Notes for Part 3: Trust-region methods for unconstrained optimization

Nick Gould, CSED, RAL, Chilton, OX11 0QX, England (n.gould@rl.ac.uk)

January 10, 2006

3 Sketches of proofs for Part 3

3.1 Proof of Theorem 3.1

Firstly note that, for all $\alpha \geq 0$,

$$
\begin{equation*}
m_{k}\left(-\alpha g_{k}\right)=f_{k}-\alpha\left\|g_{k}\right\|^{2}+\frac{1}{2} \alpha^{2} g_{k}^{T} B_{k} g_{k} . \tag{3.1}
\end{equation*}
$$

If g_{k} is zero, the result is immediate. So suppose otherwise. In this case, there are three possibilities:
(i) the curvature $g_{k}^{T} B_{k} g_{k}$ is not strictly positive; in this case $m_{k}\left(-\alpha g_{k}\right)$ is unbounded from below as α increases, and hence the Cauchy point occurs on the trust-region boundary.
(ii) the curvature $g_{k}^{T} B_{k} g_{k}>0$ and the minimizer of $m_{k}\left(-\alpha g_{k}\right)$ occurs at or beyond the trustregion boundary; once again, the the Cauchy point occurs on the trust-region boundary.
(iii) the curvature $g_{k}^{T} B_{k} g_{k}>0$ and the minimizer of $m_{k}\left(-\alpha g_{k}\right)$, and hence the Cauchy point, occurs before the trust-region is reached.

We consider each case in turn;
Case (i). In this case, since $g_{k}^{T} B_{k} g_{k} \leq 0,(3.1)$ gives

$$
\begin{equation*}
m_{k}\left(-\alpha g_{k}\right)=f_{k}-\alpha\left\|g_{k}\right\|^{2}+\frac{1}{2} \alpha^{2} g_{k}^{T} B_{k} g_{k} \leq f_{k}-\alpha\left\|g_{k}\right\|^{2} \tag{3.2}
\end{equation*}
$$

for all $\alpha \geq 0$. Since the Cauchy point lies on the boundary of the trust region

$$
\begin{equation*}
\alpha_{k}^{\mathrm{C}}=\frac{\Delta_{k}}{\left\|g_{k}\right\|} . \tag{3.3}
\end{equation*}
$$

Substituting this value into (3.2) gives

$$
\begin{equation*}
f_{k}-m_{k}\left(s_{k}^{\mathrm{C}}\right) \geq\left\|g_{k}\right\|^{2} \frac{\Delta_{k}}{\left\|g_{k}\right\|}=\left\|g_{k}\right\| \Delta_{k} \geq \frac{1}{2}\left\|g_{k}\right\| \Delta_{k} \tag{3.4}
\end{equation*}
$$

Case (ii). In this case, let α_{k}^{*} be the unique minimizer of (3.1); elementary calculus reveals that

$$
\begin{equation*}
\alpha_{k}^{*}=\frac{\left\|g_{k}\right\|^{2}}{g_{k}^{T} B_{k} g_{k}} . \tag{3.5}
\end{equation*}
$$

Since this minimizer lies on or beyond the trust-region boundary (3.3) and (3.5) together imply that

$$
\alpha_{k}^{\mathrm{C}} g_{k}^{T} B_{k} g_{k} \leq\left\|g_{k}\right\|^{2}
$$

Substituting this last inequality in (3.1), and using (3.3), it follows that

$$
f_{k}-m_{k}\left(s_{k}^{\mathrm{C}}\right)=\alpha_{k}^{\mathrm{C}}\left\|g_{k}\right\|^{2}-\frac{1}{2}\left[\alpha_{k}^{\mathrm{C}}\right]^{2} g_{k}^{T} B_{k} g_{k} \geq \frac{1}{2} \alpha_{k}^{\mathrm{C}}\left\|g_{k}\right\|^{2}=\frac{1}{2}\left\|g_{k}\right\|^{2} \frac{\Delta_{k}}{\left\|g_{k}\right\|}=\frac{1}{2}\left\|g_{k}\right\| \Delta_{k}
$$

Case (iii). In this case, $\alpha_{k}^{\mathrm{C}}=\alpha_{k}^{*}$, and (3.1) becomes

$$
f_{k}-m_{k}\left(s_{k}^{\mathrm{C}}\right)=\frac{\left\|g_{k}\right\|^{4}}{g_{k}^{T} B_{k} g_{k}}-\frac{1}{2} \frac{\left\|g_{k}\right\|^{4}}{g_{k}^{T} B_{k} g_{k}}=\frac{1}{2} \frac{\left\|g_{k}\right\|^{4}}{g_{k}^{T} B_{k} g_{k}} \geq \frac{1}{2} \frac{\left\|g_{k}\right\|^{2}}{1+\left\|B_{k}\right\|},
$$

where

$$
\left|g_{k}^{T} B_{k} g_{k}\right| \leq\left\|g_{k}\right\|^{2}\left\|B_{k}\right\| \leq\left\|g_{k}\right\|^{2}\left(1+\left\|B_{k}\right\|\right)
$$

because of the Cauchy-Schwarz inequality.
The result follows since it is true in each of the above three possible cases. Note that the " $1+$ " is only needed to cover case where $B_{k}=0$, and that in this case, the "min" in the theorem might actually be replaced by Δ_{k}.

3.2 Proof of Corollary 3.2

Immediate from Theorem 3.1 and the requirement that $m_{k}\left(s_{k}\right) \leq m_{k}\left(s_{k}^{\mathrm{C}}\right)$

3.3 Proof of Lemma 3.3

The mean value theorem gives that

$$
f\left(x_{k}+s_{k}\right)=f\left(x_{k}\right)+s_{k}^{T} \nabla_{x} f\left(x_{k}\right)+\frac{1}{2} s_{k}^{T} \nabla_{x x} f\left(\xi_{k}\right) s_{k}
$$

for some ξ_{k} in the segment $\left[x_{k}, x_{k}+s_{k}\right]$. Thus

$$
\begin{aligned}
\left|f\left(x_{k}+s_{k}\right)-m_{k}\left(s_{k}\right)\right| & =\frac{1}{2}\left|s_{k}^{T} H\left(\xi_{k}\right) s_{k}-s_{k}^{T} B_{k} s_{k}\right| \leq \frac{1}{2}\left|s_{k}^{T} H\left(\xi_{k}\right) s_{k}\right|+\frac{1}{2}\left|s_{k}^{T} B_{k} s_{k}\right| \\
& \leq \frac{1}{2}\left(\kappa_{h}+\kappa_{b}\right)\left\|s_{k}\right\|^{2} \leq \kappa_{d} \Delta_{k}^{2}
\end{aligned}
$$

using the triangle and Cauchy-Schwarz inequalities.

3.4 Proof of Lemma 3.4

By definition,

$$
1+\left\|B_{k}\right\| \leq \kappa_{h}+\kappa_{b}
$$

and hence for any radius satisfying the given (first) bound,

$$
\Delta_{k} \leq \frac{\left\|g_{k}\right\|}{\kappa_{h}+\kappa_{b}} \leq \frac{\left\|g_{k}\right\|}{1+\left\|B_{k}\right\|}
$$

As a consequence, Corollary 3.2 gives that

$$
\begin{equation*}
f_{k}-m_{k}\left(s_{k}\right) \geq \frac{1}{2}\left\|g_{k}\right\| \min \left[\frac{\left\|g_{k}\right\|}{1+\left\|B_{k}\right\|}, \Delta_{k}\right]=\frac{1}{2}\left\|g_{k}\right\| \Delta_{k} \tag{3.6}
\end{equation*}
$$

But then Lemma 3.3 and the assumed (second) bound on the radius gives that

$$
\begin{equation*}
\left|\rho_{k}-1\right|=\left|\frac{f\left(x_{k}+s_{k}\right)-m_{k}\left(s_{k}\right)}{f_{k}-m_{k}\left(s_{k}\right)}\right| \leq 2 \frac{\kappa_{d} \Delta_{k}^{2}}{\left\|g_{k}\right\| \Delta_{k}}=2 \frac{2 \kappa_{d} \Delta_{k}}{\left\|g_{k}\right\|} \leq 1-\eta_{v} . \tag{3.7}
\end{equation*}
$$

Therefore, $\rho_{k} \geq \eta_{v}$ and the iteration is very successful.

3.5 Proof of Lemma 3.5

Suppose otherwise that Δ_{k} can become arbitrarily small. In particular, assume that iteration k is the first such that

$$
\begin{equation*}
\Delta_{k+1} \leq \kappa_{\epsilon} \tag{3.8}
\end{equation*}
$$

Then since the radius for the previous iteration must have been larger, the iteration was unsuccessful, and thus $\gamma_{d} \Delta_{k} \leq \Delta_{k+1}$. Hence

$$
\Delta_{k} \leq \epsilon \min \left(\frac{1}{\kappa_{h}+\kappa_{b}}, \frac{\left(1-\eta_{v}\right)}{2 \kappa_{d}}\right) \leq\left\|g_{k}\right\| \min \left(\frac{1}{\kappa_{h}+\kappa_{b}}, \frac{\left(1-\eta_{v}\right)}{2 \kappa_{d}}\right)
$$

But this contradicts the assertion of Lemma 3.4 that the k-th iteration must be very successful.

3.6 Proof of Lemma 3.6

The mechanism of the algorithm ensures that $x_{*}=x_{k_{0}+1}=x_{k_{0}+j}$ for all $j>0$, where k_{0} is the index of the last successful iterate. Moreover, since all iterations are unsuccessful for sufficiently large k, the sequence $\left\{\Delta_{k}\right\}$ converges to zero. If $\left\|g_{k_{0}+1}\right\|>0$, Lemma 3.4 then implies that there must be a successful iteration of index larger than k_{0}, which is impossible. Hence $\left\|g_{k_{0}+1}\right\|=0$.

3.7 Proof of Theorem 3.7

Lemma 3.6 shows that the result is true when there are only a finite number of successful iterations. So it remains to consider the case where there are an infinite number of successful iterations. Let \mathcal{S} be the index set of successful iterations. Now suppose that

$$
\begin{equation*}
\left\|g_{k}\right\| \geq \epsilon \tag{3.9}
\end{equation*}
$$

for some $\epsilon>0$ and all k, and consider a successful iteration of index k. The fact that k is successful, Corollary 3.2, Lemma 3.5, and the assumption (3.9) give that

$$
\begin{equation*}
f_{k}-f_{k+1} \geq \eta_{s}\left[f_{k}-m_{k}\left(s_{k}\right)\right] \geq \delta_{\epsilon} \stackrel{\text { def }}{=} \frac{1}{2} \eta_{s} \epsilon \min \left[\frac{\epsilon}{1+\kappa_{b}}, \kappa_{\epsilon}\right] \tag{3.10}
\end{equation*}
$$

Summing now over all successful iterations from 0 to k, it follows that

$$
f_{0}-f_{k+1}=\sum_{\substack{j=0 \\ j \in \mathcal{S}}}^{k}\left[f_{j}-f_{j+1}\right] \geq \sigma_{k} \delta_{\epsilon}
$$

where σ_{k} is the number of successful iterations up to iteration k. But since there are infinitely many such iterations, it must be that

$$
\lim _{k \rightarrow \infty} \sigma_{k}=+\infty
$$

Thus (3.9) can only be true if f_{k+1} is unbounded from below, and conversely, if f_{k+1} is bounded from below, (3.9) must be false, and there is a subsequence of the $\left\|g_{k}\right\|$ converging to zero.

3.8 Proof of Theorem 3.8

Suppose otherwise that f_{k} is bounded from below, and that there is a subsequence of successful iterates, indexed by $\left\{t_{i}\right\} \subseteq \mathcal{S}$, such that

$$
\begin{equation*}
\left\|g_{t_{i}}\right\| \geq 2 \epsilon>0 \tag{3.11}
\end{equation*}
$$

for some $\epsilon>0$ and for all i. Theorem 3.7 ensures the existence, for each t_{i}, of a first successful iteration $\ell_{i}>t_{i}$ such that $\left\|g_{\ell_{i}}\right\|<\epsilon$. That is to say that there is another subsequence of \mathcal{S} indexed by $\left\{\ell_{i}\right\}$ such that

$$
\begin{equation*}
\left\|g_{k}\right\| \geq \epsilon \text { for } t_{i} \leq k<\ell_{i} \text { and }\left\|g_{\ell_{i}}\right\|<\epsilon . \tag{3.12}
\end{equation*}
$$

We now restrict our attention to the subsequence of successful iterations whose indices are in the set

$$
\mathcal{K} \stackrel{\text { def }}{=}\left\{k \in \mathcal{S} \mid t_{i} \leq k<\ell_{i}\right\},
$$

where t_{i} and ℓ_{i} belong to the two subsequences defined above.
The subsequences $\left\{t_{i}\right\},\left\{\ell_{i}\right\}$ and \mathcal{K} are all illustrated in Figure 3.1, where, for simplicity, it is assumed that all iterations are successful. In this figure, we have marked position j in each of the subsequences represented in abscissa when j belongs to that subsequence. Note in this example that $\ell_{0}=\ell_{1}=\ell_{2}=\ell_{3}=\ell_{4}=\ell_{5}=8$, which we indicated by arrows from $t_{0}=0, t_{1}=1, t_{2}=2$, $t_{3}=3, t_{4}=4$ and $t_{5}=7$ to $k=9$, and so on.

Figure 3.1: The subsequences of the proof of Theorem 3.8
As in the previous proof, it immediately follows that

$$
\begin{equation*}
f_{k}-f_{k+1} \geq \eta_{s}\left[f_{k}-m_{k}\left(s_{k}\right)\right] \geq \frac{1}{2} \eta_{s} \epsilon \min \left[\frac{\epsilon}{1+\kappa_{b}}, \Delta_{k}\right] \tag{3.13}
\end{equation*}
$$

holds for all $k \in \mathcal{K}$ because of (3.12). Hence, since $\left\{f_{k}\right\}$ is, by assumption, bounded from below, the left-hand side of (3.13) must tend to zero when k tends to infinity, and thus that

$$
\lim _{\substack{k \rightarrow \infty \\ k \in \mathcal{K}}} \Delta_{k}=0 .
$$

As a consequence, the second term dominates in the minimum of (3.13) and it follows that, for $k \in \mathcal{K}$ sufficiently large,

$$
\Delta_{k} \leq \frac{2}{\epsilon \eta_{s}}\left[f_{k}-f_{k+1}\right]
$$

We then deduce from this bound that, for i sufficiently large,

$$
\begin{equation*}
\left\|x_{t_{i}}-x_{\ell_{i}}\right\| \leq \sum_{\substack{j=t_{i} \\ j \in \mathcal{K}}}^{\ell_{i}-1}\left\|x_{j}-x_{j+1}\right\| \leq \sum_{\substack{j=t_{i} \\ j \in \mathcal{K}}}^{\ell_{i}-1} \Delta_{j} \leq \frac{2}{\epsilon \eta_{s}}\left[f_{t_{i}}-f_{\ell_{i}}\right] . \tag{3.14}
\end{equation*}
$$

But, because $\left\{f_{k}\right\}$ is monotonic and, by assumption, bounded from below, the right-hand side of (3.14) must converge to zero. Thus $\left\|x_{t_{i}}-x_{\ell_{i}}\right\|$ tends to zero as i tends to infinity, and hence, by continuity, $\left\|g_{t_{i}}-g_{\ell_{i}}\right\|$ also tend to zero. However this is impossible because of the definitions of $\left\{t_{i}\right\}$ and $\left\{\ell_{i}\right\}$, which imply that $\left\|g_{t_{i}}-g_{\ell_{i}}\right\| \geq \epsilon$. Hence, no subsequence satisfying (3.11) can exist.

3.9 Proof of Theorem 3.9

The constraint $\|s\|_{2} \leq \Delta$ is equivalent to

$$
\begin{equation*}
\frac{1}{2} \Delta^{2}-\frac{1}{2} s^{T} s \geq 0 \tag{3.15}
\end{equation*}
$$

Applying Theorem 1.9 to the problem of minimizing $q(s)$ subject to (3.15) gives

$$
\begin{equation*}
g+B s_{*}=-\lambda_{*} s_{*} \tag{3.16}
\end{equation*}
$$

for some Lagrange multiplier $\lambda_{*} \geq 0$ for which either $\lambda_{*}=0$ or $\left\|s_{*}\right\|_{2}=\Delta$ (or both). It remains to show that $B+\lambda_{*} I$ is positive semi-definite.

If s_{*} lies in the interior of the trust-region, necessarily $\lambda_{*}=0$, and Theorem 1.10 implies that $B+\lambda_{*} I=B$ must be positive semi-definite. Likewise if $\left\|s_{*}\right\|_{2}=\Delta$ and $\lambda_{*}=0$, it follows from Theorem 1.10 that necessarily $v^{T} B v \geq 0$ for all $v \in \mathcal{N}_{+}=\left\{v \mid s_{*}^{T} v \geq 0\right\}$. If $v \notin \mathcal{N}_{+}$, then $-v \in \mathcal{N}_{+}$, and thus $v^{T} B v \geq 0$ for all v. Thus the only outstanding case is where $\left\|s_{*}\right\|_{2}=\Delta$ and $\lambda_{*}>0$. In this case, Theorem 1.10 shows that $v^{T}\left(B+\lambda_{*} I\right) v \geq 0$ for all $v \in \mathcal{N}_{+}=\left\{v \mid s_{*}^{T} v=0\right\}$, so it remains to consider $v^{T} B v$ when $s_{*}^{T} v \neq 0$.

Let s be any point on the boundary of the trust-region, and let $w=s-s_{*}$. Then

$$
\begin{equation*}
-w^{T} s_{*}=\left(s_{*}-s\right)^{T} s_{*}=\frac{1}{2}\left(s_{*}-s\right)^{T}\left(s_{*}-s\right)=\frac{1}{2} w^{T} w \tag{3.17}
\end{equation*}
$$

since $\|s\|_{2}=\Delta=\left\|s_{*}\right\|_{2}$. Combining this with (3.16) gives

$$
\begin{equation*}
q(s)-q\left(s_{*}\right)=w^{T}\left(g+B s_{*}\right)+\frac{1}{2} w^{T} B w=-\lambda_{*} w^{T} s_{*}+\frac{1}{2} w^{T} B w=\frac{1}{2} w^{T}\left(B+\lambda_{*} I\right) w, \tag{3.18}
\end{equation*}
$$

and thus necessarily $w^{T}\left(B+\lambda_{*} I\right) w \geq 0$ since s_{*} is a global minimizer. It is easy to show that

$$
s=s_{*}-2 \frac{s_{*}^{T} v}{v^{T} v} v
$$

lies on the trust-region boundary, and thus for this s, w is parallel to v from which it follows that $v^{T}\left(B+\lambda_{*} I\right) v \geq 0$.

When $B+\lambda_{*} I$ is positive definite, $s_{*}=-\left(B+\lambda_{*} I\right)^{-1} g$. If this point is on the trust-region boundary, while s is any value in the trust-region, (3.17) and (3.18) become $-w^{T} s_{*} \geq \frac{1}{2} w^{T} w$ and $q(s) \geq q\left(s_{*}\right)+\frac{1}{2} w^{T}\left(B+\lambda_{*} I\right) w$ respectively. Hence, $q(s)>q\left(s_{*}\right)$ for any $s \neq s_{*}$. If s_{*} is interior, $\lambda_{*}=0, B$ is positive definite, and thus s_{*} is the unique unconstrained minimizer of $q(s)$.

Figure 3.2: Construction of "missing" directions of positive curvature.

3.10 Newton's method for the secular equation

Recall that the Newton correction at λ is $-\phi(\lambda) / \phi^{\prime}(\lambda)$. Since

$$
\phi(\lambda)=\frac{1}{\|s(\lambda)\|_{2}}-\frac{1}{\Delta}=\frac{1}{\left(s^{T}(\lambda) s(\lambda)\right)^{\frac{1}{2}}}-\frac{1}{\Delta}
$$

it follows, on differentiating, that

$$
\phi^{\prime}(\lambda)=-\frac{s^{T}(\lambda) \nabla_{\lambda} s(\lambda)}{\left(s^{T}(\lambda) s(\lambda)\right)^{\frac{3}{2}}}=-\frac{s^{T}(\lambda) \nabla_{\lambda} s(\lambda)}{\|s(\lambda)\|_{2}^{3}} .
$$

In addition, on differentiating the defining equation

$$
(B+\lambda I) s(\lambda)=-g
$$

it must be that

$$
(B+\lambda I) \nabla_{\lambda} s(\lambda)+s(\lambda)=0 .
$$

Notice that, rather than the value of $\nabla_{\lambda} s(\lambda)$, merely the numerator

$$
s^{T}(\lambda) \nabla_{\lambda} s(\lambda)=-s^{T}(\lambda)(B+\lambda I)(\lambda)^{-1} s(\lambda)
$$

is required in the expression for $\phi^{\prime}(\lambda)$. Given the factorization $B+\lambda I=L(\lambda) L^{T}(\lambda)$, the simple relationship

$$
s^{T}(\lambda)(B+\lambda I)^{-1} s(\lambda)=s^{T}(\lambda) L^{-T}(\lambda) L^{-1}(\lambda) s(\lambda)=\left(L^{-1}(\lambda) s(\lambda)\right)^{T}\left(L^{-1}(\lambda) s(\lambda)\right)=\|w(\lambda)\|_{2}^{2}
$$

where $L(\lambda) w(\lambda)=s(\lambda)$ then justifies the Newton step.

3.11 Proof of Theorem 3.10

We first show that

$$
\begin{equation*}
d^{i} d^{j}=\frac{\left\|g^{i}\right\|_{2}^{2}}{\left\|g^{j}\right\|_{2}^{2}}\left\|d^{j}\right\|_{2}^{2}>0 \tag{3.19}
\end{equation*}
$$

for all $0 \leq j \leq i \leq k$. For any i, (3.19) is trivially true for $j=i$. Suppose it is also true for all $i \leq l$. Then, the update for d^{l+1} gives

$$
d^{l+1}=-g^{l+1}+\frac{\left\|g^{l+1}\right\|_{2}^{2}}{\left\|g^{l}\right\|_{2}^{2}} d^{l}
$$

Forming the inner product with d^{j}, and using the fact that $d^{j T} g^{l+1}=0$ for all $j=0, \ldots, l$, and (3.19) when $j=l$, reveals

$$
d^{l+1 T} d^{j}=-g^{l+1 T} d^{j}+\frac{\left\|g^{l+1}\right\|_{2}^{2}}{\left\|g^{l}\right\|_{2}^{2}} d^{l T} d^{j}=\frac{\left\|g^{l+1}\right\|_{2}^{2}}{\left\|g^{l}\right\|_{2}^{2}} \frac{\left\|g^{l}\right\|_{2}^{2}}{\left\|g^{j}\right\|_{2}^{2}}\left\|d^{j}\right\|_{2}^{2}=\frac{\left\|g^{l+1}\right\|_{2}^{2}}{\left\|g^{j}\right\|_{2}^{2}}\left\|d^{j}\right\|_{2}^{2}>0 .
$$

Thus (3.19) is true for $i \leq l+1$, and hence for all $0 \leq j \leq i \leq k$.
We now have from the algorithm that

$$
s^{i}=s^{0}+\sum_{j=0}^{i-1} \alpha^{j} d^{j}=\sum_{j=0}^{i-1} \alpha^{j} d^{j}
$$

as, by assumption, $s^{0}=0$. Hence

$$
\begin{equation*}
s^{i T} d^{i}=\sum_{j=0}^{i-1} \alpha^{j} d^{j} T d^{i}=\sum_{j=0}^{i-1} \alpha^{j} d^{j} T d^{i}>0 \tag{3.20}
\end{equation*}
$$

as each $\alpha^{j}>0$, which follows from the definition of α^{j}, since $d^{j} T H d^{j}>0$, and from relationship (3.19). Hence

$$
\begin{aligned}
\left\|s^{i+1}\right\|_{2}^{2} & =s^{i+1 T} s^{i+1}=\left(s^{i}+\alpha^{i} d^{i}\right)^{T}\left(s^{i}+\alpha^{i} d^{i}\right) \\
& =s^{i T} s^{i}+2 \alpha^{i} s^{i} d^{i}+\alpha^{i 2} d^{i T} d^{i}>s^{i T} s^{i}=\left\|s^{i}\right\|_{2}^{2}
\end{aligned}
$$

follows directly from (3.20) and $\alpha^{i}>0$ which is the required result.

3.12 Proof of Theorem 3.11

The proof is elementary but rather complicated. See
Y. Yuan, "On the truncated conjugate-gradient method", Math. Programming, 87 (2000) 561:573
for full details.

