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1 Sketches of proofs for Part 1

Theorems 1.1—1.3 can be found in any good book on analysis. Theorems 1.1 and 1.2 follow
directly by considering the remainders of truncated Taylor expansions of the univariate function
f(x 4+ as) with « € [0, 1], while Theorem 1.3 uses the Newton formula

1
Fx+s)=F(z)+ /0 Vo F(x + as)sdo.

1.1 Proof of Theorem 1.4

Suppose otherwise, that g(x,) # 0. A Taylor expansion in the direction —g(x) gives
flae —ag(zy)) = f(a.) - allg(z)|* + O(?).

For sufficiently small «, 1a/g(z.)|* > O(a?), and thus
flas = ag(z.)) < flz.) = dallg@)]® < f(o.).

This contradicts the hypothesis that x, is a local minimizer.

1.2 Proof of Theorem 1.5

Again, suppose otherwise that s’ H(x,)s < 0. A Taylor expansion in the direction s gives
[+ as) = f(z.) + ba2sTH(z,)s + O(a?),

since g(x.) = 0. For sufficiently small o, —1a?sT H(z,)s > O(a?), and thus
f(xe +as) < fze) + La?sTH(z,)s < f(xs).

Once again, this contradicts the hypothesis that x, is a local minimizer.

1.3 Proof of Theorem 1.6

By continuity H(z) is positive definite for all z in a open ball N' around .. The generalized
mean value theorem then says that if x, + s € N, there is a value z between the points =, and
T4 + s for which

f(@e+8) = f(@) + g(xa)Ts + 1T H(2)s = fas) + 1sTH(2)s > f(x)

for all nonzero s, and thus x, is an isolated local minimizer.



1.4 Proof of Theorem 1.7

We consider feasible perturbations about z.. Consider a vector valued C? (C3 for Theorem 1.8)
function z(«) of the scalar a for which x(0) = 2, and ¢(z(a)) = 0. (The constraint qualification
is that all such feasible perturbations are of this form). We may then write

z(a) = . + as + 1a’p + O(a?) (1.1)
and we require that

0 = ci(z(q)) =c(rs +as+ Lap + O(a?))
= ci(ze) +al (z.) (as + 1a?p) + La?sT Hi(x,)s + O(a?)
= aal(z,)s+ La? (alT(ac*)p + sTHi(x*)s) +O0(a?)

using Taylor’s theorem. Matching similar asymptotic terms, this implies that for such a feasible

perturbation
A(zs)s =0 (1.2)
and
al (z.)p + sT Hi(z.)s = 0 (1.3)
for all i =1,...,m. Now consider the objective function

flz(@)) = flzs+as+ia’p+0(a?))
= f(z)+ g(z)7T (as+ La?p) + La?sTH(z.)s + O(a?) (1.4)
= f(zs) +ag(z)Ts + La? (g(w*)Tp + STH(CC*)S) +O0(a?)

This function is unconstrained along z(«), so we may deduce, as in Theorem 1.4, that
g(zs)'s =0 for all s such that A(z,)s = 0. (1.5)
If we let N be a basis for the null-space of A(z,), we may write
g(z+) = AT (2.)y. + Nz, (1.6)

for some y, and z.. Since, by definition, A(z,)N = 0, and as it then follows from (1.5) that
g7 (x,)N = 0, we have that

0= NTg(w*) = NTAT(w*)y* + NTNz, = NT'Nz,.
Hence NTNz, =0 and thus z, = 0 since N is of full rank. Thus (1.6) gives
g(w.) — AT (2,)y. =0, (1.7)
Proof of Theorem 1.8
We have shown that
F@(a) = f(z.) + bo? (p7g(x.) + 5T H(z.)s) + O(a®) (1.8)
for all s satisfying A(z,)s = 0, and that (1.7) holds. Hence, necessarily,

P g(e) + 5" H(z)s > 0 (L9)



for all s and p satisfying (1.2) and (1.3). But (1.7) and (1.3) combine to give

Z y* zp az .%‘* = _Z(y*)iSTHi(x*)S
i=1 1=1
and thus (1.9) is equivalent to
T (H(z ) - Z<y*>iﬂi<x*>) 5= 5T H 20, )s > 0
i=1

for all s satisfying (1.2).

Proof of Theorem 1.9

As in the proof of Theorem 1.6, we consider feasible perturbations about x,. Since any constraint
that is inactive at z, (i.e., ¢;(z) > 0) will remain inactive for small perturbations, we need only
consider perturbations that are constrained by the constraints active at z., (i.e., ¢;(x,) = 0).
Let A denote the indices of the active constraints. We then consider a vector valued C? (C? for
Theorem 1.10) function z(«) of the scalar « for which z(0) = x, and ¢;(z(a)) > 0 for i € A. In
this case, assuming that z(a) may be expressed as (1.1), we require that

0 ci(z(a)) = c(rs + as + 1a?p + O(a?))
i) + ai(z) as + La?p + 10257 Hy(z.)s + O(a?)

aai(z.) s + 102 (al(x*) P+ sTHZ-(:):*)s) + 0(a?)

I IA

for all ¢ € A. Thus
sTa;(z,) >0 (1.10)
and
T.. Try. T, —

pai(xy) + s Hi(zy)s >0 when s’ a;j(zs) =0 (1.11)
for all i € A. The expansion of f(z(«)) (1.4) then implies that x, can only be a local minimizer
if

S=1{s] sTg(xs) <0 and sTa;(x,) >0 for i € A} = 0.

But then the result follows directly from Farkas’ Lemma—a proof of this famous result is given,
for example, as Lemma 9.2.4 in

R. Fletcher “Practical Methods of Optimization”, Wiley (1987, 2nd edition).

Farkas’ Lemma. Given any vectors g and a;, i € A, the set
S=1{s|sTg<0 and sTa; >0 for i c A}

is empty if and only if

9= Zyiai

icA
for some y; > 0,7 € A




Proof of Theorem 1.10

The expansion (1.4) for the change in the objective function will be dominated by the first-order
term as? g(w,) for feasible perturbations unless s”g(x,) = 0, in which case the expansion (1.8) is
relevant. Thus we must have that (1.9) holds for all feasible s for which s g(z,) = 0. The latter

requirement gives that
0= STg(l‘*) = Z yiSTai(l"*),

€A
and hence that either 3; = 0 or s7a;(z4) = 0 (or both).
We now focus on the subset of all feasible arcs that ensure c;(z(a)) = 0 if y; > 0 and

ci(z(a)) > 0 if y; = 0 for i € A. For those constraints for which ¢;(z(a)) = 0, we have that (1.2)
and (1.3) hold, and thus for such perturbations s € N;. In this case

Zyzp az ZL’* Z yzp az ZL’* = Z YiS H 1'* = Zyzs H 1'*

€A icA icA icA
yi>0 y; >0

This combines with (1.9) to give that

m

sTH(zy,y.)s = s <H(w*) - Z(y*)ZHZ(w*)> s =plg(x,) + st H(z.)s > 0.
i=1

for all s € Ny, which is the required result.

Proof of Theorem 1.11

Consider any feasible arc z(«). We have seen that (1.10) and (1.11) hold, and that first-order
feasible perturbations are characterized by M. It then follows from (1.11) that

Zyzp CL, $* Zyzp CL, $* Z_Zyzs H $* = Zyzs H «T*

icA i€ A i€ A icA
sTa;(z)=0 sTa;(z)=0

and hence by assumption that

m

plg(x) + sTH(x,)s > sT <H(x*) - Z(%)@(m)) s=sTH(zy,y4)s > 0

i=1

for all s € M. But this then combines with (1.4) and (1.10) to show that f(xz(«)) > f(z,) for
all sufficiently small a.



