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MICHEL J. DAYDÉ† , JEAN-YVES L’EXCELLENT‡ , AND NICHOLAS I. M. GOULD§

SIAM J. SCI. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 18, No. 6, pp. 1767–1787, November 1997 012

Abstract. We study the solution of large-scale nonlinear optimization problems by methods
which aim to exploit their inherent structure. In particular, we consider the property of partial sepa-
rability, first studied by Griewank and Toint [Nonlinear Optimization, 1981, pp. 301–312]. A typical
minimization method for nonlinear optimization problems approximately solves a sequence of sim-
plified linearized subproblems. In this paper, we explore how partial separability may be exploited
by iterative methods for solving these subproblems. We particularly address the issue of computing
effective preconditioners for such iterative methods. We concentrate on element-by-element precon-
ditioners which reflect the structure of the problem. We find that the performance of these methods
can be considerably improved by amalgamating elements before applying the preconditioners. We
report the results of numerical experiments which demonstrate the effectiveness of this approach.
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1. Introduction. In this paper, we study algebraic aspects of the numerical so-
lution of large-scale unconstrained optimization problems. To be specific, we suppose
that we wish to minimize a partially separable objective function f(x). The function
f is said to be partially separable (see [15] and [17]) if

f(x) =
p∑
i=1

fi(x),(1.1)

where each element function fi has a large invariant subspace. Typically, this occurs
when fi(x) is only a function of a small subset of the variables x, but may, of course,
happen for other reasons (see, for example, [5]). The decomposition (1.1) is extremely
general. Indeed, Griewank and Toint [16] show that any sufficiently differentiable
function with a sparse Hessian matrix may be expressed in this form.

In this paper, we shall be concerned with those partially separable functions for
which

f(x) =
p∑
i=1

fi(xi),(1.2)

where
1. each set of local variables, xi ∈ <ni , is a subset of the global variables, x ∈ <n,

and
2. ni � n.
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Thus, the Hessian matrix of each fi is a low-rank, sparse matrix—typically it will
differ from the zero matrix only in a full block in the rows and columns corresponding
to the variables xi. The overall Hessian is thus the sum of extremely sparse matrices,
the element Hessians, and is thus frequently itself also sparse.

In unconstrained optimization, one is normally concerned with obtaining an (ap-
proximate) solution d to the Newton equations

∇xxf(x)d = −∇xf(x).(1.3)

If f has the form (1.2), these equations become(
p∑
i=1

∇xxfi(xi)
)
d = −

p∑
i=1

∇xfi(xi).(1.4)

We are thus concerned with constructing efficient methods for solving systems of this
form which exploit the algebraic structure as fully as possible.

Putting this in a more general context, we suppose that the real, symmetric, n×n
matrix H may be expressed as

H =
p∑
i=1

Hi,(1.5)

where the symmetric elementary matrixHi only has nonzeros in ni rows and columns.
We consider solving the linear system

Hd =

(
p∑
i=1

Hi

)
d = −g,(1.6)

where H is large and normally positive definite. Clearly, the system (1.4) is of this
form. Similar linear systems arise when solving constrained optimization problems
using augmented Lagrangian methods (see, for example, [20], [31], and [5]), and when
using finite element methods to solve elliptic partial differential equations (see, for
instance, [38]). Both direct and iterative methods may be appropriate for solving (1.6).
Frontal or multifrontal direct (factorization) methods (see, for example, [26], [9], and
[32]) are appropriate so long as there is room to store the fill-in which occurs during
the matrix factorization. If this is not the case, one is forced to consider iterative
methods. The symmetry and definiteness of H normally makes the preconditioned
conjugate gradient method (see, for example, [14]) the method of choice. The difficulty
is, of course, the choice of an effective preconditioner (see [3] for a discussion of general
issues).

When designing an iterative solver for the solution of (1.6), certain features appear
to be desirable or even crucial.

1. Since the matrix (1.5) is initially unassembled, we do not especially want to
assemble it.

2. We would like to find a preconditioner that can be computed elementwise.
It is also desirable not to have to assemble this preconditioner.

3. The computations involved in forming and using the preconditioner should
ideally be vectorizable and parallelizable, since we are interested in solving large prob-
lems. Note that in the conjugate gradient method, the most time consuming parts at
each iteration are the matrix–vector product and the operation of the preconditioner
on a vector. As the matrix–vector product can be easily parallelized, it is thus crucial
to parallelize the preconditioning operation.
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4. In an optimization context, it is important that the matrix (1.5) be positive
definite, as otherwise the solution to the Newton equations (1.4) may not be a descent
direction for f . As there is no absolute guarantee that the matrix (1.5) is positive
definite, we would thus like to be able to detect when the matrix is indefinite. There-
after, we may perturb the original matrix so that in all cases we compute the solution
of a positive definite system (see [28] and [2]).

The LANCELOT package for the solution of large-scale nonlinear optimization
problems uses a variety of techniques to solve systems of the form (1.4). As well
as direct methods, the package allows the use of conjugate gradients with various
preconditioners. These include the following:

1. diagonal preconditioners,
2. band preconditioners,
3. incomplete Cholesky preconditioners,
4. expanding band preconditioners, and
5. full-matrix factorization preconditioners.

Further details are given in [6].
We have decided to explore other alternatives, keeping in mind that the pre-

conditioners should take advantage of the structure of the problems given by the
partial separability and that we must be able to ensure that the preconditioners are
symmetric positive definite. Thus, in this paper, we study the use of the following
element-by-element preconditioners:

1. The element matrix factorization (EMF) of Gustafsson and Lindskog [19]
based on a Cholesky factorization of each element.

2. The finite element preconditioner (FEP) of Kaasschieter [27].
3. The one-pass (EBE) and two-pass (EBE2) element-by-element precondition-

ers of Hughes, Levit, and Winget [25] and Ortiz, Pinsky, and Taylor [30] initially
described and used in the context of finite element techniques for partial differential
equations.

4. The “Gauss–Seidel” EBE preconditioner (GS EBE).
In section 2, we consider how these element-by-element preconditioners perform

on examples from a variety of application areas. In section 3, we make some remarks
on the influence of the partitioning of the matrix (1.5) into elementary matrices,
and show how the methods considered in section 2 may be improved by merging the
elements.

We use the following notation: we let I denote the (appropriately dimensioned)
identity matrix and we let ∆(A) be the diagonal matrix whose diagonals are the
diagonals of A.

2. Finite element preconditioners. In this section, we review the range of
element-by-element preconditioners which have been proposed for solving the linear
systems that arise from finite element solution of partial differential equations. We
note that specific error analyses are possible for particular classes of model differential
equations, but a more general analysis is most likely impossible. Thus, all of the
preconditioners should be viewed as heuristics which aim to approximate (1.5) at low
cost.

2.1. Connectivity matrices. As we are assuming that the element matrix
Hi ∈ <n×n has nonzeros in just ni rows and columns, we may write

Hi = CT
i H

e
iCi,(2.1)
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where the rows of the connectivity matrix Ci ∈ <ni×n are simply the rows of the n×n
identity matrix corresponding to the variables used in the element, and He

i ∈ <ni×ni
is a symmetric matrix which is dense in general. In what follows, we shall say that
Hi is positive definite when strictly we mean that He

i is positive definite.

2.2. Element matrix factorization. First, we assume that the elementary
matrices He

i are positive definite. Gustafsson and Lindskog [19] suggest forming a
preconditioner by factorizing each elementary matrix into

He
i = LeiL

eT
i ,(2.2)

where Lei ∈ <ni×ni is a lower triangular matrix. The preconditioner is then

PEMF =

(
p∑
i=1

Li

)(
p∑
i=1

Li

)T
,(2.3)

where Li = CT
i L

e
iCi ∈ <n×n. If the numbering of the local variables in each element

is in increasing order corresponding to the global variables, it is clear that
∑p
i=1Li

is also lower triangular and thus (2.3) is easy to invert. If this is not the case, local
variables should be permuted in the elements so that

∑p
i=1Li is lower triangular.

More generally, letting Li = L̄i+Di, where L̄i ∈ <n×n is the strictly lower triangular
part of Li and Di = ∆(Li) ∈ <n×n is the diagonal of Li, we might choose

PEMF (θ) =

(
(1 + θ)−1

p∑
i=1

L̄i + (1 + θ)
p∑
i=1

Di

)(
(1 + θ)−1

p∑
i=1

L̄i + (1 + θ)
p∑
i=1

Di

)T
,

(2.4)
where θ is a nonnegative parameter. In our experiments for simplicity we choose
θ = 0, but other choices have been suggested by Gustafsson and Lindskog [19] for
finite element applications.

2.3. Finite element preconditioner. If He
i is positive semidefinite, Kaasschi-

eter [27] has suggested using the alternative element factorization

He
i = (De

i + L̄ei )D
e+
i (De

i + L̄eTi ),(2.5)

where De+
i ∈ <ni×ni is the pseudoinverse of De

i ∈ <ni×ni . Writing Di = CT
i D

e
iCi ∈

<n×n and Li = CT
i L̄

e
iCi ∈ <n×n, the FEP is

P FEP =

(
p∑
i=1

Di +
p∑
i=1

L̄i

)(
p∑
i=1

Di

)−1( p∑
i=1

Di +
p∑
i=1

L̄
T
i

)
.(2.6)

This preconditioner was also studied by Wathen [37].

2.4. The EBE preconditioner. EBE preconditioners were introduced by
Hughes, Levit, and Winget [25] and Ortiz, Pinsky, and Taylor [30] and have been
successfully applied in a number of applications in engineering and physics (see, for
example, [23], [24], and [11]). A detailed analysis of this technique is given by Wathen
[36].

We assume that H is positive definite and express H as

H =
p∑
i=1

M i +
p∑
i=1

(Hi −M i) = M +
p∑
i=1

(Hi −M i),(2.7)
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where M i = ∆(Hi) and M =
∑p
i=1M i. Let M = LML

T
M be the Cholesky factor-

ization of M ; of course, LM is simply a diagonal matrix. Then,

H = LM

(
I +

p∑
i=1

L−1
M (Hi −M i)L−TM

)
LTM = LM

(
I +

p∑
i=1

Ei

)
LTM ,(2.8)

where we have defined Ei = L−1
M (Hi −M i)L−TM ∈ <n×n. Now consider the sum

I +
∑p
i=1Ei. A simple calculation reveals that

I +
p∑
i=1

Ei ≈
p∏
i=1

(I +Ei),(2.9)

where the error in the approximation may be expressed in terms of second- and higher-
order products of the components Ei and Ej with i 6= j. Thus I +

∑p
i=1Ei is well

approximated by
∏p
i=1(I + Ei) if the the norms of the terms involving products of

the Ei are small compared to one. This may be true for various reasons.
1. Individual Ei may be small or zero. This is likely to be true if Hi is strongly

diagonal dominant.
2. The product of the overlapping components Ei and Ej is small or zero.

Note that the order used for writing the product is not without importance. The
preconditioner has to be symmetric as we intend to use conjugate gradients. The Ei

are symmetric matrices but EiEj is, in general, not. There are, of course, ways of
symmetrizing the approximation (2.9), such as writing

I +
p∑
i=1

Ei ≈
(

p∏
i=1

(I + 1/2Ei)

) 1∏
i=p

(I + 1/2Ei)

 ,(2.10)

but a discussion of probably the best such scheme is deferred until section 2.5.
The first fundamental feature of the EBE preconditioner is that we replace I +∑p

i=1Ei by
∏p
i=1(I +Ei) in (2.8). We then assume that I +Ei is positive definite

and has an LDLT factorization

W i
def= I +Ei = LiDiL

T
i ;(2.11)

the matrix W i ∈ <n×n is known as the Winget decomposition of Hi (see [25]). In
this case, (2.8), (2.9), and (2.11) imply that

H ≈ LM

(
p∏
i=1

LiDiL
T
i

)
LTM .(2.12)

Unfortunately, (2.12) is normally unsymmetric, and thus is not a satisfactory precon-
ditioner. However, if we further assume that a rearrangement of the product

p∏
i=1

LiDiL
T
i ≈

(
p∏
i=1

Li

)(
p∏
i=1

Di

) 1∏
i=p

LTi

(2.13)

introduces little additional error, we obtain the matrix

PEBE = LM

(
p∏
i=1

Li

)(
p∏
i=1

Di

) 1∏
i=p

LTi

LTM ,(2.14)
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which may be used as a preconditioner for H. Such a matrix is known as the EBE
preconditioner. Note that the second approximation (2.13) is, as the previous one,
exact if there is no overlap between the blocks and will be good under exactly the
same circumstances as its predecessor.

Clearly, the efficiency of the EBE preconditioner depends on the partitioning
of the initial matrix and on the size of the off-diagonal elements of the elementary
matrices. In order to solve efficiently the system of equations PEBEx = y, we exploit
the decomposition (2.14). We are free to order the elements in any way we choose and
may thus encourage parallelism by consecutively ordering nonoverlapping elements so
that we can perform groups of forward and backsolve in parallel.

Generalizations of these ideas have been suggested by Daydé, L’Excellent, and
Gould [8] but have rarely proved to yield significant improvements over the methods
described above.

2.5. Two-pass EBE preconditioners. Here we consider another proposal in
the same vein (see [22]). We proceed, as in section 2.4, to approximate the sum I +∑p
i=1Ei by a product of invertible matrices. We dismissed using the approximation

(2.12) as a preconditioner because of its nonsymmetry. Instead, we combine (2.8) and
the relationship

I +
p∑
i=1

Ei ≈
p∏
i=1

(I + 1/2 Ei)
1∏
i=p

(I + 1/2 Ei)(2.15)

to give the preconditioner

PEBE2 = LM

(
p∏
i=1

(I + 1/2 Ei)

) 1∏
i=p

(I + 1/2 Ei)

LTM .(2.16)

Note that (2.16) is positive definite if and only if all the matrices I + 1/2 Ei are
nonsingular. To use this preconditioner, we merely require that each I + 1/2 Ei is
invertible, and to be able to solve systems of equations of the form PEBE2x = y
efficiently.

As before, we are free to order the elements in any way we choose and may thus
encourage parallelism by consecutively ordering nonoverlapping elements. We may
also choose to obtain explicit inverses of the I+1/2 Ei to exploit vectorization in the
forward and back substitutions.

The main problem with the approximation (2.16) is that the error terms 1/4 Ei
2,

which result from the approximation (2.15), are nonzero even if there is little overlap
between distinct element Hessians Ei and Ej (i 6= j). Furthermore, as a solve using
EBE2 is roughly twice as expensive as one with EBE, in practice EBE2 is less efficient
than EBE. But it can be attractive if we use inverse or approximate inverse elements
or if we can find a way to subtract the terms 1/4 Ei

2 in the solve. One can use
higher-order approximations (see [8]), but these do not offer real improvements.

2.6. The GS EBE preconditioner. The GS EBE preconditioner is based on
the same decomposition as the EBE preconditioner. But instead of using a Crout
factorization, we instead form the decomposition

Ei = Li +LTi ,(2.17)
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where Li is a strictly lower triangular matrix. The preconditioner is then

PGS = LM

p∏
i=1

(I +Li)
1∏
i=p

(I +LTi )LTM .(2.18)

The advantage of this preconditioner is, obviously, that it is very easy to construct. In
fact, if the matrix is initially scaled so that its diagonals are ones, the preconditioner
need not be explicitly constructed. The principal drawback is that it is not exact,
even when there is no overlap between element Hessians, because of the terms LiLTi ,
which arise when approximating I +

∑p
i=1Ei by

∏p
i=1(I +Li)

∏1
i=p(I +LTi ).

2.7. Definiteness of the preconditioner. The preconditioning matrix P for
the conjugate gradient method should be positive definite. In the context of optimiza-
tion problems, we have no guarantee that H and a fortiori P are positive definite.
We describe here a simple strategy that guarantees that P is positive definite. Note
that if the elementary matrices He

i are positive definite, H will be positive definite.
We also note that when considering the EBE and EBE2 preconditioners, a sufficient
condition for P to be positive definite is that all the He

i , and hence the I +Ei, are
as follows: if He

i positive definite for all i, so are I +Ei and I + 1/2 Ei. However,
this is not necessary since the I+Ei and P may be positive definite even if some He

i

are not. Griewank and Toint [18] study conditions under which partially separable
functions have convex decompositions, that is, those functions whose Hessian matrix
is the sum of positive semidefinite element Hessians.

The preconditioners we have considered in this section all depend upon the de-
composition of a collection of matrices W i, where W i = Hi, I +Ei or I + 1/2 Ei

depending on the preconditioner. Thus it seems natural to consider the use of a
modified Cholesky factorization for these decompositions to guarantee that the pre-
conditioner is positive definite. We use the modified Cholesky factorization proposed
by Schnabel and Eskow [34] that computes the Cholesky factorization of a matrix
W i if it is positive definite, or the Cholesky factorization of W i +Bi, where Bi is
a nonnegative diagonal matrix, otherwise. There is no need to know a priori if W i

is positive definite and the matrix Bi is determined during the factorization process.
This modified Cholesky factorization exhibits marginally better properties in terms
of computational costs and upper bound on ‖W i‖∞ than those described by Gill and
Murray [12], and Gill, Murray, and Wright [13].

The main drawback of such a strategy for forming the preconditioner is that we
may perturb W i even if the initial matrix is positive definite. Before attempting
to form the preconditioner, we should first amalgamate elementary matrices whose
sparsity structure lies completely within that of another element. We might also
consider amalgamating indefinite elements with positive definite ones if the composite
element is positive definite, even if this means introducing structural zeros, that is,
zeros within the element. The amalgamation of an indefinite element might, for
example, be made with the elementary matrix having the largest intersection. While
we have not developed a fail-safe scheme here, the simple strategy just presented
appears to work well in practice.

2.8. Experiments with element-by-element preconditioners. A number
of these preconditioners are known to work well in practice when applied to classes
of problems arising from partial differential equations. In this section, we aim to
investigate whether these preconditioners are effective in the more general context of
systems which arise from partially separable optimization applications. Although our
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experiments are far from exhaustive, they do lead to interesting conclusions and are
helpful in deciding future directions of research.

Preliminary experiments were performed by Daydé, L’Excellent, and Gould [8] on
structured matrices for which the overlap between successive elements was varied. It
appeared that element-by-element preconditioners, and particularly EBE, were more
effective than diagonal preconditioning as long as there was low overlap between el-
ements. In this case the clustering of eigenvalues of the preconditioned problem was
seen to be significantly better than for the unpreconditioned and diagonally precon-
ditioned methods, especially when the problems were ill conditioned.

We now aim to consider real matrices which arise from both PDE and optimization
applications.

2.8.1. Set of test matrices. The matrices come either from the Harwell–
Boeing collection (CEGB2802, MAN5976, LOCK3491) (see [10]), or are problems
in SIF format from the CUTE collection (see [4]). In the case of the Harwell–Boeing,
we removed all rows and columns which corresponded to unused variables. Further-
more, we have used random numerical values because they were originally not present.
Since the choice of these values influences the conditioning of the matrices, and since
this conditioning is relevant to the performance of our solution techniques, we have
created two instances of CEGB2802 with significantly differing spectra.

The patterns of CEGB2802 and LOCK3491 arise from structural engineering
problems; MAN5976 comes from deformation problems; MAT32 and MAT33 are finite
element matrices generated with the SPARSKIT software (see [33]), TORSION1 and
NOBNDTOR are quadratic elastic torsion problems arising from an obstacle problem
on a square, NET3 is a very ill-conditioned example which arises from the optimiza-
tion of a high pressure gas network, and CBRATU3D is obtained by discretizing a
complex 3D PDE problem in a cubic region. BDEXP, BROYDN7D, and SINQUAD
are artificial problems, BDEXP involving a band of exponential terms, BROYDN7D
having seven bands, and SINQUAD featuring a nonbanded sparsity pattern. SEMI-
CON2 is a discretized semiconductor problem, while ZIGZAG is a nonlinear optimal
control problem with both state and control constraints. SPMSQRT is a tridiagonal
matrix square root problem, and CLPLATEB comes from the discretization of the
clamped plate problem. Finally, HYDROELL is a hydroelectric reservoir manage-
ment problem, while GAUSSELM is the problem of maximizing growth in Gaussian
elimination with complete pivoting.

A summary of each problem characteristics is given Table 2.1, where n is the
order of the matrix, p is the number of elements, and κ is the condition number. The
degree of overlap is the average number of elements containing each variable, that is,
the sum of the element dimensions divided by the order of the matrix.

2.8.2. Results on test matrices. We ran the preconditioned conjugate gradi-
ent method (see, for example, [14]) to solve the system Hx = b, starting with the
estimate x = 0, and stopping as soon as ‖Hx−b‖2 < 10−9‖b‖2. The right-hand side
b was either (1, 1, . . . , 1)T , or problem dependent. All of the experiments reported
in this paper were performed in double precision on a single processor of an Alliant
FX/80, with vectorization of the inner loops of the solves and the matrix–vector
products.

The results of the execution of the preconditioned conjugate gradient algorithm
obtained for different preconditioners on our test problems are given in Tables 2.2
and 2.3, where tprec is the time to compute the preconditioner, #its is the number of
iterations, tconv is the time for convergence, and tit is the time per iteration.
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TABLE 2.1
Summary of the characteristics of each test problem.

Min Max Mean
Problem n p element element element Degree of κ

name size size size overlap

CEGB2802 2694 108 42 60 58.7 2.4 2.5× 102

CEGB2802 2694 108 42 60 58.7 2.4 5.7× 104

MAN5976 5882 785 20 20 20.0 2.7 5.0× 101

LOCK3491 3416 684 6 24 19.8 4.0 1.3× 102

MAT32 57 157 1 3 2.2 6.0 1.3× 101

MAT33 637 273 1 3 2.6 6.0 5.5× 101

BIGGSB1 998 1001 0 2 2.0 2.0 4.0× 105

TORSION1 3360 3792 1 5 4.4 5.0 6.7× 100

NOBNDTOR 480 562 1 5 4.2 4.9 1.8× 102

CBRATU3D 4934 4934 5 8 7.5 7.5 3.4× 101

NET3 512 531 1 6 2.6 2.7 2.4× 109

BDEXP 5000 4998 3 3 3.0 3.0 2.8× 102

SEMICON2 1000 1000 2 3 3.0 3.0 2.3× 107

BROYDN7D 10000 15000 2 3 2.7 4.0 1.6× 101

ZIGZAG 465 600 1 3 2.3 2.9 3.1× 105

SPMSQRT 1000 1664 2 5 3.0 5.0 4.2× 102

CLPLATEB 4970 19601 1 71 2.0 7.9 1.6× 104

SINQUAD 5000 5000 1 3 3.0 3.0 4.6× 108

HYDROELL 1008 1009 1 215 1.44 1.44 1.9× 108

GAUSSELM 1128 1136 1 5 3.41 3.44 8.8× 106

We observe that, unlike the structured matrices of Daydé, L’Excellent, and Gould
[8], element-by-element preconditioners do not appear to be significantly more effective
than diagonal preconditioning on many of the current test examples. However, we
notice that as we might hope, these preconditioners often appear to be more effective
than their diagonal counterparts for the ill-conditioned problems, even if the time per
iteration for the former is invariably larger than for the latter.

2.8.3. Remarks on the storage and the vectorization. Thus far, we have
reported on experiments where packed storage is used for element matrices, that is,
where we store only the lower triangular part of each element. In Table 2.4, we
compare the time per iteration for runs using the matrix CEGB2802 in which we
consider both packed or full storage of the element matrices. We performed the tests
on a variety of preconditioners and consider the performance both with and without
vectorization. Only the inner loops were vectorized, with vectors of length no larger
than 60.

It appears that the full storage is more efficient for vectorized conjugate gradients
without, or with diagonal, preconditioning and less efficient for preconditioners involv-
ing triangular solves. This is due to the relative efficiency of the computational kernels
used both for the matrix–vector products and the triangular solves. An interesting
strategy—if extra workspace were available—would be to use full storage for the Hes-
sian, because of the beneficial effect on matrix–vector products, and packed storage
for the preconditioners, because of the advantages this gives for triangular solves.

The gain due to vectorization is between 2 and 5, depending on the preconditioner
and the storage applied. We would expect to improve these ratios, for example, with
longer vectors or more powerful vector computers.

Instead of using factorizations of the W i, it might be better to form explicit
inverses, as the sequence of solves may then be replaced by a sequence of matrix–
vector products. This has some advantage in terms of using tuned BLAS routines
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TABLE 2.2
Results for our test problems (I).

Problem Precondi-
name tioner tprec #its tconv tit

BIGGSB1 NONE 0.001 499 33.217 0.066
DIAG 0.028 499 33.352 0.067

κ = 4.04× 105 EBE 0.238 333 74.831 0.224
EBE2 0.221 328 121.876 0.370

GSEBE 0.101 334 74.637 0.223
EMF 0.189 4 0.408 0.082
FEP 0.454 4 0.418 0.084

CBRATU3D NONE 0.001 53 33.640 0.623
DIAG 0.193 53 33.740 0.625

κ = 3.4× 101 EBE 5.666 20 39.851 1.898
EBE2 5.396 20 66.153 3.150

GSEBE 1.219 19 37.840 1.892
EMF 12.244 60 71.683 1.175
FEP 11.146 35 42.481 1.180

CEGB2802 NONE 0.001 121 28.858 0.237
DIAG 0.033 35 8.550 0.237

κ = 2.5× 102 EBE 6.249 12 7.617 0.586
EBE2 6.100 11 10.838 0.903

GSEBE 0.549 17 10.498 0.583
EMF 26.265 47 67.783 1.412
FEP 25.749 26 38.203 1.415

CEGB2802 NONE 0.001 2032 485.604 0.238
DIAG 0.033 657 156.278 0.238

κ = 5.7× 104 EBE 6.239 120 70.931 0.586
EBE2 6.098 145 131.965 0.904

GSEBE 0.550 329 192.571 0.584
EMF 26.258 708 1001.524 1.413
FEP 25.749 575 815.452 1.416

LOCK3491 NONE 0.001 68 19.995 0.290
DIAG 0.068 24 7.256 0.290

κ = 1.3× 102 EBE 4.597 9 7.809 0.781
EBE2 4.442 9 12.505 1.251

GSEBE 0.659 11 9.318 0.776
EMF 11.674 62 61.764 0.980
FEP 11.263 23 23.605 0.984

MAN5976 NONE 0.001 68 23.276 0.337
DIAG 0.084 28 9.826 0.339

κ = 5.0× 101 EBE 5.098 10 9.892 0.899
EBE2 4.925 11 17.201 1.433

GSEBE 0.790 12 11.587 0.891
EMF 12.207 43 57.724 1.312
FEP 11.698 25 34.276 1.318

MAT32 NONE 0.001 21 0.242 0.011
DIAG 0.004 21 0.241 0.011

κ = 1.3× 101 EBE 0.040 14 0.552 0.037
EBE2 0.036 12 0.781 0.060

GSEBE 0.016 15 0.579 0.036
EMF 0.049 23 0.298 0.012
FEP 0.061 18 0.244 0.013

MAT33 NONE 0.001 48 2.221 0.045
DIAG 0.017 48 2.227 0.045

κ = 5.5× 101 EBE 0.193 28 4.460 0.154
EBE2 0.178 24 6.439 0.258

GSEBE 0.067 30 4.755 0.153
EMF 0.236 438 23.140 0.053
FEP 0.342 110 5.866 0.053

NET3 NONE 0.001 3739 156.287 0.0418
DIAG 0.015 1558 61.930 0.040

κ = 2.4× 109 EBE 0.174 694 91.401 0.132
EBE2 0.162 560 122.796 0.219

GSEBE 0.063 731 95.894 0.131
EMF 0.330 731 106.298 0.145
FEP 0.325 731 106.910 0.146

NOBNDTOR NONE 0.001 68 3.621 0.052
DIAG 0.019 68 3.609 0.052

κ = 1.8× 102 EBE 0.297 30 5.216 0.168
EBE2 0.279 33 9.541 0.281

GSEBE 0.089 31 5.365 0.168
EMF 0.567 28 1.932 0.067
FEP 0.525 27 1.874 0.067
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TABLE 2.3
Results for our test problems (II).

Problem Precondi-
name tioner tprec #its tconv tit

TORSION1 NONE 0.001 24 9.246 0.370
DIAG 0.130 25 9.627 0.370

κ = 6.7× 100 EBE 2.072 9 11.769 1.177
EBE2 1.942 11 23.497 1.958

GSEBE 0.647 10 12.893 1.172
EMF 2.027 13 6.324 0.452
FEP 1.835 11 5.446 0.454

BDEXP NONE 0.001 38 15.182 0.389
DIAG 0.145 34 13.604 0.389

κ = 2.8× 102 EBE 0.556 11 15.684 1.307
EBE2 0.361 13 30.734 2.195

GSEBE 0.205 13 18.450 1.318
EMF 2.826 28 14.871 0.513
FEP 2.883 19 10.267 0.513

BROYDN7D NONE 0.001 24 27.574 1.103
DIAG 0.411 21 24.290 1.104

κ = 1.6× 101 EBE 1.464 8 33.833 3.759
EBE2 0.970 9 62.855 6.286

GSEBE 0.572 9 37.786 3.779
EMF 7.712 11 16.786 1.399
FEP 7.739 9 14.025 1.403

CLPLATEB NONE 0.001 376 488.230 1.295
DIAG 0.477 382 494.302 1.291

κ = 1.6× 104 EBE 1.445 136 608.875 4.444
EBE2 0.965 161 1204.206 7.433

GSEBE 0.641 135 606.905 4.463
EMF 6.699 124 177.545 1.420
FEP 6.602 123 175.707 1.417

SINQUAD NONE 0.001 4 1.978 0.396
DIAG 0.147 4 1.973 0.395

κ = 4.6× 108 EBE 0.562 4 6.615 1.323
EBE2 0.365 8 19.869 2.208

GSEBE 0.206 5 7.986 1.331
EMF 41.258 6 3.625 0.518
FEP 41.303 4 2.593 0.519

HYDROELL NONE 0.001 167 13.748 0.082
DIAG 0.026 109 9.006 0.082

κ = 1.9× 108 EBE 0.223 51 13.471 0.259
EBE2 0.188 54 23.139 0.421

GSEBE 0.058 48 12.693 0.259
EMF 0.377 54 5.079 0.092
FEP 0.353 35 3.331 0.093

GAUSSELM NONE 0.001 2000 195.908 0.098
DIAG 0.035 879 86.256 0.098

κ = 8.8× 106 EBE 0.141 404 129.222 0.319
EBE2 0.098 359 191.194 0.531

GSEBE 0.049 405 130.311 0.321
EMF 1.525 405 420.053 1.035
FEP 1.542 405 421.159 1.037

ZIGZAG NONE 0.001 719 32.728 0.045
DIAG 0.016 439 19.972 0.045

κ = 3.1× 105 EBE 0.056 151 22.244 0.146
EBE2 0.035 178 43.333 0.242

GSEBE 0.022 156 23.096 0.147
EMF 0.232 156 172.603 1.099
FEP 0.239 156 172.714 1.100

SPMSQRT NONE 0.001 173 23.581 0.136
DIAG 0.046 128 17.490 0.136

κ = 4.2× 102 EBE 0.209 44 20.003 0.445
EBE2 0.153 45 34.024 0.740

GSEBE 0.067 46 20.984 0.446
EMF 0.871 137 23.708 0.172
FEP 0.911 115 19.918 0.172

to form the products. For EBE2, this could be especially useful since two triangular
solves would be replaced by only one matrix–vector product. Unfortunately, the
elements in our examples are typically small, and we did not observe any benefit from
such a strategy.
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TABLE 2.4
Time per iteration in CEGB2802.

Preconditioner Scalar mode Vector mode
used Packed Full Packed Full

NONE 0.613 1.02 0.237 0.214
DIAG 0.618 1.03 0.237 0.217
EBE 1.52 1.98 0.586 0.594
EBE2 2.40 2.92 0.903 0.970

GS EBE 1.52 1.97 0.583 0.591

2.9. Conclusions on the use of element-by-element preconditioners.
The results of the previous section indicate that element-by-element precondition-
ers are effective, in terms of the numbers of iterations required and the clustering of
eigenvalues of the preconditioned Hessian, particularly if the overlap between blocks is
small. EBE seems to be the best of our block preconditioners and it does not require
any assembly of the matrix. EMF and FEP do not require an assembly of the matrix
either, but the resulting triangular incomplete factors need to be partially assembled,
which can make each solve rather costly for large matrices. Their numerical properties
depend a lot on the problem, being sometimes better but more often worse than other
preconditioners.

A disadvantage of EBE2 and GS EBE is that the terms 1/4 E2
i and LiW−1LTi

may give rise to poor approximations even when there is little overlap between ele-
ments. If there is significant overlap, the efficiency of EBE2 and GS EBE is close to
that observed for EBE. Usually, the number of iterations required by EBE is smaller
than that for EBE2 which is, in turn, smaller than that for GS EBE; the only case
where this is not so is for problems with very large overlap. As GS EBE is the easiest
preconditioner to construct, it may be beneficial to use GS EBE when we do not need
much accuracy in the solution of our system, as, for example, is common in the early
stages of optimization calculations. However, in more general cases, we prefer EBE.

We have not found it useful to replace the triangular solves by products of inverses.
To obtain some benefit from this, we would need larger elements so as to exploit better
vectorization/parallelization.

A difficulty for general matrices is that we have no a priori information on the
sizes of the elements. On finite element problems, typically all elements have the same
size. We may thus color the elements, that is, partition the complete set of elements
into subsets, or colors, of independent (nonoverlapping) elements, to encourage both
vectorization and parallelization. In our case, vectorization is restricted to the han-
dling of each individual element, so is not usually very effective. A potentially better
strategy would be to vectorize at a coarser level, treating blocks of elements of the
same size within each color together.

In our experiments, except for ill-conditioned problems, EBE is not significantly
more efficient than diagonal preconditioning. We believe that this is true for three
reasons. The first is because of the structure of the elements. When there is lower
overlap, EBE appears much more efficient than diagonal preconditioning. Amalga-
mating elements may reduce the number of iterations by decreasing the degree of
overlap in the new partition. Second, the vectorization here is not as efficient as it
could be. If we knew a priori that all blocks have the same size, it would be possible
to vectorize the solve more efficiently, as was reported in previous experiments by, for
example, Erhel, Traynard, and Vidrascu [11]. Third, no coloring, parallelization, and
specific code optimizations have yet been carried out.
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Finally, we believe that further study on real problems with less regular matrix
structures will inevitably lead to a better understanding of the classes of problems for
which each of the preconditioners we have considered is particularly appropriate.

3. Remarks on the importance of element regrouping. Let f(x) be of the
form (1.2). Clearly, the decomposition (1.2) may not be unique, and different decom-
positions may significantly affect the performance of the preconditioners considered
in this paper. In some of the experiments reported in the previous chapter, the lim-
itation in performance of the conjugate gradient method, both for vectorization and
parallelization, is due to a nonoptimal choice of the decomposition. Indeed, frequently
the local variable set for one element may be completely contained within another and
it would pay to merge the two elements into a single superelement or group. More
generally, the local variable sets for two elements may significantly overlap and again
it may be advantageous to merge the elements into a single group.

Conn, Gould, and Toint [7] have considered this problem from the point of view
of improving the matrix–vector products at the heart of many iterative methods for
minimizing partially separable functions. In this section our scope is larger in that we
hope to produce more effective preconditioners by amalgamating similar elements.

The goal of our amalgamation algorithm process is to merge elements which in-
volve many common variables. This will not only decrease the amount of work per
iteration but should also improve the quality of the element-by-element precondi-
tioner. A secondary target, which we have not considered here, might be to ensure
that the merged elements are of similar sizes so that a coloring of the elements will
provide significant gains from vectorization and parallelization (see our comments in
section 2.9).

It is clear that determining an optimal partitioning of the elements into groups
may be costly, or even impossible. Frequently, the construction of an initial decom-
position of f into elements by a user depends more on considerations on the ease of
expressing the function and its derivatives, rather than considerations of computa-
tional performance. It is our experience with many of the test examples in the CUTE
package (see [4]), for example, that the overlap between elements is high (and even
that some elements are entirely subsumed by other elements). Therefore, we regard
it to be crucial for performance to determine a heuristic to partition the original sets
of elements into computationally attractive disjoint groups.

3.1. Goals of the regrouping technique. Let x = (x1, x2, . . . , xn)T , xi be
the set of local variables involved in the elementary function fi, for 1 ≤ i ≤ p, and Vi
be the set of indices of xi. For example, if

f(x1, x2, x3) = f1(x1, x2) + f2(x2, x3),

we have

x1 = {x1, x2},x2 = {x2, x3},V1 = {1, 2} and V2 = {2, 3}.

Our aim is to partition the index set of elements, P def= {1, . . . p}, into a collection
of groups {Gk} such that

1.
⋃
Gk = P;

2. Gk
⋂
Gl = ∅ for k 6= l;

3. if elements i and j ∈ Gk, either Vi \ Vj or Vj \ Vi is small;
4. if element i ∈ Gk and element j ∈ Gl, (k 6= l), both Vi \ Vj and Vj \ Vi are

large.
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Thus, each group aims to collect elements whose overlap is large, while keeping the
overlap between groups small.

Once the groups have been determined, all of the elements indexed by a single
group will be summed to form a superelement. Thereafter, the algorithms described
in section 2 of this paper should be applied to the sum of superelements,

f(x) =
∑
k

sk(x), where sk =
∑
i∈Gk

fi(xi).(3.1)

3.2. Possible amalgamation algorithms. A natural approach, frequently used
in sparse linear algebra (see [9] and [1]), is to amalgamate two elements into a group
if their overlap is large. The main difficulty is to define a suitable heuristic to control
the amalgamation process.

We start by assigning the index of each element to its own group. We call such
a group an elementary group and denote the group as Gi = {i}, 1 ≤ i ≤ p. The
algorithm proceeds by merging groups until a satisfactory partitioning has been de-
termined. Once a group comprises two or more elements, it will be called an amalga-
mated group. By convention, if we merge groups Gi and Gj with i < j, we replace Gi
by Gi

⋃
Gj and delete Gj . We denote the set of indices of variables used by elements

in group Gk by Vk.
A simple amalgamation algorithm is as follows. The fill-in between groups i

and j is defined to be twice the product of the cardinalities of the sets Vi \ Vj and
Vj \ Vi; this is in fact the number of extra (zero) entries introduced if the two group
Hessians are amalgamated. Of course, this fill-in should be limited to reasonable
value, so we let hmax be the maximum fill-in value allowed when amalgamating two
groups. Then we amalgamate pairs of groups for which the fill-in is smallest, until
any remaining amalgamation would produce a fill-in value larger than hmax. Ties are
broken arbitrarily.

Another approach, suggested by Conn, Gould, and Toint [7] considers the number
of flops gained in the matrix–vector product. A list of elements is built for each
variable and two elements are amalgamated if it leads to decrease the number of
floating point operations in the matrix–vector product.

In this paper, we have chosen to concentrate on an algorithm that aims to de-
crease the time spent in matrix–vector products and triangular solves on the target
architecture. Our overall goal is to reduce the cost of a (preconditioned) conjugate
gradient iteration. As the dominant cost of such an iteration is in solving a system
involving the preconditioner and in forming a matrix–vector product, it is of interest
to reduce these costs.

3.3. An amalgamation algorithm. As a precursor to the main amalgamation
algorithm, we apply the following scheme to merge elements which are completely
subsumed within others and to construct an amalgamation graph. The amalgamation
graph has as its nodes the groups and has arcs between the nodes for which there is
some benefit from amalgamation. The arcs have associated weights b(Gi,Gj) which
indicate the possible benefit to be obtained by merging nodes.
Initial phase (suppress complete inclusions and construct the amalgamation graph)
For each pair of groups Gi and Gj , i < j, such that Vi ∩ Vj is not zero,
If Vi \ Vj or Vj \ Vi is zero,

Amalgamate these groups.
Else

Compute the benefit b(Gi,Gj)
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Add the arc (Gi, Gj) with weight b(Gi,Gj) to the graph
End if

We then apply the main amalgamation algorithm.
Main amalgamation algorithm (simplified)
While there exists an arc for which b is positive

Find the arc Gi, Gj , b(Gi,Gj) of the graph for which b is maximum
Amalgamate the groups Gi and Gj
Update all the arcs of the graph incident on Gi or Gj

End while
End of the algorithm. The new partitioning into groups has been obtained.

3.4. Computing the benefit. The choice of amalgamating two elements is
based on the estimated gain of CPU time or benefit of this amalgamation which is
defined as

b(Gi,Gj) = t(card(Vi)) + t(card(Vj))− t
(
card

(
Vi
⋃
Vj
))

,(3.2)

where t(i) is the estimated time to treat an element of order i.
The most costly operations in a preconditioned conjugate gradient iteration are

(i) p elemental size matrix–vector products, and
(ii) q elemental size triangular solves,

where p is the number of elements, and q is
(i) zero for no or diagonal preconditioning,
(ii) two times p for EBE and GS EBE preconditioning, and

(iii) four times p for EBE2 preconditioning.
In our current experiments, we shall only consider diagonal and EBE precon-

ditioning, as these proved to be the most effective of the preconditioners that we
investigated in section 2.8. Thus we have two different possibilities:

1. Minimize the time spent in matrix–vector products. In what follows, this
variant will be called amalg1. It should be optimal for conjugate gradients without
preconditioner or with diagonal preconditioning. In this case, t(i) is an estimate
of the time spent to perform a matrix–vector product of order i on the considered
architecture. We consider the case where the element matrix is symmetric, stored in
packed symmetric storage, and the accesses to the vectors are indirect.

2. Optimize the ordering for use of the EBE (or GS EBE) preconditioner. This
variant is called amalg2. The time estimate t(i) is now the time spent in a matrix–
vector product plus twice the time of a triangular solve with indirect accesses to the
right-hand side and the solution.

Note that the time spent in constructing the preconditioner is not taken into
account in these costs, as this is an overhead for the whole conjugate gradient process,
not just for an individual iteration. The time spent in diagonal products—the matrix–
vector products for the diagonal preconditioner or the three products associated with
the EBE preconditioner—is not taken into account either, but such products are
independent of the ordering.

The times of matrix–vector products and triangular solves for all realistic values
of i are computed once and stored in a pair of data files. The values t(i) are read from
these files as required and stored in a real array. The benefit b(Gi,Gj) can then easily
be computed from (3.2). Throughout the algorithm, estimates of the total benefit
along with the total time for matrix–vector products and triangular solves before
amalgamation are recorded.
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3.5. Preliminary tests. We report in Table 3.5 the results of first running the
amalgamation algorithm and then using diagonal and EBE preconditioned conjugate
gradients to solve the linear system in question. For each test problem, we report
the amalgamation time, the number of elements (p), the average size of each element,
the number of iterations (#its), the time to construct the preconditioner (tprec), and
the time for convergence (tconv).

⊎
represents the amalgamation strategy: 0 for no

amalgamation, 1 for amalg1, and 2 for amalg2.
Our implementation is principally in Fortran but the amalgamation graph ma-

nipulation is coded in C. All the times reported in this section are in seconds.
It is clear from this table that amalgamation can be very effective. There are

always large gains in convergence times, both for diagonal and EBE preconditioners.
As we would have expected, it appears that, in most cases, the diagonal precondi-
tioned method is faster with amalg1 and the EBE is faster with amalg2. For some
other problems, such as CEGB2802, however, amalgamation is not so effective as the
function is already well decomposed. For some problems, amalg2 is less effective than
amalg1 with an EBE preconditioner, which shows the limitations of our heuristic.
Such limitations likely arise because of the indirect addressing of data and the fact
that we do not know a priori how the data are accessed in the memory and hence
the experiments do not fit exactly with an idealized memory-access model. Another
limitation is that the eigenvalue-clustering quality of the preconditioner may happen
to be worse with amalg2 than amalg1. This happens, for example, for the test
problem MAT33.

While amalgamating does not normally affect the quality of the diagonal precondi-
tioner (i.e., the number of iterations), it improves significantly the numerical behavior
of the EBE-preconditioned conjugate gradients method. However, when considering,
for example, the test problem NET3, we observe a variation of the number of iter-
ations with diagonal preconditioning. This is entirely because the order of floating
point operations is altered by the amalgamation, and different rounding properties
come into effect (see [21]) when computing the diagonal preconditioner and matrix–
vector products. When considering the EBE preconditioned method for NET3, we
observe that the convergence time is significantly faster with amalg2 than with the
original matrix. This may be attributed to the decrease (694 → 145) in the number
of iterations due to a better preconditioner and to the reduction in time (0.13 s →
0.034 s) per iteration.

As far as we are concerned, the most important thing to note is that in certain
cases, with the best amalgamation strategy, EBE preconditioning is much more effi-
cient than diagonal preconditioning (e.g., 5 versus 21 seconds for NET3, 9.5 versus 70
seconds for SEMICON2, 1.9 versus 7.5 seconds for HYDROELL). Furthermore, even
for problems where diagonal behaves better than EBE, the time for convergence is
never more than 20% larger for EBE.

3.6. Cost of the algorithm. The times spent in the amalgamation procedure
are reported in the second and third columns of Table 3.5. The second column gives
the times required to perform the amalgamation and set up data structures for the
resulting factors, while the third column shows the additional time required to insert
the numerical values into the resulting factors. The algorithm is sequential and has
not been optimized.

We consider the reported times for the amalgamation procedure to be significant.
Taking these times into account, it would appear that applying the amalgamation
algorithm is not always beneficial, particularly if we wish to solve a single linear
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TABLE 3.5
Comparison of the preconditioned conjugated gradients applied to the original matrices and the

matrices with amalgamation strategies 1 and 2 on 1 processor of the Alliant FX/80. Sym and num
refer to the time taken to perform the amalgamation and set up data structures for the resulting
factors, and to the time required to insert the numerical values into the resulting factors, respectively.

Amalgama- Mean Diagonal EBE
Problem

⊎
tion time p elt

name sym num size #its tprec tconv #its tprec tconv

NET3 0 538 2.6 1558 0.015 61.1 694 0.17 91.1
1 1.4 0.12 50 12.2 1664 0.0062 21.9 172 0.13 6.0

κ = 2.4× 109 2 1.4 0.13 41 14.4 1601 0.0049 21.2 145 0.14 5.0
BIGGSB1 0 1001 2.0 499 0.027 33.0 333 0.24 74.7

1 1.52 0.17 124 9.0 499 0.011 11.8 223 0.17 14.6
κ = 4.0× 105 2 1.53 0.18 84 12.9 499 0.011 11.4 160 0.18 9.7
TORSION1 0 3792 4.4 25 0.13 9.6 9 2.1 11.8

1 21.7 1.7 246 23.8 25 0.036 3.7 10 1.4 4.0
κ = 6.7× 100 2 23.1 1.8 207 27.1 25 0.036 3.7 10 1.4 4.0
MAT32 0 157 2.2 21 0.0045 0.23 14 0.040 0.54

1 0.29 0.033 4 16.8 21 0.0011 0.038 10 0.016 0.045
κ = 1.3× 101 2 0.29 0.036 3 21.3 21 0.0010 0.038 10 0.016 0.044
MAT33 0 637 2.6 48 0.018 2.20 28 0.19 4.4

1 2.31 0.15 21 18.7 48 0.0029 0.43 22 0.092 0.51
κ = 5.5× 101 2 2.18 0.16 18 21.2 48 0.0028 0.43 23 0.091 0.53
CEGB2802 0 108 58.7 35 0.033 8.56 12 6.3 7.7

1 0.47 1.9 106 59.4 35 0.033 8.6 12 6.3 7.6
κ = 2.5× 102 2 0.48 1.9 102 60.8 35 0.036 8.6 12 6.3 7.6
CEGB2802 0 108 58.7 657 0.033 156.1 120 6.2 71.1

1 0.47 1.9 106 59.4 659 0.034 157.8 111 6.3 66.0
κ = 5.7× 104 2 0.48 1.95 102 60.8 660 0.035 158.1 112 6.3 66.4
CBRATU3D 0 4394 7.54 53 0.19 33.8 20 5.6 40.0

1 51.3 3.7 886 24.4 53 0.10 26.5 21 7.3 28.6
κ = 3.4× 101 2 61.1 3.9 713 27.9 53 0.094 26.0 21 7.6 27.7
NOBNDTOR 0 562 4.2 68 0.021 3.6 30 0.30 5.2

1 2.47 0.23 40 22.1 68 0.0054 1.3 30 0.20 1.5
κ = 1.8× 102 2 2.63 0.24 33 25.0 68 0.0069 1.3 29 0.20 1.5
BDEXP 0 4998 3.0 34 0.15 13.8 11 1.9 15.6

1 17.4 1.4 313 18.0 34 0.042 4.8 8 1.2 3.1
κ = 2.8× 101 2 16.8 1.4 313 18.0 34 0.043 4.7 8 1.2 3.0
BROYDN7D 0 15000 2.7 21 0.42 24.1 8 4.9 33.3

1 123.3 3.8 625 20.0 21 0.091 6.7 8 3.2 6.9
κ = 1.6× 101 2 121.0 3.8 625 20.0 21 0.090 6.7 7 3.3 6.1
CLPLATEB 0 19601 2.0 382 0.48 473.2 136 4.3 589.3

1 137.6 3.7 414 18.7 382 0.052 69.5 146 1.6 67.9
κ = 1.6× 104 2 135.2 3.7 367 19.3 382 0.049 65.8 131 1.6 56.9
GAUSSELM 0 1136 3.4 879 0.036 86.2 404 0.51 127.2

1 58.0 0.31 132 14.5 879 0.014 37.7 378 0.51 41.7
κ = 8.8× 106 2 58.0 0.33 98 18.8 879 0.011 38.0 377 0.58 40.8
HYDROELL 0 1009 1.4 109 0.028 9.0 51 0.33 13.2

1 0.35 0.44 794 1.3 109 0.023 7.5 8 0.28 1.9
κ = 1.9× 108 2 0.34 0.44 794 1.3 109 0.023 7.5 8 0.29 1.9
SEMICON2 0 1000 3.0 2444 0.030 197.7 739 0.38 193.7

1 2.1 0.28 63 17.8 2443 0.0081 69.5 189 0.23 12.8
κ = 2.3× 107 2 2.0 0.27 63 17.8 2466 0.0082 70.0 141 0.23 9.5
SPMSQRT 0 1664 3.0 128 0.048 17.1 44 0.64 19.4

1 3.9 0.47 56 20.8 128 0.0082 3.9 27 0.27 2.0
κ = 4.2× 102 2 4.0 0.47 56 20.8 128 0.0082 3.9 27 0.27 2.0
ZIGZAG 0 600 2.3 439 0.018 19.7 151 0.17 21.7

1 1.4 0.12 38 16.0 439 0.0045 7.4 138 0.13 5.2
κ = 3.1× 105 2 1.5 0.14 26 22.6 439 0.0056 7.6 115 0.15 4.4

system and if the number of groups is large (see CBRATU3D in Table 2.3). If,
however, we have to solve a large number of problems with the same matrix, or which
have the same elemental structure—such as might occur in a nonlinear optimization
or PDE application—amalgamating the elements is essential.

3.7. Conclusions on the use of element amalgamation. In our examples,
we have observed that most of the benefit of amalgamations is due to the main amal-
gamation algorithm. However, it seems natural to start the algorithm with an initial
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phase in which complete inclusions are suppressed, because it reduces the number
of elements without introducing fill-in and obviously saves space and floating point
operations.

The implementation of our algorithm is not optimal, but the results obtained are
very promising. The cost of the amalgamation procedure is currently very costly, but
it is hoped that good heuristics will decrease this preprocessing cost with roughly the
same effect. As we may have to solve many systems with the same structure in the
course of a nonlinear optimization calculation, a good preprocessing step may pay
handsome dividends in the longer run.

The resulting numerical quality of the preconditioner seems to be difficult to
appreciate in general. All that we may hope is that reducing the degree of overlap
may also decrease the number of iterations. But we note that even if the number of
iterations following the amalgamation process is not significantly reduced, the times
for the calculation of the preconditioner and for obtaining the solution often decrease.
There appears to be a significant advantage in using an EBE rather than a diagonal
preconditioner for ill-conditioned problems.

The ratio of EBE to diagonal preconditioner solution times decreases as the amal-
gamation is applied, both because typically fewer iterations are required following
the amalgamation and because an increase in element sizes encourages efficient vec-
torization for EBE and matrix–vector products—diagonal preconditioning is already
completely vectorizable.

4. Final comments. We have shown that element-by-element preconditioners
and amalgamation techniques may be extremely effective for systems of equations
which arise in partially separable nonlinear optimization applications, especially for
large scale ill-conditioned problems.

Furthermore, element-by-element preconditioners seem to offer great possibilities
of vectorization/parallelization on multiprocessor architectures. The next step will be
to include such a scheme within a nonlinear optimizer.

It is clear that preprocessing should be applied to any large-scale optimization
problem, and that in our case it is important to amalgamate elements and find a
suitable coloring for later calculations. This is a difficult task as many criteria need
to be taken into account. This preprocessing may well be quite costly, but we expect
there to be longer-term payoffs.

There seems to be three main approaches to fully exploiting parallelism:
1. Try to keep the elements to be roughly the same size, with the aim of both

vectorizing and parallelizing over the elements within a color.
2. Vectorize the computations within each element, while handling the elements

within each color in parallel.
3. Apply graph partitioning techniques to decrease the overlap between elements

and exploit the sparsity within large elements.
In any of these cases we will need an outer sequential loop over the colors. In

the first case there is both a vector and a parallel loop over the elements—we need
many of the elements to be of the same size in each color as the same calculations
will be performed on each element. In the second case there is a parallel loop over
the elements and the treatment of each element is vectorized—of course, the length of
vectors is limited by the element sizes. In the third case there is a parallel loop over
the elements and the vectorization is limited by the sparsity of the elements.
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If we intend to solve large problems with small elements, the first approach is cer-
tainly the best and has been successfully applied to finite element problems. Within a
particular color, any element with less than the maximum dimension should be padded
with zeros. If the elements are large enough with a range of different sizes, we should
opt for the second. The third approach will allow us to handle larger amalgamated
elements than the other approaches, which might be profitable from the point of view
of numerical quality of the preconditioners. Sparse matrix techniques should be used
to compute the factors of the Winget decompositions of the elements, while different
graph partitioning techniques need to be studied both for numerical efficiency of the
preconditioners and parallel implementation. However, the granularity may become
quite large and a compromise should be found between the following:

1. using large elements with low overlap, and
2. maintaining sufficient elements for an efficient parallelization while avoiding

an increase in the work at each iteration.
The third approach might be the best for very large ill-conditioned problems. In
any event, the three implementations are of interest and maybe a dynamic choice is
possible. We shall report on this in a future paper.

Finally, we are currently incorporating these preconditioning techniques within
the LANCELOT package, profiting from the preprocessing to optimize other parts of
the algorithm such as the matrix–vector products and linear solvers.
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