Part 2: Linesearch methods
for unconstrained optimization

Nick Gould (RAL)

minimize  f(x)
r€IR"

MSec course on nonlinear optimization

ITERATIVE METHODS

® in practice very rare to be able to provide explicit minimizer
© iterative method: given starting “guess” x(, generate sequence
{zx}, k=1,2,...
© ATM: ensure that (a subsequence) has some favourable limiting
properties:

o satisfies first-order necessary conditions

o satisfies second-order necessary conditions

Notation: fr = f(xr), gr = g(@r), Hr = H(xy).

UNCONSTRAINED MINIMIZATION

minimize f(z)
z€R"

where the objective function f:IR" — IR

© assume that f € C! (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary

LINESEARCH METHODS

© calculate a search direction py from x;
© ensure that this direction is a descent direction, i.e.,
gip, <0 if g £0

so that, for small steps along pg, the objective function
will be reduced

o calculate a suitable steplength «y > 0 so that

J(@p + aupr) < fr
© computation of ay is the linesearch—may itself be an iteration
© generic linesearch method:

Tp41 = Tk + O4Pk



STEPS MIGHT BE TOO LONG
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The objective function f(z) = 22 and the iterates zy,1 = 71 + arpp
generated by the descent directions pp = (—1)"! and steps oy, =
2 +3/2M1 from x = 2

PRACTICAL LINESEARCH METHODS

© in early days, pick ay to minimize

[y + apr)
o exact linesearch—univariate minimization

o rather expensive and certainly not cost effective
® modern methods: inexact linesearch

o ensure steps are neither too long nor too short
o try to pick “useful” initial stepsize for fast convergence
o best methods are either

> “backtracking- Armijo” or

> “Armijo-Goldstein”

based

STEPS MIGHT BE TOO SHORT
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The objective function f(z) = 22 and the iterates z3,1 = x5 + arpp
generated by the descent directions py = —1 and steps ay = 1/2F+!
from xg = 2

BACKTRACKING LINESEARCH

Procedure to find the stepsize ay:

Given ajpip > 0 (e.g., apit = 1)
let ¥ = ;¢ and 1 =0
Until f(zy, + aWp)“<” fi

) = 7o) where 7 € (0,1) (e.g., 7 = 1)

set av
and increase [ by 1

Set ay = alV)

© this prevents the step from getting too small . . . but does not prevent
too large steps relative to decrease in f

® need to tighten requirement

flap+aVpp) < fi



ARMIJO CONDITION BACKTRACKING-ARMIJO LINESEARCH
In order to prevent large steps relative to decrease in f, instead require
flay+ awpy) < flg) + anByipy

for some 8 € (0,1) (e.g., 8 =0.1 or even 5 = 0.0001)

Procedure to find the stepsize a;:

Given ajpit > 0 (e.g., ajpip = 1)

let o0 = Qjpit and [ =0

Until f(a;, +alpy) < flay) + ol Bglp,
set o) = 70 where 7 € (0,1) (e.g., 7= 1)
and increase [ by 1

ST | COSETCT &

Set ap = alV)

f(zr+apk)
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f@)+agip,
SATISFYING THE ARMIJO CONDITION PROOF OF THEOREM 2.1
Taylor’s theorem (Theorem 1.1) +
Theorem 2.1. Suppose that f € O, that g(z) is Lipschitz con- o < 2(8 — 1)g(x)'p
tinuous with Lipschitz constant y(x), that 8 € (0,1) and that p is v(@)lpll3

a descent direction at . Then the Armijo condition
_ @) + ag(@)"p + (@) |p|

<
fla +ap) < f(z) + apg(a)"p < flz)+ o@@vﬂﬁ a(f —1)g(z)"p
is satisfied for all o € [0, Qpax(z)], Where = flz)+ aBg(z)'p
2(8 = 1)g(z)"p
(@)lpll3

Dmbg@un -




THE ARMIJO LINESEARCH TERMINATES

Corollary 2.2. Suppose that f € C1, that g(z) is Lipschitz con-
tinuous with Lipschitz constant 7y at xy, that 8 € (0,1) and that
P 18 a descent direction at x;. Then the stepsize generated by the
backtracking-Armijo linesearch terminates with

27(6 — 1)gi pr

@k Z 0 | Qinity 1 12

GENERIC LINESEARCH METHOD

Given an initial guess xg, let k =0
Until convergence:
Find a descent direction p; at xj
Compute a stepsize oy using a
backtracking-Armijo linesearch along py
Set x41 = Tk + appk, and increase k by 1

PROOF OF COROLLARY 2.2

Theorem 2.1 = linesearch will terminate as soon as a!) < ayax.
2 cases to consider:

1. May be that ajyis satisfies the Armijo condition = o = oyt
2. Otherwise, must be a last linesearch iteration (the I-th) for which

aD > apae = a > o™ =700 > ranmax

Combining these 2 cases gives required result.

GLOBAL CONVERGENCE THEOREM

Theorem 2.3. Suppose that f € C* and that g is Lipschitz con-
tinuous on IR™. Then, for the iterates generated by the Generic
Linesearch Method,

either
g =0 for some [ >0
or
Jim_ fiy = —o0
or

) _@WS_\__E__MV =0.

lim min (|p} g,

k—o00




PROOF OF THEOREM 2.3
Suppose that g # 0 for all k and that lim f, > —oo. Armijo =

k—o0
T
\\?I — fr < .BpL 9,

for all K = summing over first j iterations

J
b.i —f < \Wo Q»Q@MS@.

LHS bounded below by assumption => RHS bounded below. Sum
composed of -ve terms =

lim osa_@wmw_ =0

k—o0

Let
27(8 — 1)gipr
V]Ipel3

where 7y is the assumed uniform Lipschitz constant.

Ky 3k | agyig > & K12, 3\ Ky

METHOD OF STEEPEST DESCENT

The search direction
Pk = —3gk

gives the so-called steepest-descent direction.
© pg is a descent direction

© py solves the problem
minimize mZ (zy, + p) dof £+ gip subject to |[pll2 = llgrll2
pEIR”

Any method that uses the steepest-descent direction is a
method of steepest descent.

For k € Ky,
27(8 — 1)gi p

oy > 5
YIpl3
- 2(6— 1) (g pi)’
NERRLILENTE
. ‘ ¥ [
T
T /S (1)
keki=oo ||py [l
For k € ICs,
ar 2 Qipit
=
pelim Ipi gl = 0. (2)

Combining (1) and (2) gives the required result.

GLOBAL CONVERGENCE FOR STEEPEST DESCENT

Theorem 2.4. Suppose that f € C' and that g is Lipschitz con-
tinuous on IR™. Then, for the iterates generated by the Generic
Linesearch Method using the steepest-descent direction,

either
g =10 for some [ >0
or
Jim fr = —o0
or
lim g = 0.
k—00




PROOF OF THEOREM 2.4 METHOD OF STEEPEST DESCENT (cont.)
Follows immediately from Theorem 2.3, since

it ([P gl [Pk gil/IPill2) = l1gilla min (L, gl © archetypical globally convergent method

and thus © many other methods resort to steepest descent in bad cases

Jim min (I gel [Pk 93l /llpella) = O
©

. ) . not scale invariant
implies that limg_, g = 0.

® convergence is usually very (very!) slow (linear)

© numerically often not convergent at all

STEEPEST DESCENT EXAMPLE MORE GENERAL DESCENT METHODS
" Let By, be a symmetric, positive definite matrix, and define the
search direction py so that
A Bipr = — g
Then
: © pg is a descent direction
, © pg solves the problem
minimize Smﬁ&w +p) Y f+ gip+ W' Bip
pEIR"
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© if the Hessian Hj, is positive definite, and By, = Hj, this is

Contours for the objective function f(z,y) = 10(y — 22)? + (z — 1)?, Newton’ hod
ewton’s metho

and the iterates generated by the Generic Linesearch steepest-descent
method



MORE GENERAL GLOBAL CONVERGENCE

Theorem 2.5. Suppose that f € C! and that g is Lipschitz con-
tinuous on IR™. Then, for the iterates generated by the Generic
Linesearch Method using the more general descent direction,

either
g1 =0 for some [ >0
or
o i =
or
lim g, =0
k—o00

provided that the eigenvalues of Bj are uniformly bounded and
bounded away from zero.

- gl
ﬁwm\o EE:
= g :m
:@»:m v::mx F
Thus
. 19l
min (|pf gxl, [Pk gl /s ll2) > 3 22 min (Awin, |95 /l2)
max
S
Jim min (|pg gy, [0k gel/|Ipillz) =
=

lim g; = 0.

k—o0

PROOF OF THEOREM 2.5
Let Amin(Br) and Apax(By) be the smallest and largest eigenvalues of
Bj.. By assumption, there are bounds Ay, > 0 and Apax such that

s Bys
v:i: m v:dgm.m».v __%:M A yE@xAm\av A V,E%a
and thus that
1 1y S Bi's -1
\/E@x < VE%%WNAV = \/EEAW\@ v < % < \/meAm\a v = V,BEAmC < \/:::

for any nonzero vector s. Thus

kgl = 19£ B gkl > Auin(Bi Dllgells > Al gill3
In addition

:ﬁ\a__w = Qmm\ﬂw,@w m \/ngm.w\a v:,@»:w A yBE:Q»:M“

lpella < Aiall gl

MORE GENERAL DESCENT METHODS (cont.)

© may be viewed as “scaled” steepest descent
@ convergence is often faster than steepest descent

® can be made scale invariant for suitable By,



CONVERGENCE OF NEWTON’S METHOD

Theorem 2.6. Suppose that f € C? and that H is Lipschitz
continuous on IR"”. Then suppose that the iterates generated by the
Generic Linesearch Method with o3¢ = 1 and 8 < §, in which the
search direction is chosen to be the Newton direction p, = —Hj 'g;.
whenever possible, has a limit point z, for which H(z,) is positive
definite. Then

(i) ap = 1 for all sufficiently large &,
(ii) the entire sequence {x)} converges to z., and
(iil) the rate is Q-quadratic, i.e, there is a constant £ > 0.

o ke = 2l

< K.
oo g — a5 T

Taylor’s theorem = Jzj, between z; and xy + py such that
flwy+p) = fi+pigy + vt H(z)py
Lipschitz continuity of H & Hypy + gr = 0 =

e +pp) — fr — kg = Yoo+l H(z)p,)

(kg + i Hypy) + 3(pk (H (21) — Hi)py)

Wz — zillallpel3 < Wvlpell3 "
4

IN

Now pick k sufficiently large so that

Q\__%\a__w m v:b:%m*vﬁ - MQV
+B3)+ @) =
F@r+pe) = fi < 3pkge + $Aain(H) (1 = 28)[Ipe 13
(1= (1= 28))pigr = Bpigs
= unit stepsize satisfies the Armijo condition for all sufficiently large

ke

<
<

PROOF OF THEOREM 2.6

Consider \_ﬂmma» = x,. Continuity = H}, positive definite for all k € IC

sufficiently large = Jko > 0:

%Mm%ﬁ > wv:a:@bv __?__W

Vko < k € K, where Apin(H,) = smallest eigenvalue of H(z,) =

kgl = —Phor = pi Hipp = 3 (L) |[pl3- (3)
Vko < k € K, and
rmwﬂﬂ@ooﬁw =0

since Theorem 2.5 == at least one of the LHS of (3) and

T T

Pi 9, Pi. 9k
Lol __ P9 5 43 () ol
:@L_M_g__m

converges to zero for such k.

Now note that || H} |y < 2/Amin(H,) for all sufficiently large k& € K.

The iteration gives

Thyl — Ty = Tfp — Ty — FAL% =T — Ty — FAL (gr — g(z4))
= mw\ﬂ AQA&L — gk — mwm.&.* - &wvv .
But Theorem 1.3 =

lg() = g — Hi (@2 — 2i) [l < vllws — 2ill3

lker = 2ally < A o lwe — 2l
which is (iii) when k& = 2v/Anin(Hy). for k € K.
Result (ii) follows since once iterate becomes sufficiently close to .,

(iii) for k € K sufficiently large implies k +1 € K = K = IN. Thus
(i) and (iii) are true for all k sufficiently large.



NEWTON METHOD EXAMPLE
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Contours for the objective function f(z,y) = 10(y — 2%)? + (z — 1)%,
and the iterates generated by the Generic Linesearch Newton method

QUASI-NEWTON METHODS

Various attempts to approximate Hy:
© Finite-difference approximations:
(Hy)e; ~ h™'(g(zx + he;) — gi) = (By)e;
for some “small” scalar h > 0
® Secant approximations: try to ensure the secant condition
Biy18k = yp & Hyp18, where sy =z — 2 and yp = grey1 — G
o Symmetric Rank-1 method (but may be indefinite or even
fail):
(y. — Bisi)(yx — Bisi)"
(yr — Brsi) sy
o BFGS method: (symmetric and positive definite if y{ s > 0):
vyt Bisisi By

Byy1= By + -
yi sy st Bisi

Bii1 = By +

MODIFIED NEWTON METHODS

If H;. is indefinite, it is usual to solve instead
(Hg + My)pr = Brpr = — g
where
©® M. chosen so that B = Hy + M, is “sufficiently” positive definite

© My =0 when Hy, is itself “sufficiently” positive definite

Possibilities:

© If Hy, has the spectral decomposition H, = Q. D,QF then
By = Hy + My, = Qumax(e, |D,|)QF

© My = max(0, e — A\ (Hy)) T

© Modified Cholesky: B, = H, + M, = L, L}

MINIMIZING A CONVEX QUADRATIC MODEL

For convex models (B, positive definite)

pr = (approximate) arg min f;. +p’ g} + ip” Bip
Nwmu_u—,‘m\.;

Generic convex quadratic problem: (B positive definite)
(approximately) minimize ¢(p) = p’g + ip” Bp
Num_Hw:



MINIMIZATION OVER A SUBSPACE

© Di=(d":---:d™h
® Subspace D' = {p | p= D'py for some p, € IR’}

© p' = arg min g(p)
@mU&

— D'Tg' =0, where g = Bp' +¢
o pleD
= p' = p"~! + D'pl;, where
pg = arg min pj D' Tg" + 4pi D'TBD'p,
_ IAww%«mboLb& Tyl = _ g1 Tg=1(DITBDH e,
—s =l — & TG DD TBD) e

CONJUGATE-GRADIENT METHOD

Given p’ =0, set g' =g, d" = —gand i = 0.
Until g* “small” iterate

ol = |,Q:J&N.\&N. TR

P = pi + ddi

.QI.H — .Q@. + Qs.m&s.

B =lg I3/ 1lg'll3

dTl = \QI.H xTQs.&s.

and increase ¢ by 1

Important features
o dTgtt =0forall j=0,...,i = o' =|g'|3/d'TBd’
o g Tgtl=0foralj=0,...,3

© g'p' <0fori=1,...,n = descent direction for any p; = p'

MINIMIZATION OVER A CONJUGATE SUBSPACE

Minimizer over D¥: pi = pi~t — d'=' Tgi=1Di(DIT BD!) e,
Suppose in addition the members of D’ are B-conjugate:
© B-conjugacy: d! Bd; =0 (i # j)

= p' =p" !+ a7 1d7! where

&N.\H H.QN.\H

T Ji-1TBgi-1

QN\H —

Building a B-conjugate subspace

A . A il
Since ¢' is independent of D', let d' = —g' + @M 69 d
j=0
® choose 3% so that d' is B-conjugate to D’

12
_ Q: =0(j<i—1), Q:.\H = QQ _ :Qs__mw
llgi-11l5

CONJUGATE GRADIENT METHOD GIVES DESCENT

. . . . . —2 . . .
g a1 =@ (g + By = di ﬂm.,.woos.%L TBd = d~'Tg

p' minimizes ¢(p) in D' =

i il g~ Td! gl = i1 _ g'd! di-1
p=p di-1TBdi—1 =p d-1TBdi—1 :
= T 7i—1)2
T i _ T, i-1 __ (g7d)
gp =9p di-1T Bi-1’
= ¢'p' < ¢g'p"~! = (induction)
Qﬂ@& <0
since I __\P
T 1 gll2
gp =— < 0.
9" By

= pj, = p' is a descent direction



