Part 2: Linesearch methods for unconstrained optimization

Nick Gould (RAL)

minimize $\quad f(x)$

$x \in \mathbb{R}^{n}$

MSc course on nonlinear optimization

UNCONSTRAINED MINIMIZATION

minimize $f(x)$
$x \in \mathbb{R}^{n}$
where the objective function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$

- assume that $f \in C^{1}$ (sometimes C^{2}) and Lipschitz
- often in practice this assumption violated, but not necessary
\odot in practice very rare to be able to provide explicit minimizer
\odot iterative method: given starting "guess" x_{0}, generate sequence

$$
\left\{x_{k}\right\}, \quad k=1,2, \ldots
$$

- AIM: ensure that (a subsequence) has some favourable limiting properties:
- satisfies first-order necessary conditions
- satisfies second-order necessary conditions

Notation: $f_{k}=f\left(x_{k}\right), g_{k}=g\left(x_{k}\right), H_{k}=H\left(x_{k}\right)$.

LINESEARCH METHODS

\odot calculate a search direction p_{k} from x_{k}

- ensure that this direction is a descent direction, i.e.,

$$
g_{k}^{T} p_{k}<0 \text { if } g_{k} \neq 0
$$

so that, for small steps along p_{k}, the objective function
will be reduced
\odot calculate a suitable steplength $\alpha_{k}>0$ so that

$$
f\left(x_{k}+\alpha_{k} p_{k}\right)<f_{k}
$$

- computation of α_{k} is the linesearch-may itself be an iteration
\odot generic linesearch method:

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

STEPS MIGHT BE TOO LONG

The objective function $f(x)=x^{2}$ and the iterates $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ generated by the descent directions $p_{k}=(-1)^{k+1}$ and steps $\alpha_{k}=$ $2+3 / 2^{k+1}$ from $x_{0}=2$

STEPS MIGHT BE TOO SHORT

The objective function $f(x)=x^{2}$ and the iterates $x_{k+1}=x_{k}+\alpha_{k} p_{k}$ generated by the descent directions $p_{k}=-1$ and steps $\alpha_{k}=1 / 2^{k+1}$ from $x_{0}=2$
\odot in early days, pick α_{k} to minimize

$$
f\left(x_{k}+\alpha p_{k}\right)
$$

- exact linesearch-univariate minimization
- rather expensive and certainly not cost effective
- modern methods: inexact linesearch
\diamond ensure steps are neither too long nor too short
- try to pick "useful" initial stepsize for fast convergence
- best methods are either
- "backtracking- Armijo" or
- "Armijo-Goldstein"
based

BACKTRACKING LINESEARCH

Procedure to find the stepsize α_{k} :

$$
\begin{aligned}
& \text { Given } \alpha_{\text {init }}>0 \text { (e.g., } \alpha_{\text {init }}=1 \text {) } \\
& \text { let } \alpha^{(0)}=\alpha_{\text {init }} \text { and } l=0 \\
& \text { Until } f\left(x_{k}+\alpha^{(l)} p_{k} \text { " }<^{\prime \prime} f_{k}\right. \\
& \quad \text { set } \alpha^{(l+1)}=\tau \alpha^{(l)} \text {, where } \tau \in(0,1)\left(\text { e.g., } \tau=\frac{1}{2}\right) \\
& \text { and increase } l \text { by } 1 \\
& \text { Set } \alpha_{k}=\alpha^{(l)}
\end{aligned}
$$

- this prevents the step from getting too small ... but does not prevent too large steps relative to decrease in f
\odot need to tighten requirement

$$
f\left(x_{k}+\alpha^{(l)} p_{k}\right) "<" f_{k}
$$

ARMIJO CONDITION

In order to prevent large steps relative to decrease in f, instead require

$$
f\left(x_{k}+\alpha_{k} p_{k}\right) \leq f\left(x_{k}\right)+\alpha_{k} \beta g_{k}^{T} p_{k}
$$

for some $\beta \in(0,1)$ (e.g., $\beta=0.1$ or even $\beta=0.0001$)

BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize α_{k} :

Given $\alpha_{\text {init }}>0$ (e.g., $\alpha_{\text {init }}=1$)
let $\alpha^{(0)}=\alpha_{\text {init }}$ and $l=0$
Until $f\left(x_{k}+\alpha^{(l)} p_{k}\right) \leq f\left(x_{k}\right)+\alpha^{(l)} \beta g_{k}^{T} p_{k}$
set $\alpha^{(l+1)}=\tau \alpha^{(l)}$, where $\tau \in(0,1)$ (e.g., $\left.\tau=\frac{1}{2}\right)$
and increase l by 1
Set $\alpha_{k}=\alpha^{(l)}$

SATISFYING THE ARMIJO CONDITION

Theorem 2.1. Suppose that $f \in C^{1}$, that $g(x)$ is Lipschitz continuous with Lipschitz constant $\gamma(x)$, that $\beta \in(0,1)$ and that p is a descent direction at x. Then the Armijo condition

$$
f(x+\alpha p) \leq f(x)+\alpha \beta g(x)^{T} p
$$

is satisfied for all $\alpha \in\left[0, \alpha_{\max (x)}\right]$, where

$$
\alpha_{\max }=\frac{2(\beta-1) g(x)^{T} p}{\gamma(x)\|p\|_{2}^{2}}
$$

PROOF OF THEOREM 2.1

Taylor's theorem (Theorem 1.1) +

$$
\alpha \leq \frac{2(\beta-1) g(x)^{T} p}{\gamma(x)\|p\|_{2}^{2}},
$$

\Longrightarrow

$$
\begin{aligned}
f(x+\alpha p) & \leq f(x)+\alpha g(x)^{T} p+\frac{1}{2} \gamma(x) \alpha^{2}\|p\|^{2} \\
& \leq f(x)+\alpha g(x)^{T} p+\alpha(\beta-1) g(x)^{T} p \\
& =f(x)+\alpha \beta g(x)^{T} p
\end{aligned}
$$

Corollary 2.2. Suppose that $f \in C^{1}$, that $g(x)$ is Lipschitz continuous with Lipschitz constant γ_{k} at x_{k}, that $\beta \in(0,1)$ and that p_{k} is a descent direction at x_{k}. Then the stepsize generated by the backtracking-Armijo linesearch terminates with

$$
\alpha_{k} \geq \min \left(\alpha_{\text {init }}, \frac{2 \tau(\beta-1) g_{k}^{T} p_{k}}{\gamma_{k}\left\|p_{k}\right\|_{2}^{2}}\right)
$$

PROOF OF COROLLARY 2.2

Theorem $2.1 \Longrightarrow$ linesearch will terminate as soon as $\alpha^{(l)} \leq \alpha_{\max }$.
2 cases to consider:

1. May be that $\alpha_{\text {init }}$ satisfies the Armijo condition $\Longrightarrow \alpha_{k}=\alpha_{\text {init }}$.
2. Otherwise, must be a last linesearch iteration (the l-th) for which

$$
\alpha^{(l)}>\alpha_{\max } \Longrightarrow \quad \alpha_{k} \geq \alpha^{(l+1)}=\tau \alpha^{(l)}>\tau \alpha_{\max }
$$

Combining these 2 cases gives required result.

Given an initial guess x_{0}, let $k=0$
Until convergence:
Find a descent direction p_{k} at x_{k}
Compute a stepsize α_{k} using a
\quad backtracking-Armijo linesearch along p_{k}
Set $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, and increase k by 1

GLOBAL CONVERGENCE THEOREM

Theorem 2.3. Suppose that $f \in C^{1}$ and that g is Lipschitz continuous on IR^{n}. Then, for the iterates generated by the Generic Linesearch Method, either

$$
g_{l}=0 \text { for some } l \geq 0
$$

or

$$
\lim _{k \rightarrow \infty} f_{k}=-\infty
$$

or

$$
\lim _{k \rightarrow \infty} \min \left(\left|p_{k}^{T} g_{k}\right|,\left|p_{k}^{T} g_{k}\right| /\left\|p_{k}\right\|_{2}\right)=0
$$

PROOF OF THEOREM 2.3

Suppose that $g_{k} \neq 0$ for all k and that $\lim _{k \rightarrow \infty} f_{k}>-\infty$. Armijo \Longrightarrow

$$
f_{k+1}-f_{k} \leq \alpha_{k} \beta p_{k}^{T} g_{k}
$$

for all $k \Longrightarrow$ summing over first j iterations

$$
f_{j+1}-f_{0} \leq \sum_{k=0}^{j} \alpha_{k} \beta p_{k}^{T} g_{k} .
$$

LHS bounded below by assumption \Longrightarrow RHS bounded below. Sum composed of -ve terms \Longrightarrow

$$
\lim _{k \rightarrow \infty} \alpha_{k}\left|p_{k}^{T} g_{k}\right|=0
$$

Let

$$
\mathcal{K}_{1} \stackrel{\text { def }}{=}\left\{k \left\lvert\, \alpha_{\text {init }}>\frac{2 \tau(\beta-1) g_{k}^{T} p_{k}}{\gamma\left\|p_{k}\right\|_{2}^{2}}\right.\right\} \& \mathcal{K}_{2} \stackrel{\text { def }}{=}\{1,2, \ldots\} \backslash \mathcal{K}_{1}
$$

where γ is the assumed uniform Lipschitz constant.

For $k \in \mathcal{K}_{1}$,

$$
\Longrightarrow \begin{array}{cc}
\alpha_{k} & \geq \frac{2 \tau(\beta-1) g_{k}^{T} p_{k}}{\gamma\left\|p_{k}\right\|_{2}^{2}} \\
\Longrightarrow & \alpha_{k} p_{k}^{T} g_{k} \leq \frac{2 \tau(\beta-1)}{\gamma}\left(\frac{g_{k}^{T} p_{k}}{\left\|p_{k}\right\|}\right)^{2}<0 \\
& \lim _{k \in \mathcal{K}_{1} \rightarrow \infty} \frac{\left|p_{k}^{T} g_{k}\right|}{\left\|p_{k}\right\|_{2}}=0 .
\end{array}
$$

For $k \in \mathcal{K}_{2}$,

$$
\alpha_{k} \geq \alpha_{\text {init }}
$$

\Longrightarrow

$$
\begin{equation*}
\lim _{k \in \mathcal{K}_{2} \rightarrow \infty}\left|p_{k}^{T} g_{k}\right|=0 \tag{2}
\end{equation*}
$$

Combining (1) and (2) gives the required result.

The search direction

$$
p_{k}=-g_{k}
$$

gives the so-called steepest-descent direction.

- p_{k} is a descent direction
- p_{k} solves the problem

$$
\underset{p \in \mathbb{R}^{n}}{\operatorname{minimize}} m_{k}^{L}\left(x_{k}+p\right) \stackrel{\text { def }}{=} f_{k}+g_{k}^{T} p \text { subject to }\|p\|_{2}=\left\|g_{k}\right\|_{2}
$$

Any method that uses the steepest-descent direction is a method of steepest descent.

GLOBAL CONVERGENCE FOR STEEPEST DESCENT

Theorem 2.4. Suppose that $f \in C^{1}$ and that g is Lipschitz continuous on IR^{n}. Then, for the iterates generated by the Generic Linesearch Method using the steepest-descent direction, either

$$
g_{l}=0 \text { for some } l \geq 0
$$

or

$$
\lim _{k \rightarrow \infty} f_{k}=-\infty
$$

or

$$
\lim _{k \rightarrow \infty} g_{k}=0 .
$$

PROOF OF THEOREM 2.4

Follows immediately from Theorem 2.3, since

$$
\min \left(\left|p_{k}^{T} g_{k}\right|,\left|p_{k}^{T} g_{k}\right| /\left\|p_{k}\right\|_{2}\right)=\left\|g_{k}\right\|_{2} \min \left(1,\left\|g_{k}\right\|_{2}\right)
$$

and thus

$$
\lim _{k \rightarrow \infty} \min \left(\left|p_{k}^{T} g_{k}\right|,\left|p_{k}^{T} g_{k}\right| /\left\|p_{k}\right\|_{2}\right)=0
$$

implies that $\lim _{k \rightarrow \infty} g_{k}=0$.

METHOD OF STEEPEST DESCENT (cont.)

- archetypical globally convergent method
- many other methods resort to steepest descent in bad cases
\odot not scale invariant
- convergence is usually very (very!) slow (linear)
- numerically often not convergent at all

Contours for the objective function $f(x, y)=10\left(y-x^{2}\right)^{2}+(x-1)^{2}$, and the iterates generated by the Generic Linesearch steepest-descent method

MORE GENERAL DESCENT METHODS

Let B_{k} be a symmetric, positive definite matrix, and define the search direction p_{k} so that

$$
B_{k} p_{k}=-g_{k}
$$

Then

- p_{k} is a descent direction
$\odot p_{k}$ solves the problem

$$
\underset{p \in \mathbb{R}^{n}}{\operatorname{minimize}} m_{k}^{Q}\left(x_{k}+p\right) \stackrel{\text { def }}{=} f_{k}+g_{k}^{T} p+\frac{1}{2} p^{T} B_{k} p
$$

- if the Hessian H_{k} is positive definite, and $B_{k}=H_{k}$, this is Newton's method

MORE GENERAL GLOBAL CONVERGENCE

Theorem 2.5. Suppose that $f \in C^{1}$ and that g is Lipschitz continuous on IR^{n}. Then, for the iterates generated by the Generic Linesearch Method using the more general descent direction, either

$$
g_{l}=0 \text { for some } l \geq 0
$$

or

$$
\lim _{k \rightarrow \infty} f_{k}=-\infty
$$

or

$$
\lim _{k \rightarrow \infty} g_{k}=0
$$

provided that the eigenvalues of B_{k} are uniformly bounded and bounded away from zero.

PROOF OF THEOREM 2.5

Let $\lambda_{\min }\left(B_{k}\right)$ and $\lambda_{\max }\left(B_{k}\right)$ be the smallest and largest eigenvalues of B_{k}. By assumption, there are bounds $\lambda_{\min }>0$ and $\lambda_{\max }$ such that

$$
\lambda_{\min } \leq \lambda_{\min }\left(B_{k}\right) \leq \frac{s^{T} B_{k} s}{\|s\|^{2}} \leq \lambda_{\max }\left(B_{k}\right) \leq \lambda_{\max }
$$

and thus that

$$
\lambda_{\max }^{-1} \leq \lambda_{\max }^{-1}\left(B_{k}\right)=\lambda_{\min }\left(B_{k}^{-1}\right) \leq \frac{s^{T} B_{k}^{-1} s}{\|s\|^{2}} \leq \lambda_{\max }\left(B_{k}^{-1}\right)=\lambda_{\min }^{-1}\left(B_{k}\right) \leq \lambda_{\min }^{-1}
$$ for any nonzero vector s. Thus

$$
\left|p_{k}^{T} g_{k}\right|=\left|g_{k}^{T} B_{k}^{-1} g_{k}\right| \geq \lambda_{\min }\left(B_{k}^{-1}\right)\left\|g_{k}\right\|_{2}^{2} \geq \lambda_{\max }^{-1}\left\|g_{k}\right\|_{2}^{2}
$$

In addition

$$
\begin{aligned}
& \left\|p_{k}\right\|_{2}^{2}=g_{k}^{T} B_{k}^{-2} g_{k} \leq \lambda_{\max }\left(B_{k}^{-2}\right)\left\|g_{k}\right\|_{2}^{2} \leq \lambda_{\min }^{-2}\left\|g_{k}\right\|_{2}^{2}, \\
& \Longrightarrow \quad\left\|p_{k}\right\|_{2} \leq \lambda_{\min }^{-1}\left\|g_{k}\right\|_{2}
\end{aligned}
$$

$$
\frac{\left|p_{k}^{T} g_{k}\right|}{\left\|p_{k}\right\|_{2}} \geq \frac{\lambda_{\min }}{\lambda_{\max }}\left\|g_{k}\right\|_{2}
$$

Thus

$$
\min \left(\left|p_{k}^{T} g_{k}\right|,\left|p_{k}^{T} g_{k}\right| /\left\|p_{k}\right\|_{2}\right) \geq \frac{\left\|g_{k}\right\|_{2}}{\lambda_{\max }} \min \left(\lambda_{\min },\left\|g_{k}\right\|_{2}\right)
$$

\Longrightarrow

$$
\lim _{k \rightarrow \infty} \min \left(\left|p_{k}^{T} g_{k}\right|,\left|p_{k}^{T} g_{k}\right| /\left\|p_{k}\right\|_{2}\right)=0
$$

\Longrightarrow

$$
\lim _{k \rightarrow \infty} g_{k}=0
$$

MORE GENERAL DESCENT METHODS (cont.)

- may be viewed as "scaled" steepest descent
\odot convergence is often faster than steepest descent
- can be made scale invariant for suitable B_{k}

CONVERGENCE OF NEWTON'S METHOD

Theorem 2.6. Suppose that $f \in C^{2}$ and that H is Lipschitz continuous on \mathbb{R}^{n}. Then suppose that the iterates generated by the Generic Linesearch Method with $\alpha_{\text {init }}=1$ and $\beta<\frac{1}{2}$, in which the search direction is chosen to be the Newton direction $p_{k}=-H_{k}^{-1} g_{k}$ whenever possible, has a limit point x_{*} for which $H\left(x_{*}\right)$ is positive definite. Then
(i) $\alpha_{k}=1$ for all sufficiently large k,
(ii) the entire sequence $\left\{x_{k}\right\}$ converges to x_{*}, and
(iii) the rate is Q-quadratic, i.e, there is a constant $\kappa \geq 0$.

$$
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x_{*}\right\|_{2}}{\left\|x_{k}-x_{*}\right\|_{2}^{2}} \leq \kappa
$$

PROOF OF THEOREM 2.6

Consider $\lim _{k \in \mathcal{K}} x_{k}=x_{*}$. Continuity $\Longrightarrow H_{k}$ positive definite for all $k \in \mathcal{K}$ sufficiently large $\Longrightarrow \exists k_{0} \geq 0$:

$$
p_{k}^{T} H_{k} p_{k} \geq \frac{1}{2} \lambda_{\min }\left(H_{*}\right)\left\|p_{k}\right\|_{2}^{2}
$$

$\forall k_{0} \leq k \in \mathcal{K}$, where $\lambda_{\text {min }}\left(H_{*}\right)=$ smallest eigenvalue of $H\left(x_{*}\right) \Longrightarrow$

$$
\begin{equation*}
\left|p_{k}^{T} g_{k}\right|=-p_{k}^{T} g_{k}=p_{k}^{T} H_{k} p_{k} \geq \frac{1}{2} \lambda_{\min }\left(H_{*}\right)\left\|p_{k}\right\|_{2}^{2} \tag{3}
\end{equation*}
$$

$\forall k_{0} \leq k \in \mathcal{K}$, and

$$
\lim _{k \in \mathcal{K} \rightarrow \infty} p_{k}=0
$$

since Theorem $2.5 \Longrightarrow$ at least one of the LHS of (3) and

$$
\frac{\left|p_{k}^{T} g_{k}\right|}{\left\|p_{k}\right\|_{2}}=-\frac{p_{k}^{T} g_{k}}{\left\|p_{k}\right\|_{2}} \geq \frac{1}{2} \lambda_{\min }\left(H_{*}\right)\left\|p_{k}\right\|_{2}
$$

converges to zero for such k.

Taylor's theorem $\Longrightarrow \exists z_{k}$ between x_{k} and $x_{k}+p_{k}$ such that

$$
f\left(x_{k}+p_{k}\right)=f_{k}+p_{k}^{T} g_{k}+\frac{1}{2} p_{k}^{T} H\left(z_{k}\right) p_{k} .
$$

Lipschitz continuity of $H \& H_{k} p_{k}+g_{k}=0 \Longrightarrow$

$$
\begin{align*}
f\left(x_{k}+p_{k}\right)-f_{k}-\frac{1}{2} p_{k}^{T} g_{k} & =\frac{1}{2}\left(p_{k}^{T} g_{k}+p_{k}^{T} H\left(z_{k}\right) p_{k}\right) \\
& =\frac{1}{2}\left(p_{k}^{T} g_{k}+p_{k}^{T} H_{k} p_{k}\right)+\frac{1}{2}\left(p_{k}^{T}\left(H\left(z_{k}\right)-H_{k}\right) p_{k}\right) \\
& \leq \frac{1}{2} \gamma\left\|z_{k}-x_{k}\right\|_{2}\left\|p_{k}\right\|_{2}^{2} \leq \frac{1}{2} \gamma\left\|p_{k}\right\|_{2}^{3} \tag{4}
\end{align*}
$$

Now pick k sufficiently large so that

$$
\begin{gathered}
\gamma\left\|p_{k}\right\|_{2} \leq \lambda_{\min }\left(H_{*}\right)(1-2 \beta) \\
+(3)+(4) \Longrightarrow \\
f\left(x_{k}+p_{k}\right)-f_{k} \leq \frac{1}{2} p_{k}^{T} g_{k}+\frac{1}{2} \lambda_{\min }\left(H_{*}\right)(1-2 \beta)\left\|p_{k}\right\|_{2}^{2} \\
\leq \frac{1}{2}(1-(1-2 \beta)) p_{k}^{T} g_{k}=\beta p_{k}^{T} g_{k}
\end{gathered}
$$

\Longrightarrow unit stepsize satisfies the Armijo condition for all sufficiently large $k \in \mathcal{K}$

Now note that $\left\|H_{k}^{-1}\right\|_{2} \leq 2 / \lambda_{\min }\left(H_{*}\right)$ for all sufficiently large $k \in \mathcal{K}$. The iteration gives

$$
\begin{aligned}
x_{k+1}-x_{*} & =x_{k}-x_{*}-H_{k}^{-1} g_{k}=x_{k}-x_{*}-H_{k}^{-1}\left(g_{k}-g\left(x_{*}\right)\right) \\
& =H_{k}^{-1}\left(g\left(x_{*}\right)-g_{k}-H_{k}\left(x_{*}-x_{k}\right)\right) .
\end{aligned}
$$

But Theorem $1.3 \Longrightarrow$

$$
\Longrightarrow
$$

$$
\begin{gathered}
\left\|g\left(x_{*}\right)-g_{k}-H_{k}\left(x_{*}-x_{k}\right)\right\|_{2} \leq \gamma\left\|x_{*}-x_{k}\right\|_{2}^{2} \\
\left\|x_{k+1}-x_{*}\right\|_{2} \leq \gamma\left\|H_{k}^{-1}\right\|_{2}\left\|x_{*}-x_{k}\right\|_{2}^{2}
\end{gathered}
$$

which is (iii) when $\kappa=2 \gamma / \lambda_{\min }\left(H_{*}\right)$. for $k \in \mathcal{K}$.
Result (ii) follows since once iterate becomes sufficiently close to x_{*}, (iii) for $k \in \mathcal{K}$ sufficiently large implies $k+1 \in \mathcal{K} \Longrightarrow \mathcal{K}=\mathrm{IN}$. Thus (i) and (iii) are true for all k sufficiently large.

Contours for the objective function $f(x, y)=10\left(y-x^{2}\right)^{2}+(x-1)^{2}$, and the iterates generated by the Generic Linesearch Newton method

MODIFIED NEWTON METHODS

If H_{k} is indefinite, it is usual to solve instead

$$
\left(H_{k}+M_{k}\right) p_{k} \equiv B_{k} p_{k}=-g_{k}
$$

where

- M_{k} chosen so that $B_{k}=H_{k}+M_{k}$ is "sufficiently" positive definite
$\odot M_{k}=0$ when H_{k} is itself "sufficiently" positive definite

Possibilities:
\odot If H_{k} has the spectral decomposition $H_{k}=Q_{k} D_{k} Q_{k}^{T}$ then

$$
B_{k} \equiv H_{k}+M_{k}=Q_{k} \max \left(\epsilon,\left|D_{k}\right|\right) Q_{k}^{T}
$$

$\odot M_{k}=\max \left(0, \epsilon-\lambda_{\min }\left(H_{k}\right)\right) I$

- Modified Cholesky: $B_{k} \equiv H_{k}+M_{k}=L_{k} L_{k}^{T}$

QUASI-NEWTON METHODS

Various attempts to approximate H_{k} :

- Finite-difference approximations:

$$
\left(H_{k}\right) e_{i} \approx h^{-1}\left(g\left(x_{k}+h e_{i}\right)-g_{k}\right)=\left(B_{k}\right) e_{i}
$$

for some "small" scalar $h>0$

- Secant approximations: try to ensure the secant condition
$B_{k+1} s_{k}=y_{k} \approx H_{k+1} s_{k}$, where $s_{k}=x_{k+1}-x_{k}$ and $y_{k}=g_{k+1}-g_{k}$
- Symmetric Rank-1 method (but may be indefinite or even fail):

$$
B_{k+1}=B_{k}+\frac{\left(y_{k}-B_{k} s_{k}\right)\left(y_{k}-B_{k} s_{k}\right)^{T}}{\left(y_{k}-B_{k} s_{k}\right)^{T} s_{k}}
$$

\bullet BFGS method: (symmetric and positive definite if $y_{k}^{T} s_{k}>0$):

$$
B_{k+1}=B_{k}+\frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}-\frac{B_{k} s_{k} s_{k}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}}
$$

MINIMIZING A CONVEX QUADRATIC MODEL

For convex models (B_{k} positive definite)

$$
p_{k}=(\text { approximate }) \underset{p \in \mathbb{R}^{n}}{\arg \min ^{n}} f_{k}+p^{T} g_{k}^{T}+\frac{1}{2} p^{T} B_{k} p
$$

Generic convex quadratic problem: (B positive definite)
(approximately) $\underset{p \in \mathbb{R}^{n}}{\operatorname{minimize}} q(p)=p^{T} g+\frac{1}{2} p^{T} B p$

$$
p \in \mathbb{R}^{n}
$$

- $D^{i}=\left(d^{0}: \cdots: d^{i-1}\right)$
- Subspace $\mathcal{D}^{i}=\left\{p \mid p=D^{i} p_{d}\right.$ for some $\left.p_{d} \in \mathbb{R}^{i}\right\}$
- $p^{i}=\arg \min q(p)$

$$
p \in \mathcal{D}^{i}
$$

$\Longrightarrow D^{i T} g^{i}=0$, where $g^{i}=B p^{i}+g$

- $p^{i-1} \in \mathcal{D}^{i}$

$$
\begin{aligned}
\Longrightarrow p^{i} & =p^{i-1}+D^{i} p_{d}^{i}, \text { where } \\
p_{d}^{i} & =\underset{p_{d} \in \mathbb{R}^{i}}{\arg \min } p_{d}^{T} D^{i T} g^{i-1}+\frac{1}{2} p_{d}^{T} D^{i T} B D^{i} p_{d} \\
& =-\left(D^{i T} B D^{i}\right)^{-1} D^{i T} g^{i-1}=-d^{i-1 T} g^{i-1}\left(D^{i T} B D^{i}\right)^{-1} e_{i} \\
\Longrightarrow p^{i} & =p^{i-1}-d^{i-1 T} g^{i-1} D^{i}\left(D^{i T} B D^{i}\right)^{-1} e_{i}
\end{aligned}
$$

MINIMIZATION OVER A CONJUGATE SUBSPACE

Minimizer over $\mathcal{D}^{i}: p^{i}=p^{i-1}-d^{i-1 T} g^{i-1} D^{i}\left(D^{i T} B D^{i}\right)^{-1} e_{i}$
Suppose in addition the members of \mathcal{D}^{i} are B-conjugate:
\odot B-conjugacy: $d_{i}^{T} B d_{j}=0(i \neq j)$

$$
\begin{gathered}
\Longrightarrow p^{i}=p^{i-1}+\alpha^{i-1} d^{i-1}, \text { where } \\
\alpha^{i-1}=-\frac{d^{i-1 T} g^{i-1}}{d^{i-1 T} B d^{i-1}}
\end{gathered}
$$

Building a B-conjugate subspace

Since g^{i} is independent of \mathcal{D}^{i}, let $d^{i}=-g^{i}+\sum_{j=0}^{i-1} \beta^{i j} d^{j}$
\odot choose $\beta^{i j}$ so that d^{i} is B-conjugate to \mathcal{D}^{i}

$$
\Longrightarrow \beta^{i j}=0(j<i-1), \beta^{i i-1} \equiv \beta^{i}=\frac{\left\|g_{i}\right\|_{2}^{2}}{\left\|g_{i-1}\right\|_{2}^{2}}
$$

CONJUGATE-GRADIENT METHOD

Given $p^{0}=0$, set $g^{0}=g, d^{0}=-g$ and $i=0$.
Until g^{i} "small" iterate

$$
\begin{aligned}
& \alpha^{i}=-g^{i T} d^{i} / d^{i} B d^{i} \\
& p^{i+1}=p^{i}+\alpha^{i} d^{i} \\
& g^{i+1}=g^{i}+\alpha^{i} B d^{i} \\
& \beta^{i}=\left\|g^{i+1}\right\|_{2}^{2} /\left\|g^{i}\right\|_{2}^{2} \\
& d^{i+1}=-g^{i+1}+\beta^{i} d^{i} \\
& \text { and increase } i \text { by } 1
\end{aligned}
$$

Important features
$\odot d^{j T} g^{i+1}=0$ for all $j=0, \ldots, i \quad \Longrightarrow \alpha^{i}=\left\|g^{i}\right\|_{2}^{2} / d^{i T} B d^{i}$
$\odot g^{j T} g^{i+1}=0$ for all $j=0, \ldots, i$
$\odot g^{T} p^{i}<0$ for $i=1, \ldots, n \Longrightarrow$ descent direction for any $p_{k}=p^{i}$

CONJUGATE GRADIENT METHOD GIVES DESCENT

$g^{i-1 T} d^{i-1}=d^{i-1 T}\left(g+B p^{i-1}\right)=d^{i-1 T} g+\sum_{j=0}^{i-2} \alpha_{j} d^{i-1 T} B d^{j}=d^{i-1 T} g$ p^{i} minimizes $q(p)$ in $\mathcal{D}^{i} \Longrightarrow$

$$
p^{i}=p^{i-1}-\frac{g^{i-1 T} d^{i-1}}{d^{i-1 T} B d^{i-1}} d^{i-1}=p^{i-1}-\frac{g^{T} d^{i-1}}{d^{i-1 T} B d^{i-1}} d^{i-1}
$$

\Longrightarrow

$$
g^{T} p^{i}=g^{T} p^{i-1}-\frac{\left(g^{T} d^{i-1}\right)^{2}}{d^{i-1 T} B d^{i-1}}
$$

$\Longrightarrow g^{T} p^{i}<g^{T} p^{i-1} \Longrightarrow$ (induction)

$$
g^{T} p^{i}<0
$$

since

$$
g^{T} p^{1}=-\frac{\|g\|_{2}^{4}}{g^{T} B g}<0 .
$$

$\Longrightarrow p_{k}=p^{i}$ is a descent direction

