical programming problems with linear equality constraints and general nonlinear
inequality constraints. In this algorithm, a scaled trust-region subproblem is approxi-
mately solved. Additionally, we have shown that this algorithm is globally convergent
to points satisfying the weak second-order necessary optimality conditions, even if we
allow the scaling matrices to become unbounded to reflect the singularity of the barrier.
Preliminary numerical experiments on a variety on convex and non-convex quadratic
programs indicate that the new algorithm is potentially efficient for the solution of
large-scale problems.
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The analysis presented here can still be extended in several directions. For instance, it
is possible to verify that we can replace the quadratic models of the objective function and
inequality constraints by more general models, provided they agree with the modelled
function at least to first order and have bounded second derivatives. The extension to
general nonlinear equality constraints, although less direct, is also worth investigating.
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