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4 Sketches of proofs for Part 4

4.1 Proof of Theorem 4.1

Let A = A(x∗), and I = {1, . . . ,m} \ A be the indices of constraints that are active and inactive

at x∗. Furthermore let subscripts A and I denote the rows of matrices/vectors whose indices are

indexed by these sets. Denote the left generalized inverse of AT

A(x) by

A+
A

(x) =
(

AA(x)AT

A(x)
)−1

AA(x)

at any point for which AA(x) is full rank. Since, by assumption, AA(x∗) is full rank, these

generalized inverses exists, and are bounded and continuous in some open neighbourhood of x∗.

Now let

(yk)i =
µk

ci(xk)

for i = 1, . . . ,m, as well as

(y∗)A = A+
A
(x∗)g(x∗)

and (y∗)I = 0. If I 6= ∅,

‖(yk)I‖2 ≤ 2µk

√

|I|/min
i∈I

|ci(x∗)| (4.1)

for all sufficiently large k. It then follows from the inner-iteration termination test that

‖g(x
k
) − AT

A(xk)(yk
)A‖2 ≤ ‖g(x

k
) − AT (xk)yk

‖2 + ‖AT

I (x
k
)(y

k
)I‖2

≤ ε̄k

def
= εk + µk

2
√

|I|‖AI‖2

mini∈I |ci(x∗)|
.

(4.2)

Hence

‖A+
A

(xk)g(xk) − (yk)A‖2 = ‖A+
A

(xk)(g(xk) − AT

A(xk)(yk)A)‖2 ≤ 2‖A+
A

(x∗)‖2 ε̄k.

Then

‖(yk)A − (y∗)A‖2 ≤ ‖A+
A

(x∗)g(x∗) − A+
A

(xk)g(xk)‖2 + ‖A+
A

(xk)g(xk) − (yk)A‖2

which, in combination with (4.1), implies that {yk} converges to y∗. In addition, continuity of

the gradients and (4.2) implies that

g(x∗) − AT (x∗)y∗ = 0
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while the fact that c(xk) > 0 for all k, the definition of yk and y∗ (and the implication that

ci(xk)(yk)i = µk) shows that c(x∗) ≥ 0, y∗ ≥ 0 and ci(x∗)(y∗)i = 0. Hence (x∗, y∗) satisfies the

first-order optimality conditions.

4.2 Proof of Theorem 4.2

The proof of this result is elementary, but rather long and involved. See

N. Gould, D. Orban, A. Sartenaer and Ph. L. Toint, “Superlinear convergence of

primal-dual interior point algorithms for nonlinear programming”, SIAM J. Opti-

mization, 11(4) (2001) 974:1002

for full details.
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