Part 4: Interior-point methods for inequality constrained optimization

Nick Gould (RAL)

 $\begin{array}{ll}
\text{minimize} & f(x) \text{ subject to } c(x) \ge 0 \\
 & x \in \mathbb{R}^n
\end{array}$

MSc course on nonlinear optimization

CONSTRAINED MINIMIZATION

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x) \text{ subject to } c(x) \begin{cases} \geq \\ = \end{cases} 0$$

where the **objective function** $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ and the **constraints** $c: \mathbb{R}^n \longrightarrow \mathbb{R}^m$

- \circ assume that $f, c \in C^1$ (sometimes C^2) and Lipschitz
- \odot often in practice this assumption violated, but not necessary

CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:

- \circ minimize the objective function f(x)
- satisfy the constraints

Overcome this by minimizing a composite **merit function** $\Phi(x, p)$ for which

- \circ p are parameters
- \circ (some) minimizers of $\Phi(x, p)$ wrt x approach those of f(x) subject to the constraints as p approaches some set \mathcal{P}
- only uses **unconstrained** minimization methods

AN EXAMPLE FOR EQUALITY CONSTRAINTS

minimize
$$f(x)$$
 subject to $c(x) = 0$

Merit function (quadratic penalty function):

$$\Phi(x,\mu) = f(x) + \frac{1}{2\mu} ||c(x)||_2^2$$

- \odot required solution as μ approaches $\{0\}$ from above
- ⊙ may have other useless stationary points

A MERIT Fⁿ FOR INEQUALITY CONSTRAINTS

minimize
$$f(x)$$
 subject to $c(x) \ge 0$

Merit function (logarithmic barrier function):

$$\Phi(x,\mu) = f(x) - \mu \sum_{i=1}^{m} \log c_i(x)$$

- \odot required solution as μ approaches $\{0\}$ from above
- may have other useless stationary points
- ⊙ requires a strictly interior point to start
- o consequent points are interior

CONTOURS OF THE BARRIER FUNCTION

Barrier function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 \ge 1$

CONTOURS OF THE BARRIER FUNCTION (cont.)

Barrier function for min $x_1^2 + x_2^2$ subject to $x_1 + x_2^2 \ge 1$

BASIC BARRIER FUNCTION ALGORITHM

Given $\mu_0 > 0$, set k = 0Until "convergence" iterate: Find $x_k^{\rm s}$ for which $c(x_k^{\rm s}) > 0$ Starting from $x_k^{\rm s}$, use an unconstrained minimization algorithm to find an "approximate" minimizer x_k of $\Phi(x, \mu_k)$ Compute $\mu_{k+1} > 0$ smaller than μ_k such that $\lim_{k \to \infty} \mu_{k+1} = 0$ and increase k by 1

- \odot often choose $\mu_{k+1} = 0.1\mu_k$ or even $\mu_{k+1} = \mu_k^2$
- \circ might choose $x_{k+1}^{s} = x_k$

MAIN CONVERGENCE RESULT

The active set $A(x) = \{i \mid c_i(x) = 0\}$

Theorem 4.1. Suppose that $f, c \in \mathcal{C}^2$, that $(y_k)_i \stackrel{\text{def}}{=} \mu_k/c_i(x_k)$ for $i = 1, \ldots, m$, that

$$\|\nabla_x \Phi(x_k, \mu_k)\|_2 \le \epsilon_k$$

where ϵ_k converges to zero as $k \to \infty$, and that x_k converges to x_* for which $\{a_i(x_*)\}_{i \in \mathcal{A}(x_*)}$ are linearly independent. Then x_* satisfies the first-order necessary optimality conditions for the problem

minimize
$$f(x)$$
 subject to $c(x) \ge 0$

and $\{y_k\}$ converge to the associated Lagrange multipliers y_* .

PROOF OF THEOREM 4.1

Let $\mathcal{M} \stackrel{\text{def}}{=} \{1, \dots, m\}$, $\mathcal{A} \stackrel{\text{def}}{=} \{i \mid c_i(x_*) = 0\}$ and $\mathcal{I} \stackrel{\text{def}}{=} \mathcal{M} \setminus \mathcal{A}$. Generalized inv. $A_{\mathcal{A}}^+(x) \stackrel{\text{def}}{=} (A_{\mathcal{A}}(x)A_{\mathcal{A}}^T(x))^{-1} A_{\mathcal{A}}(x)$ bounded near x_* . Define

$$(y_k)_i = \frac{\mu_k}{c_i(x_k)}, i \in \mathcal{M}, \quad (y_*)_{\mathcal{A}} = A_{\mathcal{A}}^+(x_*)g(x_*) \text{ and } (y_*)_{\mathcal{I}} = 0.$$

$$\|(y_k)_{\mathcal{I}}\|_2 \le 2\mu_k \sqrt{|\mathcal{I}|} / \min_{i \in \mathcal{I}} |c_i(x_*)| \tag{1}$$

(if $\mathcal{I} \neq \emptyset$) for all sufficiently large k. (1) + inner-it. termination \Longrightarrow

$$||g(x_{k}) - A_{\mathcal{A}}^{T}(x_{k})(y_{k})_{\mathcal{A}}||_{2} \leq ||g(x_{k}) - A^{T}(x_{k})y_{k}||_{2} + ||A_{\mathcal{I}}^{T}(x_{k})(y_{k})_{\mathcal{I}}||_{2}$$

$$\leq \bar{\epsilon}_{k} \stackrel{\text{def}}{=} \epsilon_{k} + \mu_{k} \frac{2\sqrt{|\mathcal{I}|} ||A_{\mathcal{I}}||_{2}}{\min_{i \in \mathcal{I}} |c_{i}(x_{*})|}$$
(2)

$$\implies \|A_{\mathcal{A}}^{+}(x_{k})g(x_{k}) - (y_{k})_{\mathcal{A}}\|_{2} = \|A_{\mathcal{A}}^{+}(x_{k})(g(x_{k}) - A_{\mathcal{A}}^{T}(x_{k})(y_{k})_{\mathcal{A}})\|_{2}^{2} \\ \leq 2\|A_{\mathcal{A}}^{+}(x_{*})\|_{2}\bar{\epsilon}_{k}$$

$$\implies \|(y_k)_{\mathcal{A}} - (y_*)_{\mathcal{A}}\|_2$$

$$\leq \|A_{\mathcal{A}}^+(x_*)g(x_*) - A_{\mathcal{A}}^+(x_k)g(x_k)\|_2 + \|A_{\mathcal{A}}^+(x_k)g(x_k) - (y_k)_{\mathcal{A}}\|_2$$

$$+ (1) \implies \{y_k\} \longrightarrow y_*. \text{ Continuity of gradients} + (2) \implies$$

$$g(x_*) - A^T(x_*)y_* = 0$$

$$c(x_k) > 0$$
, defs. of y_k and $y_* + c_i(x_k)(y_k)_i = \mu_k \Longrightarrow$
 $c(x_*) \ge 0$, $y_* \ge 0$ and $c_i(x_*)(y_*)_i = 0$.
 $\Longrightarrow (x_*, y_*)$ satisfies the first-order optimality conditions.

ALGORITHMS TO MINIMIZE $\Phi(x, \mu)$

Can use

- ⊙ linesearch methods
 - should use specialized linesearch to cope with singularity of log
- \odot trust-region methods
 - need to reject points for which $c(x_k + s_k) \not> 0$
 - (ideally) need to "shape" trust region to cope with contours of the singularity

DERIVATIVES OF THE BARRIER FUNCTION

$$\odot \nabla_x \Phi(x,\mu) = g(x,y(x))$$

$$\nabla_{xx} \Phi(x,\mu) = H(x,y(x)) + \mu A^{T}(x) C^{-2}(x) A(x)$$

$$= H(x,y) + A^{T}(x) C^{-1}(x) Y(x) A(x)$$

$$= H(x,y) + \frac{1}{\mu} A^{T}(x) Y^{2}(x) A(x)$$

where

• Lagrange multiplier estimates: $y(x) = \mu C^{-1}(x)e$ where e is the vector of ones

$$\circ$$
 $C(x) = \operatorname{diag}(c_1(x), \ldots, c_m(x))$

$$\circ Y(x) = \operatorname{diag}(y_1(x), \ldots, y_m(x))$$

$$g(x,y(x)) = g(x) - A^{T}(x)y(x)$$
: gradient of the Lagrangian

$$\odot H(x,y(x)) = H(x) - \sum_{i=1}^{m} y_i(x)H_i(x)$$
: Lagrangian Hessian

LIMITING DERIVATIVES OF Φ

Let \mathcal{I} = inactive set at $x_* = \{1, ..., m\} \setminus \mathcal{A}$ For small μ : roughly

 $= \mu A_{\Delta}^{T}(x) C_{\Delta}^{-2}(x) A_{\Delta}(x)$

$$\nabla_{x}\Phi(x,\mu) = \underbrace{g(x) - A_{\mathcal{A}}^{T}(x)Y_{\mathcal{A}}^{-1}(x)e}_{\text{moderate}} - \underbrace{\mu A_{\mathcal{I}}^{T}(x)C_{\mathcal{I}}^{-1}(x)e}_{\text{small}}$$

$$\approx g(x) - A_{\mathcal{A}}^{T}(x)Y_{\mathcal{A}}^{-1}(x)e$$

$$\nabla_{xx}\Phi(x,\mu) = \underbrace{H(x,y(x))}_{\text{moderate}} + \underbrace{\mu A_{\mathcal{I}}^{T}(x)C_{\mathcal{I}}^{-2}(x)A_{\mathcal{I}}(x)}_{\text{small}} + \underbrace{\frac{1}{\mu}A_{\mathcal{A}}^{T}(x)Y_{\mathcal{A}}^{2}(x)A_{\mathcal{A}}(x)}_{\text{large}}$$

$$\approx \frac{1}{\mu}A_{\mathcal{A}}^{T}(x)Y_{\mathcal{A}}^{2}(x)A_{\mathcal{A}}(x)$$

$$= A_{\mathcal{A}}^{T}(x)C_{\mathcal{A}}^{-1}(x)Y_{\mathcal{A}}(x)A_{\mathcal{A}}(x)$$

GENERIC BARRIER NEWTON SYSTEM

Newton correction s from x for barrier function is

$$\left(H(x, y(x)) + A^{T}(x)C^{-1}(x)Y(x)A(x) \right) s = -g(x, y(x))$$

LIMITING NEWTON METHOD

For small μ : roughly

$$\mu A_{\mathcal{A}}^T(x) C_{\mathcal{A}}^{-2}(x) A_{\mathcal{A}}(x) s \approx -\left(g(x) - A_{\mathcal{A}}^T(x) Y_{\mathcal{A}}^{-1}(x) e\right)$$

POTENTIAL DIFFICULTIES I

Ill-conditioning of the Hessian of the barrier function:

roughly speaking (non-degenerate case)

$$\odot m_a$$
 eigenvalues $\approx \lambda_i (A_A^T Y_A^2 A_A)/\mu_k$

$$oonup n - m_a \text{ eigenvalues} \approx \lambda_i(N_{\mathcal{A}}^T H(x_*, y_*) N_{\mathcal{A}})$$

where

 $m_a = \text{number of active constraints}$

 $\mathcal{A} = \text{active set at } x_*$

Y =diagonal matrix of Lagrange multipliers

 $N_{\mathcal{A}}$ = orthogonal basis for null-space of $A_{\mathcal{A}}$

 \implies condition number of $\nabla_{xx}\Phi(x_k,\mu_k) = O(1/\mu_k)$

 \implies may not be able to find minimizer easily

POTENTIAL DIFFICULTIES II

Value $x_{k+1}^{s} = x_k$ is a poor starting point: Suppose

$$0 \approx \nabla_x \Phi(x_k, \mu_k) = g(x_k) - \mu_k A^T(x_k) C^{-1}(x_k) e$$

$$\approx g(x_k) - \mu_k A^T_{\mathcal{A}}(x_k) C^{-1}_{\mathcal{A}}(x_k) e$$

Roughly speaking (non-degenerate case) Newton correction satisfies

$$\mu_{k+1} A_{\mathcal{A}}^T(x_k) C_{\mathcal{A}}^{-2}(x_k) A_{\mathcal{A}}(x_k) s \approx (\mu_{k+1} - \mu_k) A_{\mathcal{A}}^T(x_k) C_{\mathcal{A}}^{-1}(x_k) e^{-\frac{1}{2}(x_k)} C_{\mathcal{A}}^{-1}(x_k) e^{-\frac{1}{2}(x_k)} C_{\mathcal{A}}^{-1}(x_k) e^{-\frac{1}{2}(x_k)} C_{\mathcal{A}}^{-1}(x_k) e^{-\frac{1}{2}(x_k)} C_{\mathcal{A}}^{-1}(x_k) e^{-\frac{1}{2}(x_k)} C_{\mathcal{A}}^{-1}(x_k) e^{-\frac{1}{2}(x_k)} e^{-\frac{1}{2}(x_k)} C_{\mathcal{A}}^{-1}(x_k) e^{-\frac{1}{2}(x_k)} C_{\mathcal{A}}^{-1}(x_k) e^{-\frac{1}{2}(x_k)} e^{-\frac{1}{2}(x_k)}$$

 \implies (full rank)

$$A_{\mathcal{A}}(x_k)s \approx \left(1 - \frac{\mu_k}{\mu_{k+1}}\right)c_{\mathcal{A}}(x_k)$$

 \implies (Taylor expansion)

$$c_{\mathcal{A}}(x_k+s) \approx c_{\mathcal{A}}(x_k) + A_{\mathcal{A}}(x_k)s \approx \left(2 - \frac{\mu_k}{\mu_{k+1}}\right)c_{\mathcal{A}}(x_k) < 0$$

if $\mu_{k+1} < \frac{1}{2}\mu_k \Longrightarrow$ Newton step infeasible \Longrightarrow slow convergence

PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \ f(x) \ \text{subject to} \ c(x) \ge 0$$

are:

$$g(x) - A^T(x)y = 0$$
 dual feasibility
$$C(x)y = 0$$
 complementary slackness $c(x) \ge 0$ and $y \ge 0$

Consider the "perturbed" problem

$$g(x) - A^{T}(x)y = 0$$
 dual feasibility $C(x)y = \mu e$ perturbed comp. slkns. $c(x) > 0$ and $y > 0$

where $\mu > 0$

PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of

$$g(x) - A^{T}(x)y = 0$$
 and $C(x)y - \mu e = 0$

as $0 < \mu \to 0$, while maintaining c(x) > 0 and y > 0

 \odot nonlinear system \Longrightarrow use Newton's method

Newton correction (s, w) to (x, y) satisfies

$$\begin{pmatrix} H(x,y) & -A^{T}(x) \\ YA(x) & C(x) \end{pmatrix} \begin{pmatrix} s \\ w \end{pmatrix} = -\begin{pmatrix} g(x) - A^{T}(x)y \\ C(x)y - \mu e \end{pmatrix}$$

Eliminate $w \Longrightarrow$

$$(H(x,y) + A^{T}(x)C^{-1}(x)YA(x)) s = -(g(x) - \mu A^{T}(x)C^{-1}(x)e)$$

c.f. Newton method for barrier minimization!

PRIMAL VS. PRIMAL-DUAL

Primal:

$$\left(H(x,y(x))+A^T(x)C^{-1}(x)Y(x)A(x)\right)s^{\mathrm{p}}=-g(x,y(x))$$

Primal-dual:

$$(H(x,y) + A^{T}(x)C^{-1}(x)YA(x))s^{PD} = -g(x,y(x))$$

where

$$y(x) = \mu C^{-1}(x)e^{-1}$$

What is the difference?

- \odot freedom to choose y in $H(x,y) + A^{T}(x)C^{-1}(x)YA(x)$ for primal-dual ... vital
- \odot Hessian approximation for small μ

$$H(x,y) + A^{T}(x)C^{-1}(x)YA(x) \approx A_{\mathcal{A}}^{T}(x)C_{\mathcal{A}}^{-1}(x)Y_{\mathcal{A}}A_{\mathcal{A}}(x)$$

POTENTIAL DIFFICULTY II ... REVISITED

Value $x_{k+1}^{s} = x_k$ can be a good starting point:

- \circ primal method has to choose $y = y(x_k^s) = \mu_{k+1}C^{-1}(x_k)e^{-1}$
 - $\diamond\,$ factor μ_{k+1}/μ_k too small for a good Lagrange multiplier estimate
- \odot primal-dual method can choose $y = \mu_k C^{-1}(x_k)e \to y_*$

Advantage: roughly (non-degenerate case) correction $s^{\text{\tiny PD}}$ satisfies

$$\mu_k A_{\mathcal{A}}^T(x_k) C_{\mathcal{A}}^{-2}(x_k) A_{\mathcal{A}}(x_k) s^{\text{\tiny PD}} \approx (\mu_{k+1} - \mu_k) A_{\mathcal{A}}^T(x_k) C_{\mathcal{A}}^{-1}(x_k) e$$

$$\Longrightarrow \text{(full rank)}$$

$$A_{\mathcal{A}}(x_k)s^{\scriptscriptstyle \mathrm{PD}} pprox \left(rac{\mu_{k+1}}{\mu_k} - 1
ight)c_{\mathcal{A}}(x_k)$$

⇒ (Taylor expansion)

$$c_{\mathcal{A}}(x_k + s^{\text{PD}}) \approx c_{\mathcal{A}}(x_k) + A_{\mathcal{A}}(x_k) s^{\text{PD}} \approx \frac{\mu_{k+1}}{\mu_k} c_{\mathcal{A}}(x_k) > 0$$

 \implies Newton step allowed \implies fast convergence

PRIMAL-DUAL BARRIER METHODS

Choose a search direction s for $\Phi(x, \mu_k)$ by (approximately) solving the problem

minimize
$$g(x, y(x))^T s + \frac{1}{2} s^T (H(x, y) + A^T(x) C^{-1}(x) Y A(x)) s$$

possibly subject to a trust-region constraint

$$g(x) = \mu C^{-1}(x)e \Longrightarrow g(x, y(x)) = \nabla_x \Phi(x, \mu)$$

- $\circ y = \dots$
 - $\diamond y(x) \Longrightarrow \text{ primal Newton method}$
 - \diamond occasionally $(\mu_{k-1}/\mu_k)y(x) \Longrightarrow \text{good starting point}$
 - $\diamond y^{\text{OLD}} + w^{\text{OLD}} \Longrightarrow \text{primal-dual Newton method}$
 - $\circ \max(y^{\text{OLD}} + w^{\text{OLD}}, \epsilon(\mu_k)e)$ for "small" $\epsilon(\mu_k) > 0$ (e.g., $\epsilon(\mu_k) = \mu_k^{1.5}) \Longrightarrow$ practical primal-dual method

POTENTIAL DIFFICULTY I ... REVISITED

Ill-conditioning \rightleftharpoons we can't solve equations accurately:

roughly (non-degenerate case, $\mathcal{I} = \text{inactive set at } x_*$)

$$\begin{pmatrix} H & -A^T \\ YA & C \end{pmatrix} \begin{pmatrix} s \\ w \end{pmatrix} = -\begin{pmatrix} g - A^T y \\ Cy - \mu e \end{pmatrix} \implies$$

$$\begin{pmatrix} H & -A_{\mathcal{A}}^T - A_{\mathcal{I}}^T \\ Y_{\mathcal{A}}A_{\mathcal{A}} & C_{\mathcal{A}} & 0 \\ Y_{\mathcal{I}}A_{\mathcal{I}} & 0 & C_{\mathcal{I}} \end{pmatrix} \begin{pmatrix} s \\ w_{\mathcal{A}} \\ w_{\mathcal{I}} \end{pmatrix} = -\begin{pmatrix} g - A_{\mathcal{A}}^T y_{\mathcal{A}} - A_{\mathcal{I}}^T y_{\mathcal{I}} \\ C_{\mathcal{A}}y_{\mathcal{A}} - \mu e \\ C_{\mathcal{I}}y_{\mathcal{I}} - \mu e \end{pmatrix} \implies$$

$$\begin{pmatrix} H + A_{\mathcal{I}}^T C_{\mathcal{I}}^{-1} Y_{\mathcal{I}} A_{\mathcal{I}} & -A_{\mathcal{A}}^T \\ A_{\mathcal{A}} & C_{\mathcal{A}} Y_{\mathcal{A}}^{-1} \end{pmatrix} \begin{pmatrix} s \\ w_{\mathcal{A}} \end{pmatrix} = -\begin{pmatrix} g - A_{\mathcal{A}}^T y_{\mathcal{A}} - \mu A_{\mathcal{I}}^T C_{\mathcal{I}}^{-1} e \\ c_{\mathcal{A}} - \mu Y_{\mathcal{A}}^{-1} e \end{pmatrix}$$

- \circ potentially bad terms $C_{\mathcal{I}}^{-1}$ and $Y_{\mathcal{A}}^{-1}$ bounded
- o in the limit becomes well-behaved

$$\begin{pmatrix} H & -A_{\mathcal{A}}^T \\ A_{\mathcal{A}} & 0 \end{pmatrix} \begin{pmatrix} s \\ w_{\mathcal{A}} \end{pmatrix} = -\begin{pmatrix} g - A_{\mathcal{A}}^T y_{\mathcal{A}} \\ 0 \end{pmatrix}$$

PRACTICAL PRIMAL-DUAL METHOD

Given $\mu_0 > 0$ and feasible $(x_0^{\rm s}, y_0^{\rm s})$, set k = 0Until "convergence" iterate:

Inner minimization: starting from (x_k^s, y_k^s) , use an unconstrained minimization algorithm to find (x_k, y_k) for which $||C(x_k)y_k - \mu_k e|| \le \mu_k$ and $||g(x_k) - A^T(x_k)y_k|| \le \mu_k^{1.00005}$ Set $\mu_{k+1} = \min(0.1\mu_k, \mu_k^{1.9999})$

Find (x_{k+1}^s, y_{k+1}^s) using a primal-dual Newton step from (x_k, y_k) If (x_{k+1}^s, y_{k+1}^s) is infeasible, reset (x_{k+1}^s, y_{k+1}^s) to (x_k, y_k) Increase k by 1

FAST ASYMPTOTIC CONVERGENCE

Theorem 4.2. Suppose that $f, c \in \mathcal{C}^2$, that a subsequence $\{(x_k, y_k)\}, k \in \mathcal{K}$, of the practical primal-dual method converges to (x_*, y_*) satisfying second-order sufficiency conditions, that $A_{\mathcal{A}}(x_*)$ is full-rank, and that $(y_*)_{\mathcal{A}} > 0$. Then the starting point satisfies the inner-minimization termination test (i.e., $(x_k, y_k) = (x_k^s, y_k^s)$) and the whole sequence $\{(x_k, y_k)\}$ converges to (x_*, y_*) at a superlinear rate (Q-factor 1.9998).

OTHER ISSUES

- polynomial algorithms for many convex problems
 - linear programming
 - \diamond quadratic programming
 - ⋄ semi-definite programming . . .
- excellent practical performance
- globally, need to keep away from constraint boundary until near convergence, otherwise very slow
- o initial interior point:

minimize
$$e^T c$$
 subject to $c(x) + c \ge 0$