Part 1: Optimality conditions and why they are important

Nick Gould (RAL)

 $c(x) \ge 0, \quad g(x) + A^T(x)y = 0, \quad y \ge 0$

MSc course on nonlinear optimization

OPTIMIZATION PROBLEMS

Unconstrained minimization:

 $\min_{x \in \mathbb{R}^n} f(x)$

where the **objective function** $f : \mathbb{R}^n \longrightarrow \mathbb{R}$

Equality constrained minimization:

 $\underset{x \in {\rm I\!R}^n}{\text{minimize}} \ f(x) \ \text{subject to} \ c(x) = 0$

where the **constraints** $c : \mathbb{R}^n \longrightarrow \mathbb{R}^m \ (m \le n)$

Inequality constrained minimization:

 $\underset{x \in {\rm I\!R}^n}{\text{minimize}} \ f(x) \ \text{subject to} \ c(x) \geq 0$

where $c : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ (*m* may be larger than *n*)

NOTATION

Use the following throughout the course:

$$g(x) \stackrel{\text{def}}{=} \nabla_x f(x)$$

$$H(x) \stackrel{\text{def}}{=} \nabla_{xx} f(x)$$

$$a_i(x) \stackrel{\text{def}}{=} \nabla_x c_i(x)$$

$$H_i(x) \stackrel{\text{def}}{=} \nabla_x c(x) \equiv \begin{pmatrix} a_1^T(x) \\ \cdots \\ a_m^T(x) \end{pmatrix}$$

$$\ell(x, y) \stackrel{\text{def}}{=} f(x) - y^T c(x)$$

$$H(x, y) \stackrel{\text{def}}{=} \nabla_x \ell(x, y) = 0$$

gradient of f**Hessian matrix** of f**gradient** of ith constraint **Hessian** of ith constraint

Jacobian matrix of c

Lagrangian function, wherey are Lagrange multipliersHessian of the Lagrangian

$$H(x,y) \stackrel{\text{def}}{=} \nabla_{xx}\ell(x,y) \equiv H(x) - \sum_{i=1}^{m} y_i H_i(x)$$

LIPSCHITZ CONTINUITY

- $\odot \mathcal{X}$ and \mathcal{Y} open sets
- $\circ F: \mathcal{X} \to \mathcal{Y}$
- $\odot \| \cdot \|_{\mathcal{X}}$ and $\| \cdot \|_{\mathcal{Y}}$ are norms

Then

 \circ F is Lipschitz continuous at $x \in \mathcal{X}$ if $\exists \gamma(x)$ such that

$$\|F(z) - F(x)\|_{\mathcal{Y}} \le \gamma(x)\|z - x\|_{\mathcal{X}}$$

for all $z \in \mathcal{X}$.

 \circ F is **Lipschitz continuous throughout**/in \mathcal{X} if $\exists \gamma$ such that

$$\|F(z) - F(x)\|_{\mathcal{Y}} \le \gamma \|z - x\|_{\mathcal{X}}$$

for all x and $z \in \mathcal{X}$.

USEFUL TAYLOR APPROXIMATIONS

Theorem 1.1. Let \mathcal{S} be an open subset of \mathbb{R}^n , and suppose $f : \mathcal{S} \to \mathbb{R}$ is continuously differentiable throughout \mathcal{S} . Suppose further that g(x) is Lipschitz continuous at x, with Lipschitz constant $\gamma^L(x)$ in some appropriate vector norm. Then, if the segment $x + \theta s \in \mathcal{S}$ for all $\theta \in [0, 1]$,

$$|f(x+s) - m^{L}(x+s)| \le \frac{1}{2}\gamma^{L}(x)||s||^{2}$$
, where
 $m^{L}(x+s) = f(x) + g(x)^{T}s.$

If f is twice continuously differentiable throughout S and H(x) is Lipschitz continuous at x, with Lipschitz constant $\gamma^Q(x)$,

$$|f(x+s) - m^Q(x+s)| \le \frac{1}{6}\gamma^Q(x) ||s||^3, \text{ where}$$
$$m^Q(x+s) = f(x) + g(x)^T s + \frac{1}{2}s^T H(x)s.$$

MEAN VALUE THEOREM

Theorem 1.2. Let S be an open subset of \mathbb{R}^n , and suppose f: $S \to \mathbb{R}$ is twice continuously differentiable throughout S. Suppose further that $s \neq 0$, and that the interval $[x, x + s] \in S$. Then

$$f(x+s) = f(x) + g(x)^{T}s + \frac{1}{2}s^{T}H(z)s$$

for some $z \in (x, x + s)$.

ANOTHER USEFUL TAYLOR APPROXIMATION

Theorem 1.3. Let \mathcal{S} be an open subset of \mathbb{R}^n , and suppose $F : \mathcal{S} \to \mathbb{R}^m$ is continuously differentiable throughout \mathcal{S} . Suppose further that $\nabla_x F(x)$ is Lipschitz continuous at x, with Lipschitz constant $\gamma^L(x)$ in some appropriate vector norm and its induced matrix norm. Then, if the segment $x + \theta s \in \mathcal{S}$ for all $\theta \in [0, 1]$,

$$||F(x+s) - M^{L}(x+s)|| \le \frac{1}{2}\gamma^{L}(x)||s||^{2},$$

where

$$M^{L}(x+s) = F(x) + \nabla_{x}F(x)s.$$

OPTIMALITY CONDITIONS

Optimality conditions are useful because:

- they provide a means of guaranteeing that a candidate solution is indeed optimal (sufficient conditions), and
- they indicate when a point is not optimal (necessary conditions)

Furthermore they

 \odot guide in the design of algorithms, since lack of optimality \iff indication of improvement

UNCONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.4. Suppose that $f \in C^1$, and that x_* is a local minimizer of f(x). Then

 $g(x_*) = 0.$

Second-order necessary optimality:

Theorem 1.5. Suppose that $f \in C^2$, and that x_* is a local minimizer of f(x). Then $g(x_*) = 0$ and $H(x_*)$ is positive semi-definite, that is

 $s^T H(x_*) s \ge 0$ for all $s \in \mathbb{R}^n$.

PROOF OF THEOREM 1.4

Suppose otherwise, that $g(x_*) \neq 0$. Taylor expansion in the direction $-g(x_*)$ gives

$$f(x_* - \alpha g(x_*)) = f(x_*) - \alpha \|g(x_*)\|^2 + O(\alpha^2).$$

For sufficiently small α , $\frac{1}{2}\alpha ||g(x_*)||^2 \ge O(\alpha^2)$, and thus

$$f(x_* - \alpha g(x_*)) \le f(x_*) - \frac{1}{2}\alpha ||g(x_*)||^2 < f(x_*).$$

This contradicts hypothesis that x_* is a local minimizer.

Suppose otherwise that $s^T H(x_*) s < 0$. Taylor expansion in the direction s gives

$$f(x_* + \alpha s) = f(x_*) + \frac{1}{2}\alpha^2 s^T H(x_*) s + O(\alpha^3),$$

since $g(x_*) = 0$. For sufficiently small α , $-\frac{1}{4}\alpha^2 s^T H(x_*)s \ge O(\alpha^3)$, and thus

$$f(x_* + \alpha s) \le f(x_*) + \frac{1}{4}\alpha^2 s^T H(x_*) s < f(x_*).$$

This contradicts hypothesis that x_* is a local minimizer.

UNCONSTRAINED MINIMIZATION (cont.)

Second-order sufficient optimality:

Theorem 1.6. Suppose that $f \in C^2$, that x_* satisfies the condition $g(x_*) = 0$, and that additionally $H(x_*)$ is positive definite, that is

$$s^T H(x_*) s > 0$$
 for all $s \neq 0 \in \mathbb{R}^n$.

Then x_* is an isolated local minimizer of f.

Continuity $\implies H(x)$ positive definite $\forall x$ in open ball \mathcal{N} around x_* .

 $x_* + s \in \mathcal{N} + \text{generalized mean value theorem} \Longrightarrow \exists z \text{ between } x_* \text{ and } x_* + s \text{ for which}$

$$f(x_* + s) = f(x_*) + g(x_*)^T s + \frac{1}{2} s^T H(z) s$$

= $f(x_*) + \frac{1}{2} s^T H(z) s$
> $f(x_*)$

 $\forall s \neq 0 \implies x_*$ is an isolated local minimizer.

EQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.7. Suppose that $f, c \in C^1$, and that x_* is a local minimizer of f(x) subject to c(x) = 0. Then, so long as a first-order constraint qualification holds, there exist a vector of Lagrange multipliers y_* such that

 $c(x_*) = 0$ (**primal feasibility**) and $g(x_*) - A^T(x_*)y_* = 0$ (**dual feasibility**).

Constraint qualification $\implies \exists$ vector valued C^2 (C^3 for Theorem 1.8) function $x(\alpha)$ of the scalar α for which

$$x(0) = x_*$$
 and $c(x(\alpha)) = 0$

and

$$x(\alpha) = x_* + \alpha s + \frac{1}{2}\alpha^2 p + O(\alpha^3)$$

+ Taylor's theorem \Longrightarrow

$$0 = c_i(x(\alpha)) = c(x_* + \alpha s + \frac{1}{2}\alpha^2 p + O(\alpha^3))$$

= $c_i(x_*) + a_i^T(x_*) \left(\alpha s + \frac{1}{2}\alpha^2 p\right) + \frac{1}{2}\alpha^2 s^T H_i(x_*)s + O(\alpha^3)$
= $\alpha a_i^T(x_*)s + \frac{1}{2}\alpha^2 \left(a_i^T(x_*)p + s^T H_i(x_*)s\right) + O(\alpha^3)$

Matching similar asymptotic terms \Longrightarrow

$$A(x_*)s = 0 \tag{1}$$

and

$$a_i^T(x_*)p + s^T H_i(x_*)s = 0 \quad \forall i = 1, \dots, m$$
 (2)

Now consider objective function

$$f(x(\alpha)) = f(x_* + \alpha s + \frac{1}{2}\alpha^2 p + O(\alpha^3))$$

= $f(x_*) + g(x_*)^T \left(\alpha s + \frac{1}{2}\alpha^2 p\right) + \frac{1}{2}\alpha^2 s^T H(x_*)s + O(\alpha^3)$
= $f(x_*) + \alpha g(x_*)^T s + \frac{1}{2}\alpha^2 \left(g(x_*)^T p + s^T H(x_*)s\right) + O(\alpha^3)$
(3)

f(x) unconstrained along $x(\alpha) \Longrightarrow$

$$g(x_*)^T s = 0$$
 for all s such that $A(x_*)s = 0.$ (4)

Let S be a basis for null space of $A(x_*) \Longrightarrow$

$$g(x_*) = A^T(x_*)y_* + Sz_*$$
(5)

for some y_* and z_* . (4) $\implies g^T(x_*)S = 0 + A(x_*)S = 0 \implies$

$$0 = S^T g(x_*) = S^T A^T(x_*) y_* + S^T S z_* = S^T S z_*.$$

 $\implies S^T S z_* = 0 + S \text{ full rank} \implies z_* = 0 + (5) \implies$ $g(x_*) - A^T(x_*) y_* = 0.$

EQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

Theorem 1.8. Suppose that $f, c \in C^2$, and that x_* is a local minimizer of f(x) subject to c(x) = 0. Then, provided that first-and second-order constraint qualifications hold, there exist a vector of Lagrange multipliers y_* such that

$$s^T H(x_*, y_*) s \ge 0$$
 for all $s \in \mathcal{N}$

where

$$\mathcal{N} = \{ s \in \mathbb{R}^n \mid A(x_*)s = 0 \}$$

PROOF OF THEOREM 1.8 T

$$g(x_*) - A^T(x_*)y_* = 0.$$
 (6)

(9)

while $(3) \Longrightarrow$

$$f(x(\alpha)) = f(x_*) + \frac{1}{2}\alpha^2 \left(p^T g(x_*) + s^T H(x_*) s \right) + O(\alpha^3)$$
(7)

for all s and p satisfying $A(x_*)s = 0$ and

$$a_i^T(x_*)p + s^T H_i(x_*)s = 0 \quad \forall i = 1, \dots, m.$$
 (8)

Hence, necessarily, $p^T g(x_*) + s^T H(x_*) s \ge 0$

But (6) + (8)
$$\Longrightarrow$$
 m
 $p^T g(x_*) = \sum_{i=1}^m (y_*)_i p^T a_i(x_*) = -\sum_{i=1}^m (y_*)_i s^T H_i(x_*) s$
 \longrightarrow (0) is equivalent to

$$\Rightarrow (9) \text{ is equivalent to}$$

$$s^{T} \left(H(x_{*}) - \sum_{i=1}^{m} (y_{*})_{i} H_{i}(x_{*}) \right) s \equiv s^{T} H(x_{*}, y_{*}) s \ge 0$$

for all s satisfying $A(x_*)s = 0$.

INEQUALITY CONSTRAINED MINIMIZATION

First-order necessary optimality:

Theorem 1.9. Suppose that $f, c \in C^1$, and that x_* is a local minimizer of f(x) subject to $c(x) \ge 0$. Then, provided that a first-order constraint qualification holds, there exist a vector of Lagrange multipliers y_* such that

 $\begin{array}{l} c(x_*) \geq 0 \ (\textbf{primal feasibility}), \\ g(x_*) - A^T(x_*)y_* = 0 \\ \text{and} \ y_* \geq 0 \\ c_i(x_*)[y_*]_i = 0 \ (\textbf{complementary slackness}). \end{array}$

Often known as the Karush-Kuhn-Tucker (KKT) conditions

PROOF OF THEOREM 1.9

Consider feasible perturbations about x_* . $c_i(x_*) > 0 \implies c_i(x) > 0$ for small perturbations \implies need only consider perturbations that are constrained by $c_i(x) \ge 0$ for $i \in \mathcal{A} \stackrel{\text{def}}{=} \{i : c_i(x_*) = 0\}$. Consider $x(\alpha)$: $x(0) = x_*$, $c_i(x(\alpha)) \ge 0$ for $i \in \mathcal{A}$ and

$$x(\alpha) = x_* + \alpha s + \frac{1}{2}\alpha^2 p + O(\alpha^3)$$

 \Longrightarrow

$$0 \leq c_i(x(\alpha)) = c(x_* + \alpha s + \frac{1}{2}\alpha^2 p + O(\alpha^3)) = c_i(x_*) + a_i(x_*)^T \alpha s + \frac{1}{2}\alpha^2 p + \frac{1}{2}\alpha^2 s^T H_i(x_*)s + O(\alpha^3) = \alpha a_i(x_*)^T s + \frac{1}{2}\alpha^2 \left(a_i(x_*)^T p + s^T H_i(x_*)s \right) + O(\alpha^3)$$

 $\forall i \in \mathcal{A} \Longrightarrow$

$$s^T a_i(x_*) \ge 0 \quad \forall i \in \mathcal{A} \tag{10}$$

and

$$p^{T}a_{i}(x_{*}) + s^{T}H_{i}(x_{*})s \ge 0 \quad \text{when} \quad s^{T}a_{i}(x_{*}) = 0 \quad \forall i \in \mathcal{A}$$
(11)

Expansion (3) of $f(x(\alpha))$ $f(x(\alpha)) = f(x_*) + \alpha g(x_*)^T s + \frac{1}{2} \alpha^2 \left(g(x_*)^T p + s^T H(x_*) s \right) + O(\alpha^3)$ $\implies x_* \text{ can only be a local minimizer if}$ $\mathcal{S} = \{ s \mid s^T g(x_*) < 0 \text{ and } s^T a_i(x_*) \ge 0 \text{ for } i \in \mathcal{A} \} = \emptyset.$

Result then follows directly from Farkas' lemma:

Farkas' lemma. Given any vectors g and a_i , $i \in \mathcal{A}$, the set $\mathcal{S} = \{s \mid s^T g < 0 \text{ and } s^T a_i \ge 0 \text{ for } i \in \mathcal{A}\}$ is empty if and only if $g = \sum_{i \in \mathcal{A}} y_i a_i$

for some $y_i \ge 0, i \in \mathcal{A}$

INEQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order necessary optimality:

Theorem 1.10. Suppose that $f, c \in C^2$, and that x_* is a local minimizer of f(x) subject to $c(x) \geq 0$. Then, provided that firstand second-order constraint qualifications hold, there exist a vector of Lagrange multipliers y_* for which primal/dual feasibility and complementary slackness requirements hold as well as

$$s^T H(x_*, y_*) s \ge 0$$
 for all $s \in \mathcal{N}_+$

where

$$\mathcal{N}_{+} = \left\{ s \in \mathrm{IR}^{n} \mid \begin{array}{c} s^{T} a_{i}(x_{*}) = 0 \text{ if } c_{i}(x_{*}) = 0 \& [y_{*}]_{i} > 0 \& \\ s^{T} a_{i}(x_{*}) \ge 0 \text{ if } c_{i}(x_{*}) = 0 \& [y_{*}]_{i} = 0 \end{array} \right\}$$

Expansion

$$f(x(\alpha)) = f(x_*) + \alpha g(x_*)^T s + \frac{1}{2}\alpha^2 \left(g(x_*)^T p + s^T H(x_*) s \right) + O(\alpha^3)$$

for change in objective function dominated by $\alpha s^T g(x_*)$ for feasible perturbations unless $s^T g(x_*) = 0$, in which case the expansion

$$f(x(\alpha)) = f(x_*) + \frac{1}{2}\alpha^2 \left(p^T g(x_*) + s^T H(x_*) s \right) + O(\alpha^3)$$

is relevant \Longrightarrow

$$p^{T}g(x_{*}) + s^{T}H(x_{*})s \ge 0$$
 (12)

holds for all feasible s for which $s^T g(x_*) = 0 \Longrightarrow$ $0 = s^T g(x_*) = \sum_{i \in \mathcal{A}} (y_*)_i s^T a_i(x_*) \Longrightarrow$ either $(y_*)_i = 0$ or $a_i(x_*)^T s = 0$. \Longrightarrow second-order feasible perturbations characterised by $s \in \mathcal{N}_+$.

Focus on *subset* of all feasible arcs that ensure $c_i(x(\alpha)) = 0$ if $(y_*)_i > 0$ and $c_i(x(\alpha)) \ge 0$ if $(y_*)_i = 0$ for $i \in \mathcal{A} \implies s \in \mathcal{N}_+$. When $c_i(x(\alpha)) = 0 \implies$

$$a_i^T(x_*)p + s^T H_i(x_*)s = 0$$

$$\Rightarrow p^{T}g(x_{*}) = \sum_{i \in \mathcal{A}} (y_{*})_{i} p^{T}a_{i}(x_{*}) = \sum_{\substack{i \in \mathcal{A} \\ (y_{*})_{i} > 0}} (y_{*})_{i} p^{T}a_{i}(x_{*})$$

$$= -\sum_{\substack{i \in \mathcal{A} \\ (y_{*})_{i} > 0}} (y_{*})_{i} s^{T}H_{i}(x_{*})s = -\sum_{i \in \mathcal{A}} (y_{*})_{i} s^{T}H_{i}(x_{*})s$$

$$+ (12) \Rightarrow s^{T}H(x_{*}, y_{*})s \equiv s^{T} \left(H(x_{*}) - \sum_{i=1}^{m} (y_{*})_{i}H_{i}(x_{*})\right)s$$

$$= p^{T}g(x_{*}) + s^{T}H(x_{*})s \ge 0.$$

for all $s \in \mathcal{N}_+$

INEQUALITY CONSTRAINED MINIMIZATION (cont.)

Second-order sufficient optimality:

Theorem 1.11. Suppose that $f, c \in C^2$, that x_* and a vector of Lagrange multipliers y_* satisfy

$$c(x_*) \ge 0, g(x_*) - A^T(x_*)y_* = 0, y_* \ge 0, \text{ and } c_i(x_*)[y_*]_i = 0$$

and that

$$s^T H(x_*, y_*) s > 0$$

for all s in the set

$$\mathcal{N}_{+} = \left\{ s \in \mathbb{R}^{n} \mid s^{T} a_{i}(x_{*}) = 0 \text{ if } c_{i}(x_{*}) = 0 \& [y_{*}]_{i} > 0 \& \\ s^{T} a_{i}(x_{*}) \ge 0 \text{ if } c_{i}(x_{*}) = 0 \& [y_{*}]_{i} = 0. \right\}.$$

Then x_* is an isolated local minimizer of f(x) subject to $c(x) \ge 0$.

PROOF OF THEOREM 1.11

Consider any feasible arc $x(\alpha)$. Already shown

$$s^T a_i(x_*) \ge 0 \quad \forall i \in \mathcal{A} \tag{13}$$

and

$$p^{T}a_{i}(x_{*}) + s^{T}H_{i}(x_{*})s \ge 0 \quad \text{when} \quad s^{T}a_{i}(x_{*}) = 0 \quad \forall i \in \mathcal{A}$$
(14)

and that second-order feasible perturbations are characterized by \mathcal{N}_+ .

$$(14) \implies p^{T}g(x_{*}) = \sum_{i \in \mathcal{A}} (y_{*})_{i} p^{T}a_{i}(x_{*}) = \sum_{i \in \mathcal{A}} (y_{*})_{i} p^{T}a_{i}(x_{*})$$
$$\geq \sum_{i \in \mathcal{A}} (y_{*})_{i} s^{T}H_{i}(x_{*})s = -\sum_{i \in \mathcal{A}} (y_{*})_{i} s^{T}H_{i}(x_{*})s,$$

and hence by assumption that $p^{T}g(x_{*}) + s^{T}H(x_{*})s \geq s^{T}\left(H(x_{*}) - \sum_{i=1}^{m} (y_{*})_{i}H_{i}(x_{*})\right)s$ $\equiv s^{T}H(x_{*}, y_{*})s > 0$ $\forall s \in \mathcal{N}_{+} + (3) + (13) \Longrightarrow f(x(\alpha)) > f(x_{*}) \forall \text{ sufficiently small } \alpha.$