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minimize
x∈IRn

f(x)

MSc course on nonlinear optimization

UNCONSTRAINED MINIMIZATION

minimize
x∈IRn

f(x)

where the objective function f : IRn −→ IR

� assume that f ∈ C1 (sometimes C2) and Lipschitz

� often in practice this assumption violated, but not necessary



LINESEARCH VS TRUST-REGION METHODS

� Linesearch methods

� pick descent direction pk

� pick stepsize αk to “reduce” f(xk + αpk)

� xk+1 = xk + αkpk

� Trust-region methods

� pick step sk to reduce “model” of f(xk + s)

� accept xk+1 = xk+sk if decrease in model inherited by f(xk+sk)

� otherwise set xk+1 = xk, “refine” model

TRUST-REGION MODEL PROBLEM

Model f(xk + s) by:

� linear model

mL
k (s) = fk + sTgk

� quadratic model — symmetric Bk

mQ
k (s) = fk + sTgk + 1

2s
TBks

Major difficulties:

� models may not resemble f(xk + s) if s is large

� models may be unbounded from below

� linear model - always unless gk = 0

� quadratic model - always if Bk is indefinite,

possibly if Bk is only positive semi-definite



THE TRUST REGION

Prevent model mk(s) from unboundedness by imposing a

trust-region constraint

‖s‖ ≤ ∆k

for some “suitable” scalar radius ∆k > 0

=⇒ trust-region subproblem

approx minimize
s∈IRn

mk(s) subject to ‖s‖ ≤ ∆k

� in theory does not depend on norm ‖ · ‖

� in practice it might!

OUR MODEL

For simplicity, concentrate on the second-order (Newton-like) model

mk(s) = mQ
k (s) = fk + sTgk + 1

2s
TBks

and the `2-trust region norm ‖ · ‖ = ‖ · ‖2

Note:

� Bk = Hk is allowed

� analysis for other trust-region norms simply adds extra constants

in following results



BASIC TRUST-REGION METHOD

Given k = 0, ∆0 > 0 and x0, until “convergence” do:

Build the second-order model m(s) of f(xk + s).

“Solve” the trust-region subproblem to find sk
for which m(sk) “<” fk and ‖sk‖ ≤ ∆k, and define

ρk =
fk − f(xk + sk)

fk −mk(sk)
.

If ρk ≥ ηv [very successful] 0 < ηv < 1

set xk+1 = xk + sk and ∆k+1 = γi∆k γi ≥ 1

Otherwise if ρk ≥ ηs then [successful] 0 < ηs ≤ ηv < 1

set xk+1 = xk + sk and ∆k+1 = ∆k

Otherwise [unsuccessful]

set xk+1 = xk and ∆k+1 = γd∆k 0 < γd < 1

Increase k by 1

“SOLVE” THE TRUST REGION SUBPROBLEM?

At the very least

� aim to achieve as much reduction in the model as would an iteration

of steepest descent

� Cauchy point: sC

k = −αC

kgk where

αC

k = arg min
α>0

mk(−αgk) subject to α‖gk‖ ≤ ∆k

= arg min
0<α≤∆k/‖gk‖

mk(−αgk)

� minimize quadratic on line segment =⇒ very easy!

� require that

mk(sk) ≤ mk(s
C

k) and ‖sk‖ ≤ ∆k

� in practice, hope to do far better than this



ACHIEVABLE MODEL DECREASE

Theorem 3.1. If mk(s) is the second-order model and sC

k is its

Cauchy point within the trust-region ‖s‖ ≤ ∆k,

fk −mk(s
C

k) ≥
1
2‖gk‖min









‖gk‖

1 + ‖Bk‖
,∆k








.

PROOF OF THEOREM 3.1

mk(−αgk) = fk − α‖gk‖
2 + 1

2α
2gTkBkgk.

Result immediate if gk = 0.

Otherwise, 3 possibilities

(i) curvature gTkBkgk ≤ 0 =⇒ mk(−αgk) unbounded from below as α

increases =⇒ Cauchy point occurs on the trust-region boundary.

(ii) curvature gTkBkgk > 0 & minimizer mk(−αgk) occurs at or beyond

the trust-region boundary =⇒ Cauchy point occurs on the trust-

region boundary.

(iii) the curvature gTkBkgk > 0 & minimizer mk(−αgk), and hence

Cauchy point, occurs before trust-region is reached.

Consider each case in turn;



Case (i)

gTkBkgk ≤ 0 & α ≥ 0 =⇒

mk(−αgk) = fk − α‖gk‖
2 + 1

2α
2gTkBkgk ≤ fk − α‖gk‖

2 (1)

Cauchy point lies on boundary of the trust region =⇒

αC

k =
∆k

‖gk‖
. (2)

(1) + (2) =⇒

fk −mk(s
C

k) ≥ ‖gk‖
2 ∆k

‖gk‖
= ‖gk‖∆k ≥

1
2‖gk‖∆k.

Case (ii)

α∗
k

def= arg min mk(−αgk) ≡ fk − α‖gk‖
2 + 1

2α
2gTkBkgk (3)

=⇒

α∗
k =

‖gk‖2

gTkBkgk
≥ αC

k =
∆k

‖gk‖
(4)

=⇒

αC

kg
T
kBkgk ≤ ‖gk‖

2. (5)

(3) + (4) + (5) =⇒

fk −mk(s
C

k) = αC

k‖gk‖
2 − 1

2[α
C

k]
2gTkBkgk ≥

1
2α

C

k‖gk‖
2

= 1
2‖gk‖

2 ∆k

‖gk‖
= 1

2‖gk‖∆k.



Case (iii)

αC

k = α∗
k =

‖gk‖
2

gTkBkgk
=⇒

fk −mk(s
C

k) = α∗
k‖gk‖

2 + 1
2(α

∗
k)

2gTkBkgk

=
‖gk‖

4

gTkBkgk
− 1

2

‖gk‖
4

gTkBkgk

= 1
2

‖gk‖4

gTkBkgk

≥ 1
2

‖gk‖
2

1 + ‖Bk‖
,

where

|gTkBkgk| ≤ ‖gk‖
2‖Bk‖ ≤ ‖gk‖

2(1 + ‖Bk‖)

because of the Cauchy-Schwarz inequality.

Corollary 3.2. If mk(s) is the second-order model, and sk is an

improvement on the Cauchy point within the trust-region ‖s‖ ≤

∆k,

fk −mk(sk) ≥ 1
2‖gk‖min









‖gk‖

1 + ‖Bk‖
,∆k








.



DIFFERENCE BETWEEN MODEL AND FUNCTION

Lemma 3.3. Suppose that f ∈ C2, and that the true and model

Hessians satisfy the bounds ‖H(x)‖ ≤ κh for all x and ‖Bk‖ ≤ κb
for all k and some κh ≥ 1 and κb ≥ 0. Then

|f(xk + sk) −mk(sk)| ≤ κd∆
2
k,

where κd = 1
2(κh + κb), for all k.

PROOF OF LEMMA 3.3

Mean value theorem =⇒

f(xk + sk) = f(xk) + sTk∇xf(xk) + 1
2s
T
k∇xxf(ξk)sk

for some ξk ∈ [xk, xk + sk]. Thus

|f(xk + sk) −mk(sk)| = 1
2|s

T
kH(ξk)sk − sTkBksk| ≤ 1

2|s
T
kH(ξk)sk| + 1

2|s
T
kBksk|

≤ 1
2(κh + κb)‖sk‖

2 ≤ κd∆
2
k

using the triangle and Cauchy-Schwarz inequalities.



ULTIMATE PROGRESS AT NON-OPTIMAL POINTS

Lemma 3.4. Suppose that f ∈ C2, that the true and model Hes-

sians satisfy the bounds ‖Hk‖ ≤ κh and ‖Bk‖ ≤ κb for all k and

some κh ≥ 1 and κb ≥ 0, and that κd = 1
2(κh + κb). Suppose

furthermore that gk 6= 0 and that

∆k ≤ ‖gk‖min









1

κh + κb
,
(1 − ηv)

2κd








.

Then iteration k is very successful and

∆k+1 ≥ ∆k.

PROOF OF LEMMA 3.4

By definition,

1 + ‖Bk‖ ≤ κh + κb

+ first bound on ∆k =⇒

∆k ≤
‖gk‖

κh + κb
≤

‖gk‖

1 + ‖Bk‖
.

Corollary 3.2 =⇒

fk −mk(sk) ≥ 1
2‖gk‖min









‖gk‖

1 + ‖Bk‖
,∆k








= 1

2‖gk‖∆k.

+ Lemma 3.3 + second bound on ∆k =⇒

|ρk − 1| =

∣

∣

∣

∣

∣

∣

∣

∣

f(xk + sk) −mk(sk)

fk −mk(sk)

∣

∣

∣

∣

∣

∣

∣

∣

≤ 2
κd∆

2
k

‖gk‖∆k
= 2

κd∆k

‖gk‖
≤ 1 − ηv.

=⇒ ρk ≥ ηv =⇒ iteration is very successful.



RADIUS WON’T SHRINK TO ZERO AT NON-OPTIMAL

POINTS

Lemma 3.5. Suppose that f ∈ C2, that the true and model Hes-

sians satisfy the bounds ‖Hk‖ ≤ κh and ‖Bk‖ ≤ κb for all k and

some κh ≥ 1 and κb ≥ 0, and that κd = 1
2(κh + κb). Suppose

furthermore that there exists a constant ε > 0 such that ‖gk‖ ≥ ε

for all k. Then

∆k ≥ κε
def= εγd min









1

κh + κb
,
(1 − ηv)

2κd









for all k.

PROOF OF LEMMA 3.5

Suppose otherwise that iteration k is first for which

∆k+1 ≤ κε.

∆k > ∆k+1 =⇒ iteration k unsuccessful =⇒ γd∆k ≤ ∆k+1. Hence

∆k ≤ εmin









1

κh + κb
,
(1 − ηv)

2κd









≤ ‖gk‖min









1

κh + κb
,
(1 − ηv)

2κd









But this contradicts assertion of Lemma 3.4 that iteration k must be

very successful.



POSSIBLE FINITE TERMINATION

Lemma 3.6. Suppose that f ∈ C2, and that both the true and

model Hessians remain bounded for all k. Suppose furthermore that

there are only finitely many successful iterations. Then xk = x∗ for

all sufficiently large k and g(x∗) = 0.

PROOF OF LEMMA 3.6

xk0+j = xk0+1 = x∗

for all j > 0, where k0 is index of last successful iterate.

All iterations are unsuccessful for sufficiently large k =⇒ {∆k} −→ 0

+ Lemma 3.4 then implies that if ‖gk0+1‖ > 0 there must be a successful

iteration of index larger than k0, which is impossible =⇒ ‖gk0+1‖ = 0.



GLOBAL CONVERGENCE OF ONE SEQUENCE

Theorem 3.7. Suppose that f ∈ C2, and that both the true and

model Hessians remain bounded for all k. Then either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim inf
k→∞

‖gk‖ = 0.

PROOF OF THEOREM 3.7

Let S be the index set of successful iterations. Lemma 3.6 =⇒ true

Theorem 3.7 when |S| finite.

So consider |S| = ∞, and suppose fk bounded below and

‖gk‖ ≥ ε (6)

for some ε > 0 and all k, and consider some k ∈ S .

+ Corollary 3.2, Lemma 3.5, and the assumption (6) =⇒

fk − fk+1 ≥ ηs[fk −mk(sk)] ≥ δε
def= 1

2ηsεmin






ε

1 + κb
, κε





 .

=⇒

f0 − fk+1 =
k

∑

j=0
j∈S

[fj − fj+1] ≥ σkδε,

where σk is the number of successful iterations up to iteration k. But

lim
k→∞

σk = +∞.

=⇒ fk unbounded below =⇒ a subsequence of the ‖gk‖ −→ 0



GLOBAL CONVERGENCE

Theorem 3.8. Suppose that f ∈ C2, and that both the true and

model Hessians remain bounded for all k. Then either

gl = 0 for some l ≥ 0

or

lim
k→∞

fk = −∞

or

lim
k→∞

gk = 0.

PROOF OF THEOREM 3.8

Suppose otherwise that fk is bounded from below, and that there is a

subsequence {ti} ⊆ S , such that

‖gti‖ ≥ 2ε > 0 (7)

for some ε > 0 and for all i. Theorem 3.7 =⇒ ∃{`i} ⊆ S such that

‖gk‖ ≥ ε for ti ≤ k < `i and ‖g`i‖ < ε. (8)

Now restrict attention to indices in

K def= {k ∈ S | ti ≤ k < `i}.
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Figure 3.1: The subsequences of the proof of Theorem 3.8

As in proof of Theorem 3.7, (8) =⇒

fk − fk+1 ≥ ηs[fk −mk(sk)] ≥ 1
2ηsεmin







ε

1 + κb
,∆k





 (9)

for all k ∈ K =⇒ LHS of (9) −→ 0 as k −→ ∞ =⇒

lim
k→∞
k∈K

∆k = 0

=⇒

∆k ≤
2

εηs
[fk − fk+1].

for k ∈ K sufficiently large =⇒

‖xti − x`i‖ ≤
`i−1

∑

j=ti
j∈K

‖xj − xj+1‖ ≤
`i−1

∑

j=ti
j∈K

∆j ≤
2

εηs
[fti − f`i]. (10)

for i sufficiently large.

But RHS of (10) −→ 0 =⇒ ‖xti − x`i‖ −→ 0 as i tends to infinity

+ continuity =⇒ ‖gti − g`i‖ −→ 0.



Impossible as ‖gti − g`i‖ ≥ ε by definition of {ti} and {`i} =⇒ no

subsequence satisfying (7) can exist.

II: SOLVING THE TRUST-REGION SUBPROBLEM

(approximately) minimize
s∈IRn

q(s) ≡ sTg + 1
2s
TBs subject to ‖s‖ ≤ ∆

AIM: find s∗ so that

q(s∗) ≤ q(sC) and ‖s∗‖ ≤ ∆

Might solve

� exactly =⇒ Newton-like method

� approximately =⇒ steepest descent/conjugate gradients



THE `2-NORM TRUST-REGION SUBPROBLEM

minimize
s∈IRn

q(s) ≡ sTg + 1
2s
TBs subject to ‖s‖2 ≤ ∆

Solution characterisation result:

Theorem 3.9. Any global minimizer s∗ of q(s) subject to ‖s‖2 ≤

∆ satisfies the equation

(B + λ∗I)s∗ = −g,

whereB+λ∗I is positive semi-definite, λ∗ ≥ 0 and λ∗(‖s∗‖2−∆) =

0. If B + λ∗I is positive definite, s∗ is unique.

PROOF OF THEOREM 3.9

Problem equivalent to minimizing q(s) subject to 1
2∆

2 − 1
2s
Ts ≥ 0.

Theorem 1.9 =⇒

g +Bs∗ = −λ∗s∗ (11)

for some Lagrange multiplier λ∗ ≥ 0 for which either λ∗ = 0 or ‖s∗‖2 =

∆ (or both). It remains to show B + λ∗I is positive semi-definite.

If s∗ lies in the interior of the trust-region, λ∗ = 0, and Theorem 1.10

=⇒ B + λ∗I = B is positive semi-definite.

If ‖s∗‖2 = ∆ and λ∗ = 0, Theorem 1.10 =⇒ vTBv ≥ 0 for all

v ∈ N+ = {v|sT∗ v ≥ 0}. If v /∈ N+ =⇒ −v ∈ N+ =⇒ vTBv ≥ 0 for

all v.

Only remaining case is where ‖s∗‖2 = ∆ and λ∗ > 0. Theorem 1.10

=⇒ vT (B + λ∗I)v ≥ 0 for all v ∈ N+ = {v|sT∗ v = 0} =⇒ remains to

consider vTBv when sT∗ v 6= 0.



w

s

s∗
N+

s

Figure 3.2: Construction of “missing” directions of positive curvature.

Let s be any point on the boundary δR of the trust-region R, and let

w = s− s∗. Then

−wTs∗ = (s∗ − s)Ts∗ = 1
2(s∗ − s)T (s∗ − s) = 1

2w
Tw (12)

since ‖s‖2 = ∆ = ‖s∗‖2. (11) + (12) =⇒

q(s) − q(s∗) = wT (g +Bs∗) + 1
2w

TBw

= −λ∗w
Ts∗ + 1

2w
TBw = 1

2w
T (B + λ∗I)w,

(13)

=⇒ wT (B + λ∗I)w ≥ 0 since s∗ is a global minimizer. But

s = s∗ − 2
sT∗ v

vTv
v ∈ δR

=⇒ (for this s) w‖v =⇒ vT (B + λ∗I)v ≥ 0.

When B + λ∗I is positive definite, s∗ = −(B + λ∗I)
−1g. If s∗ ∈ δR

and s ∈ R, (12) and (13) become −wTs∗ ≥ 1
2w

Tw and q(s) ≥ q(s∗) +
1
2w

T (B + λ∗I)w respectively. Hence, q(s) > q(s∗) for any s 6= s∗. If

s∗ is interior, λ∗ = 0, B is positive definite, and thus s∗ is the unique

unconstrained minimizer of q(s).



ALGORITHMS FOR THE `2-NORM SUBPROBLEM

Two cases:

� B positive-semi definite and Bs = −g satisfies ‖s‖2 ≤ ∆ =⇒

s∗ = s

� B indefinite or Bs = −g satisfies ‖s‖2 > ∆

In this case

� (B + λ∗I)s∗ = −g and sT∗ s∗ = ∆2

� nonlinear (quadratic) system in s and λ

� concentrate on this

EQUALITY CONSTRAINED `2-NORM SUBPROBLEM

Suppose B has spectral decomposition

B = UTΛU

� U eigenvectors

� Λ diagonal eigenvalues: λ1 ≤ λ2 ≤ . . . ≤ λn

Require B + λI positive semi-definite =⇒ λ ≥ −λ1

Define

s(λ) = −(B + λI)−1g

Require

ψ(λ) def= ‖s(λ)‖2
2 = ∆2

Note (γi = eTi Ug)

ψ(λ) = ‖UT (Λ + λI)−1Ug‖2
2 =

n
∑

i=1

γ2
i

(λi + λ)2



CONVEX EXAMPLE

ψ(λ)

λ−8 −6 −4 −2 0 2 4

0

1

2

3

6

-

B =





1 0 0

0 3 0

0 0 5





g =





1

1

1





∆2 = 1.151

solution curve as ∆ varies@
@

@
@@I

�
�

�
�

�
�

��

?

1

NONCONVEX EXAMPLE

ψ(λ)

λ−8 −6 −4 −2 0 2 4
0

1

2

6

-

minus leftmost eigenvalue�

B =





−1 0 0

0 3 0

0 0 5





g =





1

1

1





2



THE “HARD” CASE

ψ(λ)

λ−8 −6 −4 −2 0 2 4
0

1

2

6

-

minus leftmost eigenvalue�

B =





−1 0 0

0 3 0

0 0 5





g =





0

1

1





∆2 = 0.0903

3

SUMMARY

For indefinite B,

Hard case occurs when g orthogonal to eigenvector u1

for most negative eigenvalue λ1

� OK if radius is radius small enough

� No “obvious” solution to equations . . . but

solution is actually of the form

slim + σu1

where

� slim = lim
λ

+−→−λ1
s(λ)

� ‖slim + σu1‖2 = ∆



HOW TO SOLVE ‖s(λ)‖2 = ∆

DON’T!!

Solve instead the secular equation

φ(λ) def=
1

‖s(λ)‖2

−
1

∆
= 0

� no poles

� smallest at eigenvalues (except in hard case!)

� analytic function =⇒ ideal for Newton

� global convergent (ultimately quadratic rate except in hard case)

� need to safeguard to protect Newton from the hard & interior

solution cases

THE SECULAR EQUATION

0

φ(λ)

0 −λ1 λ∗ λ

6

-

min− 1

4
s2
1 + 1

4
s2
2 + 1

2
s1 + s2

subject to‖s‖2 ≤ 4

4



NEWTON’S METHOD FOR SECULAR EQUATION

Newton correction at λ is −φ(λ)/φ′(λ). Differentiating

φ(λ) =
1

‖s(λ)‖2

−
1

∆
=

1

(sT (λ)s(λ))
1
2

−
1

∆
=⇒

φ′(λ) = −
sT (λ)∇λs(λ)

(sT (λ)s(λ))
3
2

= −
sT (λ)∇λs(λ)

‖s(λ)‖3
2

.

Differentiating the defining equation

(B + λI)s(λ) = −g =⇒ (B + λI)∇λs(λ) + s(λ) = 0.

Notice that, rather than ∇λs(λ), merely

sT (λ)∇λs(λ) = −sT (λ)(B + λI)(λ)−1s(λ)

required for φ′(λ). Given the factorization B + λI = L(λ)LT (λ) =⇒

sT (λ)(B + λI)−1s(λ) = sT (λ)L−T (λ)L−1(λ)s(λ)

= (L−1(λ)s(λ))T (L−1(λ)s(λ)) = ‖w(λ)‖2
2

where L(λ)w(λ) = s(λ).

NEWTON’S METHOD & THE SECULAR EQUATION

Let λ > −λ1 and ∆ > 0 be given

Until “convergence” do:

Factorize B + λI = LLT

Solve LLTs = −g

Solve Lw = s

Replace λ by

λ +









‖s‖2 − ∆

∆

















‖s‖2
2

‖w‖2
2











SOLVING THE LARGE-SCALE PROBLEM

� when n is large, factorization may be impossible

� may instead try to use an iterative method to approximate

� Steepest descent leads to the Cauchy point

� obvious generalization: conjugate gradients . . . but

. what about the trust region?

. what about negative curvature?

CONJUGATE GRADIENTS TO “MINIMIZE” q(s)

Given s0 = 0, set g0 = g, d0 = −g and i = 0

Until gi “small” or breakdown, iterate

αi = ‖gi‖2
2/d

i TBdi

si+1 = si + αidi

gi+1 = gi + αiBdi

βi = ‖gi+1‖2
2/‖g

i‖2
2

di+1 = −gi+1 + βidi

and increase i by 1

Important features

� gj = Bsj + g for all j = 0, . . . , i

� dj Tgi+1 = 0 for all j = 0, . . . , i

� gj Tgi+1 = 0 for all j = 0, . . . , i



CRUCIAL PROPERTY OF CONJUGATE GRADIENTS

Theorem 3.10. Suppose that the conjugate gradient method is

applied to minimize q(s) starting from s0 = 0, and that di TBdi > 0

for 0 ≤ i ≤ k. Then the iterates sj satisfy the inequalities

‖sj‖2 < ‖sj+1‖2

for 0 ≤ j ≤ k − 1.

PROOF OF THEOREM 3.10

First show that

di Tdj =
‖gi‖2

2

‖gj‖2
2

‖dj‖2
2 > 0 (14)

for all 0 ≤ j ≤ i ≤ k. For any i, (14) is trivially true for j = i.

Suppose it is also true for all i ≤ l. Then, the update for dl+1 gives

dl+1 = −gl+1 +
‖gl+1‖2

2

‖gl‖2
2

dl.

Forming the inner product with dj, and using the fact that dj Tgl+1 = 0

for all j = 0, . . . , l, and (14) when j = l, reveals

dl+1 Tdj = −gl+1 Tdj +
‖gl+1‖2

2

‖gl‖2
2

dl Tdj

=
‖gl+1‖2

2

‖gl‖2
2

‖gl‖2
2

‖gj‖2
2

‖dj‖2
2 =

‖gl+1‖2
2

‖gj‖2
2

‖dj‖2
2 > 0.

Thus (14) is true for i ≤ l + 1, and hence for all 0 ≤ j ≤ i ≤ k.



Now have from the algorithm that

si = s0 +
i−1
∑

j=0
αjdj =

i−1
∑

j=0
αjdj

as, by assumption, s0 = 0. Hence

si Tdi =
i−1
∑

j=0
αjdj Tdi =

i−1
∑

j=0
αjdj Tdi > 0 (15)

as each αj > 0, which follows from the definition of αj, since dj THdj >

0, and from relationship (14). Hence

‖si+1‖2
2 = si+1 Tsi+1 =

(

si + αidi
)T (

si + αidi
)

= si Tsi + 2αisi Tdi + αi 2di Tdi > si Tsi = ‖si‖2
2

follows directly from (15) and αi > 0 which is the required result.

TRUNCATED CONJUGATE GRADIENTS

Apply the conjugate gradient method, but terminate at iteration i if

1. di TBdi ≤ 0 =⇒ problem unbounded along di

2. ‖si + αidi‖2 > ∆ =⇒ solution on trust-region boundary

In both cases, stop with s∗ = si + αBdi, where αB chosen as positive

root of

‖si + αBdi‖2 = ∆

Crucially

q(s∗) ≤ q(sC) and ‖s∗‖2 ≤ ∆

=⇒ TR algorithm converges to a first-order critical point



HOW GOOD IS TRUNCATED C.G.?

In the convex case . . . very good

Theorem 3.11. Suppose that the truncated conjugate gradient

method is applied to minimize q(s) and that B is positive definite.

Then the computed and actual solutions to the problem, s∗ and sM

∗ ,

satisfy the bound

q(s∗) ≤ 1
2q(s

M

∗ )

In the non-convex case . . . maybe poor

� e.g., if g = 0 and B is indefinite =⇒ q(s∗) = 0

WHAT CAN WE DO IN THE NON-CONVEX CASE?

Solve the problem over a subspace

� instead of the B-conjugate subspace for CG, use the equivalent

Lanczos orthogonal basis

� Gram-Schmidt applied to CG (Krylov) basis Di

� Subspace Qi = {s | s = Qisq for some sq ∈ IRi}

� Qi is such that

Qi TQi = I and Qi TBQi = T i

where T i is tridiagonal and Qi Tg = ‖g‖2 e1

� Qi trivial to generate from CG Di



GENERALIZED LANCZOS TRUST-REGION METHOD

si = arg min
s∈Qi

q(s) subject to ‖s‖2 ≤ ∆

=⇒ si = Qisiq, where

siq = arg min
sq∈IRi

‖g‖2 e
T
1 sq + 1

2s
T
q T

isq subject to ‖sq‖2 ≤ ∆

� advantage T i has very sparse factors =⇒ can solve the problem

using the earlier secular equation approach

� can exploit all the structure here =⇒ use solution for one problem

to initialize next

� until the trust-region boundary is reached, it is conjugate gradients

=⇒ switch when we get there


