Abstract. We study the solution of large-scale nonlinear optimization problems by methods which aim to exploit their inherent structure. In particular, we consider the property of partial separability, first studied by Griewank and Toint [Nonlinear Optimization, 1981, pp. 301–312]. A typical minimization method for nonlinear optimization problems approximately solves a sequence of simplified linearized subproblems. In this paper, we explore how partial separability may be exploited by iterative methods for solving these subproblems. We particularly address the issue of computing effective preconditioners for such iterative methods. We concentrate on element-by-element preconditioners which reflect the structure of the problem. We find that the performance of these methods can be considerably improved by amalgamating elements before applying the preconditioners. We report the results of numerical experiments which demonstrate the effectiveness of this approach.

Key words. large-scale optimization, partial separability, preconditioned conjugate gradient, element-by-element preconditioners

AMS subject classifications. 65, 65F10

PII. S1064827594274796

1. Introduction. In this paper, we study algebraic aspects of the numerical solution of large-scale unconstrained optimization problems. To be specific, we suppose that we wish to minimize a partially separable objective function \(f(x) \). The function \(f \) is said to be partially separable (see [15] and [17]) if

\[
f(x) = \sum_{i=1}^{p} f_i(x),
\]

where each element function \(f_i \) has a large invariant subspace. Typically, this occurs when \(f_i(x) \) is only a function of a small subset of the variables \(x \), but may, of course, happen for other reasons (see, for example, [5]). The decomposition (1.1) is extremely general. Indeed, Griewank and Toint [16] show that any sufficiently differentiable function with a sparse Hessian matrix may be expressed in this form.

In this paper, we shall be concerned with those partially separable functions for which

\[
f(x) = \sum_{i=1}^{p} f_i(x^i),
\]

where

1. each set of local variables, \(x^i \in \mathbb{R}^{n_i} \), is a subset of the global variables, \(x \in \mathbb{R}^n \), and
2. \(n_i \ll n \).
Thus, the Hessian matrix of each f_i is a low-rank, sparse matrix—typically it will differ from the zero matrix only in a full block in the rows and columns corresponding to the variables x^i. The overall Hessian is thus the sum of extremely sparse matrices, the element Hessians, and is thus frequently itself also sparse.

In unconstrained optimization, one is normally concerned with obtaining an (approximate) solution d to the Newton equations

$$\nabla_{xx} f(x) d = -\nabla_x f(x). \quad (1.3)$$

If f has the form (1.2), these equations become

$$\left(\sum_{i=1}^{p} \nabla_{xx} f_i(x^i) \right) d = - \sum_{i=1}^{p} \nabla_x f_i(x^i). \quad (1.4)$$

We are thus concerned with constructing efficient methods for solving systems of this form which exploit the algebraic structure as fully as possible.

Putting this in a more general context, we suppose that the real, symmetric, $n \times n$ matrix H may be expressed as

$$H = \sum_{i=1}^{p} H_i, \quad (1.5)$$

where the symmetric elementary matrix H_i only has nonzeros in n_i rows and columns. We consider solving the linear system

$$H d = \left(\sum_{i=1}^{p} H_i \right) d = -g, \quad (1.6)$$

where H is large and normally positive definite. Clearly, the system (1.4) is of this form. Similar linear systems arise when solving constrained optimization problems using augmented Lagrangian methods (see, for example, [20], [31], and [5]), and when using finite element methods to solve elliptic partial differential equations (see, for instance, [38]). Both direct and iterative methods may be appropriate for solving (1.6). Frontal or multifrontal direct (factorization) methods (see, for example, [26], [9], and [32]) are appropriate so long as there is room to store the fill-in which occurs during the matrix factorization. If this is not the case, one is forced to consider iterative methods. The symmetry and definiteness of H normally makes the preconditioned conjugate gradient method (see, for example, [14]) the method of choice. The difficulty is, of course, the choice of an effective preconditioner (see [3] for a discussion of general issues).

When designing an iterative solver for the solution of (1.6), certain features appear to be desirable or even crucial.

1. Since the matrix (1.5) is initially unassembled, we do not especially want to assemble it.
2. We would like to find a preconditioner that can be computed elementwise. It is also desirable not to have to assemble this preconditioner.
3. The computations involved in forming and using the preconditioner should ideally be vectorizable and parallelizable, since we are interested in solving large problems. Note that in the conjugate gradient method, the most time consuming parts at each iteration are the matrix–vector product and the operation of the preconditioner on a vector. As the matrix–vector product can be easily parallelized, it is thus crucial to parallelize the preconditioning operation.
4. In an optimization context, it is important that the matrix (1.5) be positive definite, as otherwise the solution to the Newton equations (1.4) may not be a descent direction for f. As there is no absolute guarantee that the matrix (1.5) is positive definite, we would thus like to be able to detect when the matrix is indefinite. Thereafter, we may perturb the original matrix so that in all cases we compute the solution of a positive definite system (see [28] and [2]).

The LANCELOT package for the solution of large-scale nonlinear optimization problems uses a variety of techniques to solve systems of the form (1.4). As well as direct methods, the package allows the use of conjugate gradients with various preconditioners. These include the following:

1. diagonal preconditioners,
2. band preconditioners,
3. incomplete Cholesky preconditioners,
4. expanding band preconditioners, and
5. full-matrix factorization preconditioners.

Further details are given in [6].

We have decided to explore other alternatives, keeping in mind that the preconditioners should take advantage of the structure of the problems given by the partial separability and that we must be able to ensure that the preconditioners are symmetric positive definite. Thus, in this paper, we study the use of the following element-by-element preconditioners:

1. The element matrix factorization (EMF) of Gustafsson and Lindskog [19] based on a Cholesky factorization of each element.
2. The finite element preconditioner (FEP) of Kaasschieter [27].

In section 2, we consider how these element-by-element preconditioners perform on examples from a variety of application areas. In section 3, we make some remarks on the influence of the partitioning of the matrix (1.5) into elementary matrices, and show how the methods considered in section 2 may be improved by merging the elements.

We use the following notation: we let I denote the (appropriately dimensioned) identity matrix and we let $\Delta(A)$ be the diagonal matrix whose diagonals are the diagonals of A.

2. Finite element preconditioners. In this section, we review the range of element-by-element preconditioners which have been proposed for solving the linear systems that arise from finite element solution of partial differential equations. We note that specific error analyses are possible for particular classes of model differential equations, but a more general analysis is most likely impossible. Thus, all of the preconditioners should be viewed as heuristics which aim to approximate (1.5) at low cost.

2.1. Connectivity matrices. As we are assuming that the element matrix $H_i \in \mathbb{R}^{n \times n}$ has nonzeros in just n_i rows and columns, we may write

\[
H_i = C_i^T H_i^c C_i,
\]
where the rows of the connectivity matrix \(C_i \in \mathbb{R}^{n_i \times n} \) are simply the rows of the \(n \times n \) identity matrix corresponding to the variables used in the element, and \(H^c_i \in \mathbb{R}^{n_i \times n_i} \) is a symmetric matrix which is dense in general. In what follows, we shall say that \(H_i \) is positive definite when strictly we mean that \(H^c_i \) is positive definite.

2.2. Element matrix factorization. First, we assume that the elementary matrices \(H_i^c \) are positive definite. Gustafsson and Lindskog [19] suggest forming a preconditioner by factorizing each elementary matrix into

\[
H_i^c = L_i^c L_i^{cT},
\]

where \(L_i^c \in \mathbb{R}^{n_i \times n_i} \) is a lower triangular matrix. The preconditioner is then

\[
P_{EMF} = \left(\sum_{i=1}^{p} L_i \right) \left(\sum_{i=1}^{p} L_i \right)^T,
\]

where \(L_i = C_i^T L_i^e C_i \in \mathbb{R}^{n \times n} \). If the numbering of the local variables in each element is in increasing order corresponding to the global variables, it is clear that \(\sum_{i=1}^{p} L_i \) is also lower triangular and thus (2.3) is easy to invert. If this is not the case, local variables should be permuted in the elements so that \(\sum_{i=1}^{p} L_i \) is lower triangular. More generally, letting \(L_i = L_i + D_i \), where \(L_i \in \mathbb{R}^{n \times n} \) is the strictly lower triangular part of \(L_i \) and \(D_i = \Delta(L_i) \in \mathbb{R}^{n \times n} \) is the diagonal of \(L_i \), we might choose

\[
P_{EMF}(\theta) = \left((1 + \theta)^{-1} \sum_{i=1}^{p} L_i + (1 + \theta) \sum_{i=1}^{p} D_i \right) \left((1 + \theta)^{-1} \sum_{i=1}^{p} L_i + (1 + \theta) \sum_{i=1}^{p} D_i \right)^T,
\]

where \(\theta \) is a nonnegative parameter. In our experiments for simplicity we choose \(\theta = 0 \), but other choices have been suggested by Gustafsson and Lindskog [19] for finite element applications.

2.3. Finite element preconditioner. If \(H^c_i \) is positive semidefinite, Kaasschieter [27] has suggested using the alternative element factorization

\[
H_i^c = (D_i^c + \bar{L}_i^c)(D_i^c + \bar{L}_i^{cT}),
\]

where \(D_i^c \in \mathbb{R}^{n_i \times n_i} \) is the pseudoinverse of \(D_i^c \in \mathbb{R}^{n_i \times n_i} \). Writing \(D_i = C_i^T L_i^e C_i \in \mathbb{R}^{n \times n} \) and \(L_i = C_i^T L_i^c C_i \in \mathbb{R}^{n \times n} \), the FEP is

\[
P_{FEP} = \left(\sum_{i=1}^{p} D_i + \sum_{i=1}^{p} L_i \right) \left(\sum_{i=1}^{p} D_i \right)^{-1} \left(\sum_{i=1}^{p} D_i + \sum_{i=1}^{p} L_i^T \right).
\]

This preconditioner was also studied by Wathen [37].

2.4. The EBE preconditioner. EBE preconditioners were introduced by Hughes, Levit, and Winget [25] and Ortiz, Pinsky, and Taylor [30] and have been successfully applied in a number of applications in engineering and physics (see, for example, [23], [24], and [11]). A detailed analysis of this technique is given by Wathen [36].

We assume that \(H \) is positive definite and express \(H \) as

\[
H = \sum_{i=1}^{p} M_i + \sum_{i=1}^{p} (H_i - M_i) = M + \sum_{i=1}^{p} (H_i - M_i),
\]
where \(M_i = \Delta(H_i) \) and \(M = \sum_{i=1}^{p} M_i \). Let \(M = L_M L_M^T \) be the Cholesky factorization of \(M \); of course, \(L_M \) is simply a diagonal matrix. Then,

\[
H = L_M \left(I + \sum_{i=1}^{p} L_M^{-1}(H_i - M_i)L_M^{-T} \right) L_M^T = L_M \left(I + \sum_{i=1}^{p} E_i \right) L_M^T,
\]

where we have defined \(E_i = L_M^{-1}(H_i - M_i)L_M^{-T} \in \mathbb{R}^{n \times n} \). Now consider the sum \(I + \sum_{i=1}^{p} E_i \). A simple calculation reveals that

\[
I + \sum_{i=1}^{p} E_i \approx \prod_{i=1}^{p} (I + E_i),
\]

where the error in the approximation may be expressed in terms of second- and higher-order products of the components \(E_i \) and \(E_j \) with \(i \neq j \). Thus \(I + \sum_{i=1}^{p} E_i \) is well approximated by \(\prod_{i=1}^{p} (I + E_i) \) if the the norms of the terms involving products of the \(E_i \) are small compared to one. This may be true for various reasons.

1. Individual \(E_i \) may be small or zero. This is likely to be true if \(H_i \) is strongly diagonal dominant.

2. The product of the overlapping components \(E_i \) and \(E_j \) is small or zero.

Note that the order used for writing the product is not without importance. The preconditioner has to be symmetric as we intend to use conjugate gradients. The \(E_i \) are symmetric matrices but \(E_i E_j \) is, in general, not. There are, of course, ways of symmetrizing the approximation (2.9), such as writing

\[
I + \sum_{i=1}^{p} E_i \approx \left(\prod_{i=1}^{p} (I + E_i) \right) \left(\prod_{i=p}^{1} (I + E_i) \right),
\]

but a discussion of probably the best such scheme is deferred until section 2.5.

The first fundamental feature of the EBE preconditioner is that we replace \(I + \sum_{i=1}^{p} E_i \) by \(\prod_{i=1}^{p} (I + E_i) \) in (2.8). We then assume that \(I + E_i \) is positive definite and has an \(LDL^T \) factorization

\[
W_i \overset{\text{def}}{=} I + E_i = L_i D_i L_i^T;
\]

the matrix \(W_i \in \mathbb{R}^{n \times n} \) is known as the Winget decomposition of \(H_i \) (see [25]). In this case, (2.8), (2.9), and (2.11) imply that

\[
H \approx L_M \left(\prod_{i=1}^{p} L_i D_i L_i^T \right) L_M^T.
\]

Unfortunately, (2.12) is normally unsymmetric, and thus is not a satisfactory preconditioner. However, if we further assume that a rearrangement of the product

\[
\prod_{i=1}^{p} L_i D_i L_i^T \approx \left(\prod_{i=1}^{p} L_i \right) \left(\prod_{i=1}^{p} D_i \right) \left(\prod_{i=p}^{1} L_i \right)
\]

introduces little additional error, we obtain the matrix

\[
P_{EBE} = L_M \left(\prod_{i=1}^{p} L_i \right) \left(\prod_{i=1}^{p} D_i \right) \left(\prod_{i=p}^{1} L_i \right) L_M^T,
\]
which may be used as a preconditioner for H. Such a matrix is known as the EBE preconditioner. Note that the second approximation (2.13) is, as the previous one, exact if there is no overlap between the blocks and will be good under exactly the same circumstances as its predecessor.

Clearly, the efficiency of the EBE preconditioner depends on the partitioning of the initial matrix and on the size of the off-diagonal elements of the elementary matrices. In order to solve efficiently the system of equations $P_{EBE}x = y$, we exploit the decomposition (2.14). We are free to order the elements in any way we choose and may thus encourage parallelism by consecutively ordering nonoverlapping elements so that we can perform groups of forward and backsolve in parallel.

Generalizations of these ideas have been suggested by Daydé, L'Excellent, and Gould [8] but have rarely proved to yield significant improvements over the methods described above.

2.5. Two-pass EBE preconditioners. Here we consider another proposal in the same vein (see [22]). We proceed, as in section 2.4, to approximate the sum $I + \sum_{i=1}^{p} E_i$ by a product of invertible matrices. We dismissed using the approximation (2.12) as a preconditioner because of its nonsymmetry. Instead, we combine (2.8) and the relationship

\[
I + \sum_{i=1}^{p} E_i \approx \prod_{i=1}^{p} (I + 1/2 E_i) \prod_{i=p}^{1} (I + 1/2 E_i)
\]

(2.15)

to give the preconditioner

\[
P_{EBE2} = L_M \left(\prod_{i=1}^{p} (I + 1/2 E_i) \right) \left(\prod_{i=p}^{1} (I + 1/2 E_i) \right) L_M^T.
\]

(2.16)

Note that (2.16) is positive definite if and only if all the matrices $I + 1/2 E_i$ are nonsingular. To use this preconditioner, we merely require that each $I + 1/2 E_i$ is invertible, and to be able to solve systems of equations of the form $P_{EBE2}x = y$ efficiently.

As before, we are free to order the elements in any way we choose and may thus encourage parallelism by consecutively ordering nonoverlapping elements. We may also choose to obtain explicit inverses of the $I + 1/2 E_i$ to exploit vectorization in the forward and back substitutions.

The main problem with the approximation (2.16) is that the error terms $1/4 E_i^2$, which result from the approximation (2.15), are nonzero even if there is little overlap between distinct element Hessians E_i and E_j ($i \neq j$). Furthermore, as a solve using EBE2 is roughly twice as expensive as one with EBE, in practice EBE2 is less efficient than EBE. But it can be attractive if we use inverse or approximate inverse elements or if we can find a way to subtract the terms $1/4 E_i^2$ in the solve. One can use higher-order approximations (see [8]), but these do not offer real improvements.

2.6. The GS EBE preconditioner. The GS EBE preconditioner is based on the same decomposition as the EBE preconditioner. But instead of using a Crout factorization, we instead form the decomposition

\[
E_i = L_i + L_i^T,
\]

(2.17)
where L_i is a strictly lower triangular matrix. The preconditioner is then
\[
P_{GS} = L_M \prod_{i=1}^{p} (I + L_i) \prod_{i=p+1}^{1} (I + L_i^T)L_M^{T}.\]

The advantage of this preconditioner is, obviously, that it is very easy to construct. In fact, if the matrix is initially scaled so that its diagonals are ones, the preconditioner need not be explicitly constructed. The principal drawback is that it is not exact, even when there is no overlap between element Hessians, because of the terms $L_i L_i^T$, which arise when approximating $I + \sum_{i=1}^{p} E_i$ by $\prod_{i=1}^{p} (I + L_i) \prod_{i=p+1}^{1} (I + L_i^T)$.

2.7. Definiteness of the preconditioner. The preconditioning matrix P for the conjugate gradient method should be positive definite. In the context of optimization problems, we have no guarantee that H and a fortiori P are positive definite. We describe here a simple strategy that guarantees that P is positive definite. Note that if the elementary matrices H_i^c are positive definite, H will be positive definite. We also note that when considering the EBE and EBE2 preconditioners, a sufficient condition for P to be positive definite is that all the H_i^c, and hence the $I + E_i$, are as follows: if H_i^c positive definite for all i, so are $I + E_i$ and $I + 1/2 E_i$. However, this is not necessary since the $I + E_i$ and P may be positive definite even if some H_i^c are not. Griewank and Toint [18] study conditions under which partially separable functions have convex decompositions, that is, those functions whose Hessian matrix is the sum of positive semidefinite element Hessians.

The preconditioners we have considered in this section all depend upon the decomposition of a collection of matrices W_i, where $W_i = H_i, I + E_i$ or $I + 1/2 E_i$, depending on the preconditioner. Thus it seems natural to consider the use of a modified Cholesky factorization for these decompositions to guarantee that the preconditioner is positive definite. We use the modified Cholesky factorization proposed by Schnabel and Eskow [34] that computes the Cholesky factorization of a matrix W_i if it is positive definite, or the Cholesky factorization of $W_i + B_i$, where B_i is a nonnegative diagonal matrix, otherwise. There is no need to know a priori if W_i is positive definite and the matrix B_i is determined during the factorization process. This modified Cholesky factorization exhibits marginally better properties in terms of computational costs and upper bound on $\|W_i\|_\infty$ than those described by Gill and Murray [12], and Gill, Murray, and Wright [13].

The main drawback of such a strategy for forming the preconditioner is that we may perturb W_i even if the initial matrix is positive definite. Before attempting to form the preconditioner, we should first amalgamate elementary matrices whose sparsity structure lies completely within that of another element. We might also consider amalgamating indefinite elements with positive definite ones if the composite element is positive definite, even if this means introducing structural zeros, that is, zeros within the element. The amalgamation of an indefinite element might, for example, be made with the elementary matrix having the largest intersection. While we have not developed a fail-safe scheme here, the simple strategy just presented appears to work well in practice.

2.8. Experiments with element-by-element preconditioners. A number of these preconditioners are known to work well in practice when applied to classes of problems arising from partial differential equations. In this section, we aim to investigate whether these preconditioners are effective in the more general context of systems which arise from partially separable optimization applications. Although our
experiments are far from exhaustive, they do lead to interesting conclusions and are helpful in deciding future directions of research.

Preliminary experiments were performed by Dayd´e, L’Excellent, and Gould [8] on structured matrices for which the overlap between successive elements was varied. It appeared that element-by-element preconditioners, and particularly EBE, were more effective than diagonal preconditioning as long as there was low overlap between elements. In this case the clustering of eigenvalues of the preconditioned problem was seen to be significantly better than for the unpreconditioned and diagonally preconditioned methods, especially when the problems were ill conditioned.

We now aim to consider real matrices which arise from both PDE and optimization applications.

2.8.1. Set of test matrices. The matrices come either from the Harwell–Boeing collection (CEGB2802, MAN5976, LOCK3491) (see [10]), or are problems in SIF format from the CUTE collection (see [4]). In the case of the Harwell–Boeing, we removed all rows and columns which corresponded to unused variables. Furthermore, we have used random numerical values because they were originally not present. Since the choice of these values influences the conditioning of the matrices, and since this conditioning is relevant to the performance of our solution techniques, we have created two instances of CEGB2802 with significantly differing spectra.

The patterns of CEGB2802 and LOCK3491 arise from structural engineering problems; MAN5976 comes from deformation problems; MAT32 and MAT33 are finite element matrices generated with the SPARSKIT software (see [33]), TORSION1 and NOBNDTOR are quadratic elastic torsion problems arising from an obstacle problem on a square, NET3 is a very ill-conditioned example which arises from the optimization of a high pressure gas network, and CBRATU3D is obtained by discretizing a complex 3D PDE problem in a cubic region. BDEXP, BROYDN7D, and SINQUAD are artificial problems, BDEXP involving a band of exponential terms, BROYDN7D having seven bands, and SINQUAD featuring a nonbanded sparsity pattern. SEMICON2 is a discretized semiconductor problem, while ZIGZAG is a nonlinear optimal control problem with both state and control constraints. SPMSQRT is a tridiagonal matrix square root problem, and CLPLATEB comes from the discretization of the clamped plate problem. Finally, HYDROELL is a hydroelectric reservoir management problem, while GAUSSELM is the problem of maximizing growth in Gaussian elimination with complete pivoting.

A summary of each problem characteristics is given Table 2.1, where \(n \) is the order of the matrix, \(p \) is the number of elements, and \(\kappa \) is the condition number. The degree of overlap is the average number of elements containing each variable, that is, the sum of the element dimensions divided by the order of the matrix.

2.8.2. Results on test matrices. We ran the preconditioned conjugate gradient method (see, for example, [14]) to solve the system \(Hx = b \), starting with the estimate \(x = 0 \), and stopping as soon as \(\|Hx - b\|_2 < 10^{-9}\|b\|_2 \). The right-hand side \(b \) was either \((1, 1, \ldots, 1)^T\), or problem dependent. All of the experiments reported in this paper were performed in double precision on a single processor of an Alliant FX/80, with vectorization of the inner loops of the solves and the matrix–vector products.

The results of the execution of the preconditioned conjugate gradient algorithm obtained for different preconditioners on our test problems are given in Tables 2.2 and 2.3, where \(t_{\text{prec}} \) is the time to compute the preconditioner, \(\#\text{its} \) is the number of iterations, \(t_{\text{conv}} \) is the time for convergence, and \(t_{\text{it}} \) is the time per iteration.
We observe that, unlike the structured matrices of Daydé, L’Excellent, and Gould [8], element-by-element preconditioners do not appear to be significantly more effective than diagonal preconditioning on many of the current test examples. However, we notice that as we might hope, these preconditioners often appear to be more effective than their diagonal counterparts for the ill-conditioned problems, even if the time per iteration for the former is invariably larger than for the latter.

2.8.3. Remarks on the storage and the vectorization. Thus far, we have reported on experiments where packed storage is used for element matrices, that is, where we store only the lower triangular part of each element. In Table 2.4, we compare the time per iteration for runs using the matrix CEGB2802 in which we consider both packed or full storage of the element matrices. We performed the tests on a variety of preconditioners and consider the performance both with and without vectorization. Only the inner loops were vectorized, with vectors of length no larger than 60.

It appears that the full storage is more efficient for vectorized conjugate gradients without, or with diagonal, preconditioning and less efficient for preconditioners involving triangular solves. This is due to the relative efficiency of the computational kernels used both for the matrix–vector products and the triangular solves. An interesting strategy—if extra workspace were available—would be to use full storage for the Hessian, because of the beneficial effect on matrix–vector products, and packed storage for the preconditioners, because of the advantages this gives for triangular solves.

The gain due to vectorization is between 2 and 5, depending on the preconditioner and the storage applied. We would expect to improve these ratios, for example, with longer vectors or more powerful vector computers.

Instead of using factorizations of the W_i, it might be better to form explicit inverses, as the sequence of solves may then be replaced by a sequence of matrix–vector products. This has some advantage in terms of using tuned BLAS routines.
<table>
<thead>
<tr>
<th>Problem name</th>
<th>Precconditioner</th>
<th>t_{pre}</th>
<th>t_{fes}</th>
<th>t_{conv}</th>
<th>t_{it}</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIGGSB1</td>
<td>NONE</td>
<td>0.001</td>
<td>499</td>
<td>33.217</td>
<td>0.066</td>
</tr>
<tr>
<td>$\kappa = 4.94 \times 10^5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBE</td>
<td>0.238</td>
<td>333</td>
<td>74.831</td>
<td>0.224</td>
</tr>
<tr>
<td></td>
<td>EBE2</td>
<td>0.221</td>
<td>328</td>
<td>121.876</td>
<td>0.370</td>
</tr>
<tr>
<td></td>
<td>GSEBE</td>
<td>0.101</td>
<td>334</td>
<td>74.637</td>
<td>0.223</td>
</tr>
<tr>
<td></td>
<td>EMF</td>
<td>0.189</td>
<td>4</td>
<td>0.498</td>
<td>0.082</td>
</tr>
<tr>
<td></td>
<td>FEP</td>
<td>0.454</td>
<td>4</td>
<td>0.418</td>
<td>0.084</td>
</tr>
<tr>
<td>CBRATU3D</td>
<td>NONE</td>
<td>0.001</td>
<td>53</td>
<td>33.640</td>
<td>0.623</td>
</tr>
<tr>
<td>$\kappa = 3.4 \times 10^4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBE2</td>
<td>0.396</td>
<td>20</td>
<td>66.153</td>
<td>3.150</td>
</tr>
<tr>
<td></td>
<td>GSEBE</td>
<td>1.219</td>
<td>19</td>
<td>37.840</td>
<td>1.892</td>
</tr>
<tr>
<td></td>
<td>EMF</td>
<td>12.244</td>
<td>60</td>
<td>71.683</td>
<td>1.175</td>
</tr>
<tr>
<td></td>
<td>FEP</td>
<td>11.146</td>
<td>35</td>
<td>42.481</td>
<td>1.180</td>
</tr>
<tr>
<td>CEGHR2802</td>
<td>NONE</td>
<td>0.001</td>
<td>121</td>
<td>28.858</td>
<td>0.237</td>
</tr>
<tr>
<td>$\kappa = 2.5 \times 10^3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBE2</td>
<td>6.249</td>
<td>12</td>
<td>7.617</td>
<td>0.586</td>
</tr>
<tr>
<td></td>
<td>GSEBE</td>
<td>6.100</td>
<td>11</td>
<td>10.838</td>
<td>0.903</td>
</tr>
<tr>
<td></td>
<td>EMF</td>
<td>26.265</td>
<td>47</td>
<td>67.783</td>
<td>1.412</td>
</tr>
<tr>
<td></td>
<td>FEP</td>
<td>25.749</td>
<td>26</td>
<td>38.203</td>
<td>1.415</td>
</tr>
<tr>
<td>CEGHR2802</td>
<td>NONE</td>
<td>0.001</td>
<td>2032</td>
<td>485.604</td>
<td>0.238</td>
</tr>
<tr>
<td>$\kappa = 5.7 \times 10^4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBE2</td>
<td>6.098</td>
<td>145</td>
<td>131.965</td>
<td>0.904</td>
</tr>
<tr>
<td></td>
<td>GSEBE</td>
<td>0.550</td>
<td>129</td>
<td>192.571</td>
<td>0.584</td>
</tr>
<tr>
<td></td>
<td>EMF</td>
<td>26.258</td>
<td>708</td>
<td>1061.524</td>
<td>1.413</td>
</tr>
<tr>
<td></td>
<td>FEP</td>
<td>25.749</td>
<td>575</td>
<td>815.452</td>
<td>1.416</td>
</tr>
<tr>
<td>LOCK3491</td>
<td>NONE</td>
<td>0.001</td>
<td>68</td>
<td>19.995</td>
<td>0.290</td>
</tr>
<tr>
<td>$\kappa = 1.3 \times 10^2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBE2</td>
<td>6.397</td>
<td>120</td>
<td>79.931</td>
<td>0.586</td>
</tr>
<tr>
<td></td>
<td>GSEBE</td>
<td>6.098</td>
<td>145</td>
<td>131.965</td>
<td>0.904</td>
</tr>
<tr>
<td></td>
<td>EMF</td>
<td>11.674</td>
<td>62</td>
<td>61.764</td>
<td>0.980</td>
</tr>
<tr>
<td></td>
<td>FEP</td>
<td>11.263</td>
<td>23</td>
<td>26.605</td>
<td>0.984</td>
</tr>
<tr>
<td>MAN5976</td>
<td>NONE</td>
<td>0.001</td>
<td>68</td>
<td>23.276</td>
<td>0.337</td>
</tr>
<tr>
<td>$\kappa = 5.0 \times 10^1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBE2</td>
<td>5.908</td>
<td>10</td>
<td>9.892</td>
<td>0.899</td>
</tr>
<tr>
<td></td>
<td>GSEBE</td>
<td>4.925</td>
<td>11</td>
<td>17.201</td>
<td>1.433</td>
</tr>
<tr>
<td></td>
<td>EMF</td>
<td>12.207</td>
<td>43</td>
<td>57.724</td>
<td>1.312</td>
</tr>
<tr>
<td></td>
<td>FEP</td>
<td>11.698</td>
<td>25</td>
<td>34.276</td>
<td>1.318</td>
</tr>
<tr>
<td>MAT32</td>
<td>NONE</td>
<td>0.001</td>
<td>21</td>
<td>0.242</td>
<td>0.011</td>
</tr>
<tr>
<td>$\kappa = 1.3 \times 10^1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBE2</td>
<td>0.040</td>
<td>14</td>
<td>0.552</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>GSEBE</td>
<td>0.036</td>
<td>12</td>
<td>0.781</td>
<td>0.060</td>
</tr>
<tr>
<td></td>
<td>EMF</td>
<td>0.016</td>
<td>15</td>
<td>0.579</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>FEP</td>
<td>0.049</td>
<td>23</td>
<td>0.298</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.061</td>
<td>18</td>
<td>0.244</td>
<td>0.013</td>
</tr>
<tr>
<td>MAT33</td>
<td>NONE</td>
<td>0.001</td>
<td>48</td>
<td>2.221</td>
<td>0.045</td>
</tr>
<tr>
<td>$\kappa = 5.5 \times 10^1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBE2</td>
<td>0.193</td>
<td>28</td>
<td>4.460</td>
<td>0.154</td>
</tr>
<tr>
<td></td>
<td>GSEBE</td>
<td>0.067</td>
<td>30</td>
<td>4.755</td>
<td>0.153</td>
</tr>
<tr>
<td></td>
<td>EMF</td>
<td>0.236</td>
<td>438</td>
<td>23.140</td>
<td>0.053</td>
</tr>
<tr>
<td></td>
<td>FEP</td>
<td>0.342</td>
<td>110</td>
<td>5.866</td>
<td>0.053</td>
</tr>
<tr>
<td>NET3</td>
<td>NONE</td>
<td>0.001</td>
<td>3739</td>
<td>156.287</td>
<td>0.0418</td>
</tr>
<tr>
<td>$\kappa = 2.4 \times 10^9$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBE2</td>
<td>0.162</td>
<td>560</td>
<td>122.796</td>
<td>0.219</td>
</tr>
<tr>
<td></td>
<td>GSEBE</td>
<td>0.063</td>
<td>731</td>
<td>95.894</td>
<td>0.131</td>
</tr>
<tr>
<td></td>
<td>EMF</td>
<td>0.330</td>
<td>731</td>
<td>106.298</td>
<td>0.145</td>
</tr>
<tr>
<td></td>
<td>FEP</td>
<td>0.325</td>
<td>731</td>
<td>106.910</td>
<td>0.146</td>
</tr>
<tr>
<td>NOHNDTOR</td>
<td>NONE</td>
<td>0.001</td>
<td>68</td>
<td>3.621</td>
<td>0.052</td>
</tr>
<tr>
<td>$\kappa = 1.8 \times 10^2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EBE2</td>
<td>0.297</td>
<td>30</td>
<td>5.216</td>
<td>0.168</td>
</tr>
<tr>
<td></td>
<td>GSEBE</td>
<td>0.089</td>
<td>31</td>
<td>5.365</td>
<td>0.168</td>
</tr>
<tr>
<td></td>
<td>EMF</td>
<td>0.567</td>
<td>28</td>
<td>1.932</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td>FEP</td>
<td>0.525</td>
<td>27</td>
<td>1.874</td>
<td>0.067</td>
</tr>
</tbody>
</table>
to form the products. For EBE2, this could be especially useful since two triangular solves would be replaced by only one matrix–vector product. Unfortunately, the elements in our examples are typically small, and we did not observe any benefit from such a strategy.
Table 2.4

Time per iteration in CEGB2802.

<table>
<thead>
<tr>
<th>Preconditioner used</th>
<th>Packed</th>
<th>Full</th>
<th>Packed</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>0.618</td>
<td>1.05</td>
<td>0.586</td>
<td>0.97</td>
</tr>
<tr>
<td>DIAG</td>
<td>0.618</td>
<td>1.98</td>
<td>0.903</td>
<td>0.97</td>
</tr>
<tr>
<td>EBE</td>
<td>1.52</td>
<td>1.98</td>
<td>0.586</td>
<td>0.59</td>
</tr>
<tr>
<td>EBE2</td>
<td>2.40</td>
<td>2.92</td>
<td>0.903</td>
<td>0.97</td>
</tr>
<tr>
<td>GS EBE</td>
<td>1.52</td>
<td>1.97</td>
<td>0.583</td>
<td>0.59</td>
</tr>
</tbody>
</table>

2.9. Conclusions on the use of element-by-element preconditioners.

The results of the previous section indicate that element-by-element preconditioners are effective, in terms of the numbers of iterations required and the clustering of eigenvalues of the preconditioned Hessian, particularly if the overlap between blocks is small. EBE seems to be the best of our block preconditioners and it does not require any assembly of the matrix. EMF and FEP do not require an assembly of the matrix either, but the resulting triangular incomplete factors need to be partially assembled, which can make each solve rather costly for large matrices. Their numerical properties depend a lot on the problem, being sometimes better but more often worse than other preconditioners.

A disadvantage of EBE2 and GS EBE is that the terms $1/4 E_i^2$ and $L_iW^{-1}L_i^T$ may give rise to poor approximations even when there is little overlap between elements. If there is significant overlap, the efficiency of EBE2 and GS EBE is close to that observed for EBE. Usually, the number of iterations required by EBE is smaller than that for EBE2 which is, in turn, smaller than that for GS EBE; the only case where this is not so is for problems with very large overlap. As GS EBE is the easiest preconditioner to construct, it may be beneficial to use GS EBE when we do not need much accuracy in the solution of our system, as, for example, is common in the early stages of optimization calculations. However, in more general cases, we prefer EBE.

We have not found it useful to replace the triangular solves by products of inverses. To obtain some benefit from this, we would need larger elements so as to exploit better vectorization/parallelization.

A difficulty for general matrices is that we have no a priori information on the sizes of the elements. On finite element problems, typically all elements have the same size. We may thus color the elements, that is, partition the complete set of elements into subsets, or colors, of independent (nonoverlapping) elements, to encourage both vectorization and parallelization. In our case, vectorization is restricted to the handling of each individual element, so is not usually very effective. A potentially better strategy would be to vectorize at a coarser level, treating blocks of elements of the same size within each color together.

In our experiments, except for ill-conditioned problems, EBE is not significantly more efficient than diagonal preconditioning. We believe that this is true for three reasons. The first is because of the structure of the elements. When there is lower overlap, EBE appears much more efficient than diagonal preconditioning. Amalgamating elements may reduce the number of iterations by decreasing the degree of overlap in the new partition. Second, the vectorization here is not as efficient as it could be. If we knew a priori that all blocks have the same size, it would be possible to vectorize the solve more efficiently, as was reported in previous experiments by, for example, Erhel, Traynard, and Vidrascu [11]. Third, no coloring, parallelization, and specific code optimizations have yet been carried out.
Finally, we believe that further study on real problems with less regular matrix structures will inevitably lead to a better understanding of the classes of problems for which each of the preconditioners we have considered is particularly appropriate.

3. Remarks on the importance of element regrouping. Let \(f(x) \) be of the form (1.2). Clearly, the decomposition (1.2) may not be unique, and different decompositions may significantly affect the performance of the preconditioners considered in this paper. In some of the experiments reported in the previous chapter, the limitation in performance of the conjugate gradient method, both for vectorization and parallelization, is due to a nonoptimal choice of the decomposition. Indeed, frequently the local variable set for one element may be completely contained within another and it would pay to merge the two elements into a single superelement or group. More generally, the local variable sets for two elements may significantly overlap and again it may be advantageous to merge the elements into a single group.

Conn, Gould, and Toint [7] have considered this problem from the point of view of improving the matrix–vector products at the heart of many iterative methods for minimizing partially separable functions. In this section our scope is larger in that we hope to produce more effective preconditioners by amalgamating similar elements.

The goal of our amalgamation algorithm process is to merge elements which involve many common variables. This will not only decrease the amount of work per iteration but should also improve the quality of the element-by-element preconditioner. A secondary target, which we have not considered here, might be to ensure that the merged elements are of similar sizes so that a coloring of the elements will provide significant gains from vectorization and parallelization (see our comments in section 2.9).

It is clear that determining an optimal partitioning of the elements into groups may be costly, or even impossible. Frequently, the construction of an initial decomposition of \(f \) into elements by a user depends more on considerations on the ease of expressing the function and its derivatives, rather than considerations of computational performance. It is our experience with many of the test examples in the CUTE package (see [4]), for example, that the overlap between elements is high (and even that some elements are entirely subsumed by other elements). Therefore, we regard it to be crucial for performance to determine a heuristic to partition the original sets of elements into computationally attractive disjoint groups.

3.1. Goals of the regrouping technique. Let \(x = (x_1, x_2, \ldots, x_n)^T \), \(x^i \) be the set of local variables involved in the elementary function \(f_i \), for \(1 \leq i \leq p \), and \(V_i \) be the set of indices of \(x^i \). For example, if
\[
f(x_1, x_2, x_3) = f_1(x_1, x_2) + f_2(x_2, x_3),
\]
we have
\[
x^1 = \{x_1, x_2\}, x^2 = \{x_2, x_3\}, V_1 = \{1, 2\} \quad \text{and} \quad V_2 = \{2, 3\}.
\]

Our aim is to partition the index set of elements, \(\mathcal{P} \defeq \{1, \ldots, p\} \), into a collection of groups \(\{G_k\} \) such that
1. \(\bigcup G_k = \mathcal{P} \);
2. \(G_k \cap G_l = \emptyset \) for \(k \neq l \);
3. if elements \(i \) and \(j \in G_k \), either \(V_i \setminus V_j \) or \(V_j \setminus V_i \) is small;
4. if element \(i \in G_k \) and element \(j \in G_l \), \((k \neq l) \), both \(V_i \setminus V_j \) and \(V_j \setminus V_i \) are large.
Thus, each group aims to collect elements whose overlap is large, while keeping the overlap between groups small.

Once the groups have been determined, all of the elements indexed by a single group will be summed to form a superelement. Thereafter, the algorithms described in section 2 of this paper should be applied to the sum of superelements,

\[f(x) = \sum_k s_k(x), \text{ where } s_k = \sum_{i \in G_k} f_i(x^i). \]

3.2. Possible amalgamation algorithms

A natural approach, frequently used in sparse linear algebra (see [9] and [1]), is to amalgamate two elements into a group if their overlap is large. The main difficulty is to define a suitable heuristic to control the amalgamation process.

We start by assigning the index of each element to its own group. We call such a group an elementary group and denote the group as \(G_i = \{ i \} \), \(1 \leq i \leq p \). The algorithm proceeds by merging groups until a satisfactory partitioning has been determined. Once a group comprises two or more elements, it will be called an amalgamated group. By convention, if we merge groups \(G_i \) and \(G_j \) with \(i < j \), we replace \(G_i \) by \(G_i \cup G_j \) and delete \(G_j \). We denote the set of indices of variables used by elements in group \(G_k \) by \(V_k \).

A simple amalgamation algorithm is as follows. The fill-in between groups \(i \) and \(j \) is defined to be twice the product of the cardinalities of the sets \(V_i \setminus V_j \) and \(V_j \setminus V_i \); this is in fact the number of extra (zero) entries introduced if the two group Hessians are amalgamated. Of course, this fill-in should be limited to reasonable value, so we let \(h_{\max} \) be the maximum fill-in value allowed when amalgamating two groups. Then we amalgamate pairs of groups for which the fill-in is smallest, until any remaining amalgamation would produce a fill-in value larger than \(h_{\max} \). Ties are broken arbitrarily.

Another approach, suggested by Conn, Gould, and Toint [7] considers the number of flops gained in the matrix–vector product. A list of elements is built for each variable and two elements are amalgamated if it leads to decrease the number of floating point operations in the matrix–vector product.

In this paper, we have chosen to concentrate on an algorithm that aims to decrease the time spent in matrix–vector products and triangular solves on the target architecture. Our overall goal is to reduce the cost of a (preconditioned) conjugate gradient iteration. As the dominant cost of such an iteration is in solving a system involving the preconditioner and in forming a matrix–vector product, it is of interest to reduce these costs.

3.3. An amalgamation algorithm

As a precursor to the main amalgamation algorithm, we apply the following scheme to merge elements which are completely subsumed within others and to construct an amalgamation graph. The amalgamation graph has as its nodes the groups and has arcs between the nodes for which there is some benefit from amalgamation. The arcs have associated weights \(b(G_i, G_j) \) which indicate the possible benefit to be obtained by merging nodes.

Initial phase (suppress complete inclusions and construct the amalgamation graph)

For each pair of groups \(G_i \) and \(G_j \), \(i < j \), such that \(V_i \cap V_j \) is not zero,

- If \(V_i \setminus V_j \) or \(V_j \setminus V_i \) is zero,
 - Amalgamate these groups.

Else

- Compute the benefit \(b(G_i, G_j) \)
Add the arc \((G_i, G_j)\) with weight \(b(G_i, G_j)\) to the graph

End if

We then apply the main amalgamation algorithm.

Main amalgamation algorithm (simplified)

While there exists an arc for which \(b\) is positive:
- Find the arc \((G_i, G_j)\) of the graph for which \(b\) is maximum
- Amalgamate the groups \(G_i\) and \(G_j\)
- Update all the arcs of the graph incident on \(G_i\) or \(G_j\)

End while

End of the algorithm. The new partitioning into groups has been obtained.

3.4. Computing the benefit.

The choice of amalgamating two elements is based on the estimated gain of CPU time or *benefit* of this amalgamation which is defined as

\[
(3.2) \quad b(G_i, G_j) = t(\text{card}(V_i)) + t(\text{card}(V_j)) - t(\text{card}(V_i \cup V_j)),
\]

where \(t(i)\) is the estimated time to treat an element of order \(i\).

The most costly operations in a preconditioned conjugate gradient iteration are:

(i) \(p\) elemental size matrix–vector products, and

(ii) \(q\) elemental size triangular solves,

where \(p\) is the number of elements, and \(q\) is

(i) zero for no or diagonal preconditioning,

(ii) two times \(p\) for EBE and GS EBE preconditioning, and

(iii) four times \(p\) for EBE2 preconditioning.

In our current experiments, we shall only consider diagonal and EBE preconditioning, as these proved to be the most effective of the preconditioners that we investigated in section 2.8. Thus we have two different possibilities:

1. Minimize the time spent in matrix–vector products. In what follows, this variant will be called *amalg1*. It should be optimal for conjugate gradients without preconditioner or with diagonal preconditioning. In this case, \(t(i)\) is an estimate of the time spent to perform a matrix–vector product of order \(i\) on the considered architecture. We consider the case where the element matrix is symmetric, stored in packed symmetric storage, and the accesses to the vectors are indirect.

2. Optimize the ordering for use of the EBE (or GS EBE) preconditioner. This variant is called *amalg2*. The time estimate \(t(i)\) is now the time spent in a matrix–vector product plus twice the time of a triangular solve with indirect accesses to the right-hand side and the solution.

Note that the time spent in constructing the preconditioner is not taken into account in these costs, as this is an overhead for the whole conjugate gradient process, not just for an individual iteration. The time spent in diagonal products—the matrix–vector products for the diagonal preconditioner or the three products associated with the EBE preconditioner—is not taken into account either, but such products are independent of the ordering.

The times of matrix–vector products and triangular solves for all realistic values of \(i\) are computed once and stored in a pair of data files. The values \(t(i)\) are read from these files as required and stored in a real array. The benefit \(b(G_i, G_j)\) can then easily be computed from (3.2). Throughout the algorithm, estimates of the total benefit along with the total time for matrix–vector products and triangular solves before amalgamation are recorded.
3.5. Preliminary tests. We report in Table 3.5 the results of first running the amalgamation algorithm and then using diagonal and EBE preconditioned conjugate gradients to solve the linear system in question. For each test problem, we report the amalgamation time, the number of elements (p), the average size of each element, the number of iterations (#its), the time to construct the preconditioner (t_{prec}), and the time for convergence (t_{conv}). [j] represents the amalgamation strategy: 0 for no amalgamation, 1 for amalg1, and 2 for amalg2.

Our implementation is principally in Fortran but the amalgamation graph manipulation is coded in C. All the times reported in this section are in seconds.

It is clear from this table that amalgamation can be very effective. There are always large gains in convergence times, both for diagonal and EBE preconditioners. As we would have expected, it appears that, in most cases, the diagonal preconditioned method is faster with amalg1 and the EBE is faster with amalg2. For some other problems, such as CEGB2802, however, amalgamation is not so effective as the function is already well decomposed. For some problems, amalg2 is less effective than amalg1 with an EBE preconditioner, which shows the limitations of our heuristic. Such limitations likely arise because of the indirect addressing of data and the fact that we do not know a priori how the data are accessed in the memory and hence the experiments do not fit exactly with an idealized memory-access model. Another limitation is that the eigenvalue-clustering quality of the preconditioner may happen to be worse with amalg2 than amalg1. This happens, for example, for the test problem MAT33.

While amalgamating does not normally affect the quality of the diagonal preconditioner (i.e., the number of iterations), it improves significantly the numerical behavior of the EBE-preconditioned conjugate gradients method. However, when considering, for example, the test problem NET3, we observe a variation of the number of iterations with diagonal preconditioning. This is entirely because the order of floating point operations is altered by the amalgamation, and different rounding properties come into effect (see [21]) when computing the diagonal preconditioner and matrix–vector products. When considering the EBE preconditioned method for NET3, we observe that the convergence time is significantly faster with amalg2 than with the original matrix. This may be attributed to the decrease (694 → 145) in the number of iterations due to a better preconditioner and to the reduction in time (0.13 s → 0.034 s) per iteration.

As far as we are concerned, the most important thing to note is that in certain cases, with the best amalgamation strategy, EBE preconditioning is much more efficient than diagonal preconditioning (e.g., 5 versus 21 seconds for NET3, 9.5 versus 70 seconds for SEMICON2, 1.9 versus 7.5 seconds for HYDROELL). Furthermore, even for problems where diagonal behaves better than EBE, the time for convergence is never more than 20% larger for EBE.

3.6. Cost of the algorithm. The times spent in the amalgamation procedure are reported in the second and third columns of Table 3.5. The second column gives the times required to perform the amalgamation and set up data structures for the resulting factors, while the third column shows the additional time required to insert the numerical values into the resulting factors. The algorithm is sequential and has not been optimized.

We consider the reported times for the amalgamation procedure to be significant. Taking these times into account, it would appear that applying the amalgamation algorithm is not always beneficial, particularly if we wish to solve a single linear
Table 3.5
Comparison of the preconditioned conjugated gradients applied to the original matrices and the matrices with amalgamation strategies 1 and 2 on 1 processor of the Alliant FX/80. Symm and num refer to the time taken to perform the amalgamation and set up data structures for the resulting factors, and to the time required to insert the numerical values into the resulting factors, respectively.

<table>
<thead>
<tr>
<th>Problem name</th>
<th>Amalgamation time</th>
<th>Mean elt size</th>
<th>Diagonal</th>
<th>EBE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p</td>
<td>num</td>
<td>sym</td>
<td>prec</td>
</tr>
<tr>
<td>NET3</td>
<td>0</td>
<td>1</td>
<td>1.4</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>538</td>
<td>2.6</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>416</td>
<td>14.4</td>
<td>0.0049</td>
</tr>
<tr>
<td>BRGSB1</td>
<td>0</td>
<td>0.011</td>
<td>2.6</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90</td>
<td>7.0</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124</td>
<td>9.0</td>
<td>0.011</td>
</tr>
<tr>
<td>TORSION1</td>
<td>0</td>
<td>0.011</td>
<td>2.6</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90</td>
<td>7.0</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124</td>
<td>9.0</td>
<td>0.011</td>
</tr>
<tr>
<td>MAT32</td>
<td>0</td>
<td>0.011</td>
<td>2.6</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90</td>
<td>7.0</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124</td>
<td>9.0</td>
<td>0.011</td>
</tr>
<tr>
<td>MAT33</td>
<td>0</td>
<td>0.011</td>
<td>2.6</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90</td>
<td>7.0</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124</td>
<td>9.0</td>
<td>0.011</td>
</tr>
<tr>
<td>CEGBS2B</td>
<td>0</td>
<td>0.011</td>
<td>2.6</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90</td>
<td>7.0</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124</td>
<td>9.0</td>
<td>0.011</td>
</tr>
<tr>
<td>CEGBS2B</td>
<td>0</td>
<td>0.011</td>
<td>2.6</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90</td>
<td>7.0</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124</td>
<td>9.0</td>
<td>0.011</td>
</tr>
<tr>
<td>CBRATU3D</td>
<td>0</td>
<td>0.011</td>
<td>2.6</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90</td>
<td>7.0</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124</td>
<td>9.0</td>
<td>0.011</td>
</tr>
<tr>
<td>NOBNDTOR</td>
<td>0</td>
<td>0.011</td>
<td>2.6</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90</td>
<td>7.0</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124</td>
<td>9.0</td>
<td>0.011</td>
</tr>
<tr>
<td>BEXP</td>
<td>0</td>
<td>0.011</td>
<td>2.6</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90</td>
<td>7.0</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124</td>
<td>9.0</td>
<td>0.011</td>
</tr>
<tr>
<td>BROYDNTD</td>
<td>0</td>
<td>0.011</td>
<td>2.6</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90</td>
<td>7.0</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124</td>
<td>9.0</td>
<td>0.011</td>
</tr>
<tr>
<td>CLPLATEB</td>
<td>0</td>
<td>0.011</td>
<td>2.6</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90</td>
<td>7.0</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124</td>
<td>9.0</td>
<td>0.011</td>
</tr>
<tr>
<td>GAUSSEL</td>
<td>0</td>
<td>0.011</td>
<td>2.6</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90</td>
<td>7.0</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124</td>
<td>9.0</td>
<td>0.011</td>
</tr>
<tr>
<td>HRYDOELL</td>
<td>0</td>
<td>0.011</td>
<td>2.6</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90</td>
<td>7.0</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124</td>
<td>9.0</td>
<td>0.011</td>
</tr>
<tr>
<td>SEMICON2</td>
<td>0</td>
<td>0.011</td>
<td>2.6</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90</td>
<td>7.0</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124</td>
<td>9.0</td>
<td>0.011</td>
</tr>
<tr>
<td>SMPSQRT</td>
<td>0</td>
<td>0.011</td>
<td>2.6</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90</td>
<td>7.0</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124</td>
<td>9.0</td>
<td>0.011</td>
</tr>
<tr>
<td>ZIGZAG</td>
<td>0</td>
<td>0.011</td>
<td>2.6</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90</td>
<td>7.0</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124</td>
<td>9.0</td>
<td>0.011</td>
</tr>
</tbody>
</table>

system and if the number of groups is large (see CBRATU3D in Table 2.3). If, however, we have to solve a large number of problems with the same matrix, or which have the same elemental structure—such as might occur in a nonlinear optimization or PDE application—amalgamating the elements is essential.

3.7. Conclusions on the use of element amalgamation. In our examples, we have observed that most of the benefit of amalgamations is due to the main amalgamation algorithm. However, it seems natural to start the algorithm with an initial
phase in which complete inclusions are suppressed, because it reduces the number of elements without introducing fill-in and obviously saves space and floating point operations.

The implementation of our algorithm is not optimal, but the results obtained are very promising. The cost of the amalgamation procedure is currently very costly, but it is hoped that good heuristics will decrease this preprocessing cost with roughly the same effect. As we may have to solve many systems with the same structure in the course of a nonlinear optimization calculation, a good preprocessing step may pay handsome dividends in the longer run.

The resulting numerical quality of the preconditioner seems to be difficult to appreciate in general. All that we may hope is that reducing the degree of overlap may also decrease the number of iterations. But we note that even if the number of iterations following the amalgamation process is not significantly reduced, the times for the calculation of the preconditioner and for obtaining the solution often decrease. There appears to be a significant advantage in using an EBE rather than a diagonal preconditioner for ill-conditioned problems.

The ratio of EBE to diagonal preconditioner solution times decreases as the amalgamation is applied, both because typically fewer iterations are required following the amalgamation and because an increase in element sizes encourages efficient vectorization for EBE and matrix–vector products—diagonal preconditioning is already completely vectorizable.

4. Final comments. We have shown that element-by-element preconditioners and amalgamation techniques may be extremely effective for systems of equations which arise in partially separable nonlinear optimization applications, especially for large scale ill-conditioned problems.

Furthermore, element-by-element preconditioners seem to offer great possibilities of vectorization/parallelization on multiprocessor architectures. The next step will be to include such a scheme within a nonlinear optimizer.

It is clear that preprocessing should be applied to any large-scale optimization problem, and that in our case it is important to amalgamate elements and find a suitable coloring for later calculations. This is a difficult task as many criteria need to be taken into account. This preprocessing may well be quite costly, but we expect there to be longer-term payoffs.

There seems to be three main approaches to fully exploiting parallelism:

1. Try to keep the elements to be roughly the same size, with the aim of both vectorizing and parallelizing over the elements within a color.
2. Vectorize the computations within each element, while handling the elements within each color in parallel.
3. Apply graph partitioning techniques to decrease the overlap between elements and exploit the sparsity within large elements.

In any of these cases we will need an outer sequential loop over the colors. In the first case there is both a vector and a parallel loop over the elements—we need many of the elements to be of the same size in each color as the same calculations will be performed on each element. In the second case there is a parallel loop over the elements and the treatment of each element is vectorized—of course, the length of vectors is limited by the element sizes. In the third case there is a parallel loop over the elements and the vectorization is limited by the sparsity of the elements.
If we intend to solve large problems with small elements, the first approach is certainly the best and has been successfully applied to finite element problems. Within a particular color, any element with less than the maximum dimension should be padded with zeros. If the elements are large enough with a range of different sizes, we should opt for the second. The third approach will allow us to handle larger amalgamated elements than the other approaches, which might be profitable from the point of view of numerical quality of the preconditioners. Sparse matrix techniques should be used to compute the factors of the Winget decompositions of the elements, while different graph partitioning techniques need to be studied both for numerical efficiency of the preconditioners and parallel implementation. However, the granularity may become quite large and a compromise should be found between the following:

1. using large elements with low overlap, and
2. maintaining sufficient elements for an efficient parallelization while avoiding an increase in the work at each iteration.

The third approach might be the best for very large ill-conditioned problems. In any event, the three implementations are of interest and maybe a dynamic choice is possible. We shall report on this in a future paper.

Finally, we are currently incorporating these preconditioning techniques within the LANCELOT package, profiting from the preprocessing to optimize other parts of the algorithm such as the matrix–vector products and linear solvers.

Acknowledgments. The authors are extremely grateful to Iain Duff, Stephen Nash, Andy Wathen, and an anonymous referee for their careful reading of, and useful comments on a previous draft of this paper.

REFERENCES

[33] Y. Saad (1990), SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations, Tech. report CSRD TR #1029, Center for Supercomputing Research and Development, University of Illinois, Urbana, IL.

