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reIR"
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UNCONSTRAINED MINIMIZATION

minimize f(x)
reIR"

where the objective function f : IR" — IR

® assume that f € C' (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary



ITERATIVE METHODS

® 1in practice very rare to be able to provide explicit minimizer

® iterative method: given starting “guess’ x(, generate sequence
AMSLJ k = vav...

®© ATM: ensure that (a subsequence) has some favourable limiting
properties:

o satisfies first-order necessary conditions

o satisfies second-order necessary conditions

Notation: fi = f(@k), gx = g(xr), Hr = H(xy).



LINESEARCH METHODS

® calculate a search direction p; from x;.
® ensure that this direction is a descent direction, i.e.,
gip < 0 i gp #0

so that, for small steps along p;., the objective function
will be reduced

© calculate a suitable steplength aj; > 0 so that
[z + arpr) < [

® computation of ay is the linesearch—may itself be an iteration

® generic linesearch method:

Thyl = Tk T OLDE



STEPS MIGHT BE TOO LONG

f(z) 3
251 i
WH/T%A&HV

o T i

15k Hw?\.AHMV\

Aaw?\.Ava

B B € e (x4, f(24) |

05F i
of i
2 s » 05 0 05 A, s 2

The objective function f(z) = x* and the iterates xp, 1 = o + appy
generated by the descent directions pp = (—1)*" and steps oy =

2+ 3/2M 1 from x4 = 2



STEPS MIGHT BE TOO SHORT
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The objective function f(z) = x* and the iterates xp, 1 = o + appy
generated by the descent directions p, = —1 and steps oy = 1/2%1
from xg = 2



PRACTICAL LINESEARCH METHODS

® in early days, pick a; to minimize

f(xi + apy)

o exact linesearch—univariate minimization

o rather expensive and certainly not cost effective
® modern methods: inexact linesearch

o ensure steps are neither too long nor too short
o try to pick “useful” initial stepsize for fast convergence
o best methods are either

> “backtracking- Armijo” or

> “Armijo-Goldstein”
based



BACKTRACKING LINESEARCH

Procedure to find the stepsize ay:

Given Qipit ~ 0 Am.m; Qipit = C

let a0 = Qipip and [ =0

Until f(ar + aVpy) “<” fy
set oY) = V) where 7 € (0,1) (e.g., 7=1)
and increase [ by 1

Set ap = alt)

® this prevents the step from getting too small . . . but does not prevent
too large steps relative to decrease in f

® need to tighten requirement

,\A.&.\a 4+ QQVEN\«V QA:\.N\«



ARMIJO CONDITION

In order to prevent large steps relative to decrease in f, instead require

f@, + aupy) < flay) + arBapy
for some B € (0,1) (e.g., 8 =0.1 or even 3 = 0.0001)
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BACKTRACKING-ARMIJO LINESEARCH

Procedure to find the stepsize ay:

Given Qipit ~ 0 Am.m; Qipit = C

let a0 = Qipip and [ =0

Until f(z;, + alpy) < flay) + gl p,
set o) = 70D where 7 € (0,1) (e.g., 7 = 1)
and increase [ by 1

Set ap = alt)




SATISFYING THE ARMIJO CONDITION

Theorem 2.1. Suppose that f € C*, that g(x) is Lipschitz con-
tinuous with Lipschitz constant v(x), that 8 € (0,1) and that p is
a descent direction at x. Then the Armijo condition

flz+ap) < flz) + aBg(z)'p

is satisfied for all o € [0, qpax(y)], Where

2B —-1)g(x)"p
v(@)llpl3

QB@N




PROOF OF THEOREM 2.1
Taylor’s theorem (Theorem 1.1) +

2(8 —D)g(x)'p
e T

)

fla+ap) < f(z)+ ag@) p+ y(z)e?|pl?
f(z) +ag(x)p+a(f—1)g(x)'p

flz)+aBg(x)'p

VARVAN



THE ARMIJO LINESEARCH TERMINATES

Corollary 2.2. Suppose that f € C*, that g(z) is Lipschitz con-
tinuous with Lipschitz constant v, at xy, that g € (0,1) and that
pi 1s a descent direction at x;. Then the stepsize generated by the

backtracking-Armijo linesearch terminates with
27(8 — 1)g; P
Vellpell3
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PROOF OF COROLLARY 2.2
Theorem 2.1 = linesearch will terminate as soon as a'¥) < ..

2 cases to consider:
1. May be that oyt satisfies the Armijo condition = ay, = aypit-
2. Otherwise, must be a last linesearch iteration (the [-th) for which

o >a. = a.>a"" =700 > 1o

Combining these 2 cases gives required result.



GENERIC LINESEARCH METHOD

Given an initial guess xg, let £ =0
Until convergence:
Find a descent direction p; at x;
Compute a stepsize «y. using a
backtracking-Armijo linesearch along pj
Set 1 = x1 + agpr, and increase k by 1




GLOBAL CONVERGENCE THEOREM

Theorem 2.3. Suppose that f € C! and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic

Linesearch Method,

either
g; =0 for some [ >0
or
Jm fiy = =09
or

lim min ([p} g4, [Pt 9|/ ||lPell2) = 0.

k—00




PROOF OF THEOREM 2.3
Suppose that g # 0 for all k£ and that lim f > —oo. Armijo =

k—o00

bﬂi — Ji < Q%@M@\A

for all £ = summing over first j iterations
J T
\wi — fo < wMHUo . 5Dy, gy
LHS bounded below by assumption =- RHS bounded below. Sum
composed of -ve terms =

lim v |pg gl =0

k—o00

Let

27(8 — 1)g;. pw
Vpxl[3

where v is the assumed uniform Lipschitz constant.

Ki k| aigy > & Ko {1,2,.. 1\ K,



For k € Iy,

For k € ICo,

o =
Yo l|3
2
Q\%w% < wlm - C ﬂm\w@av <0
oy 1P|
T
i PRI

lim |pyg;| = 0.

keKo—o00

Combining (1) and (2) gives the required result.



METHOD OF STEEPEST DESCENT

The search direction
Pk — — 3k

gives the so-called steepest-descent direction.

® pg is a descent direction

® py solves the problem

minimize mj (z; + p)

peIR"

M £+ glp subject to ||pll2 = ||l

Any method that uses the steepest-descent direction is a
method of steepest descent.



GLOBAL CONVERGENCE FOR STEEPEST DESCENT

Theorem 2.4. Suppose that f € C! and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic
Linesearch Method using the steepest-descent direction,

either
g; =0 for some [ >0
or
\A:HS \w\.ﬂ - —0
or
lim g, = 0.

k—o00




PROOF OF THEOREM 2.4
Follows immediately from Theorem 2.3, since

min (|pg gil, [0k 9el/ [1Pkll2) = gl min (L, [|g,ll2)

and thus
lim min (|p} gl [Pt gil/l1pslls) = 0

k— 00
implies that limy_.. g = 0.



METHOD OF STEEPEST DESCENT (cont.)

® archetypical globally convergent method

® many other methods resort to steepest descent in bad cases
® not scale invariant

® convergence is usually very (very!) slow (linear)

® numerically often not convergent at all



STEEPEST DESCENT EXAMPLE
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Contours for the objective function f(z,y) = 10(y — 2%)* + (z — 1),
and the iterates generated by the Generic Linesearch steepest-descent
method



MORE GENERAL DESCENT METHODS

Let Bj be a symmetric, positive definite matrix, and define the
search direction pj so that

Bipr = —gi
Then
® pg is a descent direction
® pp solves the problem
minimize 3%@» +p) Y f+glp+ ! B

peIR"”

® if the Hessian Hj. is positive definite, and B = Hj,, this is
Newton’s method



MORE GENERAL GLOBAL CONVERGENCE

Theorem 2.5. Suppose that f € C! and that ¢ is Lipschitz con-
tinuous on IR". Then, for the iterates generated by the Generic
Linesearch Method using the more general descent direction,

either
g; =0 for some [ >0
or
\ATB ,\w —= —O0
or
g, 90 = 0

provided that the eigenvalues of Bj are uniformly bounded and
bounded away from zero.




PROOF OF THEOREM 2.5
Let Admin(Bg) and Apax(Bgx) be the smallest and largest eigenvalues of
B;.. By assumption, there are bounds Apin > 0 and Apax such that

\/55 < V,BEAm\av m

>~ TG m mexAm\av m vﬁbmx
Is]I°

and thus that

ﬂmlH
AL <A (BY) = dan(Bi 1) < 2082

max — max — __nw:M

m meMAm\AIHV — V/IH Am\av m V/IH

min
ﬁOH. aly nonzero vector s. %Tc.m

?MQ\A_ = _mmm\m{i > yBEAm\MJ:QLm > ym_wx__m»__w
In addition

Ipell3 = 9 Bi gk < Anax(Bi ) 9113 < Aniullgla.

Ipelly < Aiallgilly



o, > el
Thus
win (1o gyl 1Ll / i) > 212 min (O, )
B s
lim min (g gil, [pigil/1pll2) =
—

lim g = 0.

k—o00



MORE GENERAL DESCENT METHODS (cont.)

® may be viewed as “scaled” steepest descent
® convergence is often faster than steepest descent

® can be made scale invariant for suitable By



CONVERGENCE OF NEWTON’S METHOD

Theorem 2.6. Suppose that f € C? and that H is Lipschitz
continuous on IR". Then suppose that the iterates generated by the
init = 1 and 8 < 4, in which the
search direction is chosen to be the Newton direction p, = —H} g,

Generic Linesearch Method with o

whenever possible, has a limit point x, for which H(x,) is positive

definite. Then
(i) ag = 1 for all sufficiently large k,
(ii) the entire sequence {x} converges to x,, and

(iii) the rate is Q-quadratic, i.e, there is a constant xk > 0.

o —

< K.
k=oo ||z — w5 T




PROOF OF THEOREM 2.6

Consider \wﬁm&w = x,. Continuity = H;. positive definite for all k € K

sufficiently large = dky > 0:

@mm%w > ;BEAEL__?A__W

Vko < k € K, where Apin(H,) = smallest eigenvalue of H(z,) =

Pk 9kl = =P 9 = i Hipe = SAmin (L) || pe]|3- (3)
Vky < k € IC, and
wmwﬂmwmooﬁw =

since Theorem 2.5 = at least one of the LHS of (3) and

Prgl _ Pro
pellz - ol

converges to zero for such k.




Taylor’s theorem = dz;. between x; and x; + p; such that
flzp+ o) = fi + v g + 0n H (20D,
Lipschitz continuity of H & Hyipr + g = 0 =

flxy+p) — fro — ipigr = $(0fg, + pi H(zi)pp)
= L(ph gy + pi Hipy) + (01 (H(21) — Hi)py)
Wllze — zillollpell3 < Syllpells "
4

I

Now pick k sufficiently large so that

YIpkll2 < Amin(Hi)(1 = 205).
+3)+4) =

flap+o1) = fr < 40k ge + $Amin(H) (1 = 28)||pg[I3

y(1 = (1= 28))pr.9 = BPi 91
—> unit stepsize satisfies the Armijo condition for all sufficiently large

kel

VARVA



Now note that ||H; |, < 2/Amin(H,) for all sufficiently large k € K.

The iteration gives

Thal — T = T — Ty — Hy 'gr = 2 — x — Hi (g — g(24))
— H;U(g(n.) — g1 — Hi(we — 1)
But Theorem 1.3 =

lg(z.) — ge — Hi (2 — ) |y < yllwe — 23

|k = zally < VN HE allos — 2l
which is (iii) when & = 2v/ A (Hy). for k € K.

Result (ii) follows since once iterate becomes sufficiently close to .,
(iii) for k € K sufficiently large implies k + 1 € K = K = IN. Thus
(i) and (iii) are true for all k sufficiently large.



NEWTON METHOD EXAMPLE
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Contours for the objective function f(z,y) = 10(y — 2%)* + (z — 1),
and the iterates generated by the Generic Linesearch Newton method



MODIFIED NEWTON METHODS

If H; is indefinite, it is usual to solve instead

(Hy, + My,)pr. = Brpr = —gi
where

® M. chosen so that B, = H; + M, is “sufficiently” positive definite

© M = 0 when Hy is itself “sufficiently” positive definite

Possibilities:
© If H} has the spectral decomposition H, = Q,. D, Q1 then
By = Hy + My, = Qpmax(e, |Dy[)Qy
© My = max(0, € — Adpin(Hr)) 1
® Modified Cholesky: B, = H,+ M, = L, Li



QUASI-NEWTON METHODS

Various attempts to approximate Hy:
® Finite-difference approximations:
(Hp)e; = b (g(zp + hey) — gr) = (Bi)es
for some “small” scalar A > 0

® Secant approximations: try to ensure the secant condition
Bii1sy = yp = Hpq18,, where s, = x4 — o and Y = Gr+1 — Gk

o Symmetric Rank-1 method (but may be indefinite or even

fail):
(yr — Brsi)(yr — Brsi)'
(Y — Brsk)! sk

o BFGS method: (symmetric and positive definite if i s;, > 0):

By = By +

T T
(v B, s.s1. B
D1 =By + \wwl »ﬂ»» i
Yk Sk si. By,




MINIMIZING A CONVEX QUADRATIC MODEL

For convex models ( By, positive definite)

pr. = (approximate) arg min fi +p’ g} + ip’ Bip
peIR”

Generic convex quadratic problem: (B positive definite)

(approximately) minimize ¢(p) = p’g + Lp’ Bp
peIR”



MINIMIZATION OVER A SUBSPACE

© D'=(d":---:d™)
® Subspace D' = {p | p = Dip, for some p, € IR'}

© p' = arg min ¢(p)
@mﬁﬁ.

—> D'T¢’ =0, where ¢' = Bp' + ¢
o p~teD
—> p' = p'~ ! + D'pl,, where

5 = arg min py rpiT @ 14 + py ' D ﬂmﬁﬁg
Pa€IR’

= — (D" ﬂmbaLw& Tgizl — _gi-1 ﬂmTHA@@. ﬂmba|
— N%. — N%.IH L &N.IH HQ&IHNU@.QUN. ﬂm@&vl



MINIMIZATION OVER A CONJUGATE SUBSPACE

Minimizer over D% p' = p=! — d= 1 g1 DY D' T BD") te,
Suppose in addition the members of D are B-conjugate:
© B-conjugacy: d! Bd; =0 (i # j)
= p' = p L + o' Id' !, where

&&IH ﬂQ&IH

- Ji-1T Bgi-1

QSIH —

Building a B-conjugate subspace

| | | il
Since ¢’ is independent of D', let d' = —¢" + S.Mo B d’
ew”
® choose 3% so that d' is B-conjugate to D"

[k

— §I=0(<i—1), Fi ==
9113



CONJUGATE-GRADIENT METHOD

Given p’ =0, set ¢ = ¢, d’ = —¢g and i = 0.
Until ¢* “small” iterate

QN. _ |,Q@. ﬂ%\% ﬂm&s

P = i 4 odd

¢+l = ¢' + o' Bd’

B =1lg 3/ 19113

&Tl — |Q~.+H i Q@&s

and increase 7 by 1

Important features
o d/Tgtt =0forall j=0,...,1 = o' =|¢'|3/d"!Bd’
o ¢ Tgt=0forallj=0,...,4

® ,Qﬂ@@. < 0Ofori=1,...,n = descent direction for any p; = P



CONJUGATE GRADIENT METHOD GIVES DESCENT

: : : . , 1—2 : . :
.QSIH ﬂ&@IH _ &SIH ﬂA.Q|_| mESIHv _ &@IH ﬂ.Q|_|§.WUo D@.&SIH ﬂm&u _ &@IH %.Q

p' minimizes ¢(p) in D' =
i—1T i1 gL

- J-1TRgi-1

i i—1 g

i—1
Q1T Rgi-1 .

di=t = pi~l

T i _ T i-1 (g'd" ")
gp=9p Ji—1T B i1’

— glp' < g'p'~! = (induction)

since

— p;, = p' is a descent direction



