Part 4: Interior-point methods for inequality constrained optimization

Nick Gould (RAL)
minimize $\quad f(x)$ subject to $c(x) \geq 0$ $x \in \mathbb{R}^{n}$

MSc course on nonlinear optimization

CONSTRAINED MINIMIZATION

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)\left\{\begin{array}{l}
\geq \\
=
\end{array}\right\} 0
$$

where the objective function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ and the constraints $c: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$

- assume that $f, c \in C^{1}$ (sometimes C^{2}) and Lipschitz
- often in practice this assumption violated, but not necessary

CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:
\odot minimize the objective function $f(x)$
\odot satisfy the constraints

Overcome this by minimizing a composite merit function $\Phi(x, p)$ for which
$\odot p$ are parameters

- (some) minimizers of $\Phi(x, p)$ wrt x approach those of $f(x)$ subject to the constraints as p approaches some set \mathcal{P}
\odot only uses unconstrained minimization methods

AN EXAMPLE FOR EQUALITY CONSTRAINTS

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x)=0
$$

Merit function (quadratic penalty function):

$$
\Phi(x, \mu)=f(x)+\frac{1}{2 \mu}\|c(x)\|_{2}^{2}
$$

- required solution as μ approaches $\{0\}$ from above
- may have other useless stationary points

A MERIT F^{n} FOR INEQUALITY CONSTRAINTS

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x) \geq 0
$$

Merit function (logarithmic barrier function):

$$
\Phi(x, \mu)=f(x)-\mu \sum_{i=1}^{m} \log c_{i}(x)
$$

- required solution as μ approaches $\{0\}$ from above
- may have other useless stationary points
- requires a strictly interior point to start
\odot consequent points are interior

CONTOURS OF THE BARRIER FUNCTION

Barrier function for $\min x_{1}^{2}+x_{2}^{2}$ subject to $x_{1}+x_{2}^{2} \geq 1$

CONTOURS OF THE BARRIER FUNCTION (cont.)

Barrier function for $\min x_{1}^{2}+x_{2}^{2}$ subject to $x_{1}+x_{2}^{2} \geq 1$

BASIC BARRIER FUNCTION ALGORITHM

Given $\mu_{0}>0$, set $k=0$
Until "convergence" iterate:
Find x_{k}^{s} for which $c\left(x_{k}^{\mathrm{s}}\right)>0$
Starting from x_{k}^{s}, use an unconstrained minimization algorithm to find an "approximate" minimizer x_{k} of $\Phi\left(x, \mu_{k}\right)$
Compute $\mu_{k+1}>0$ smaller than μ_{k} such that $\lim _{k \rightarrow \infty} \mu_{k+1}=0$ and increase k by 1
\odot often choose $\mu_{k+1}=0.1 \mu_{k}$ or even $\mu_{k+1}=\mu_{k}^{2}$
\odot might choose $x_{k+1}^{\mathrm{S}}=x_{k}$

MAIN CONVERGENCE RESULT

The active set $\mathcal{A}(x)=\left\{i \mid c_{i}(x)=0\right\}$

Theorem 4.1. Suppose that $f, c \in \mathcal{C}^{2}$, that $\left(y_{k}\right)_{i} \stackrel{\text { def }}{=} \mu_{k} / c_{i}\left(x_{k}\right)$ for $i=1, \ldots, m$, that

$$
\left\|\nabla_{x} \Phi\left(x_{k}, \mu_{k}\right)\right\|_{2} \leq \epsilon_{k}
$$

where ϵ_{k} converges to zero as $k \rightarrow \infty$, and that x_{k} converges to x_{*} for which $\left\{a_{i}\left(x_{*}\right)\right\}_{i \in \mathcal{A}\left(x_{*}\right)}$ are linearly independent. Then x_{*} satisfies the first-order necessary optimality conditions for the problem

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x) \geq 0
$$

and $\left\{y_{k}\right\}$ converge to the associated Lagrange multipliers y_{*}.

PROOF OF THEOREM 4.1

Let $\mathcal{M} \stackrel{\text { def }}{=}\{1, \ldots, m\}, \mathcal{A} \stackrel{\text { def }}{=}\left\{i \mid c_{i}\left(x_{*}\right)=0\right\}$ and $\mathcal{I} \stackrel{\text { def }}{=} \mathcal{M} \backslash \mathcal{A}$.
Generalized inv. $A_{\mathcal{A}}^{+}(x) \stackrel{\text { def }}{=}\left(A_{\mathcal{A}}(x) A_{\mathcal{A}}^{T}(x)\right)^{-1} A_{\mathcal{A}}(x)$ bounded near x_{*}. Define

$$
\begin{gather*}
\left(y_{k}\right)_{i}=\frac{\mu_{k}}{c_{i}\left(x_{k}\right)}, i \in \mathcal{M}, \quad\left(y_{*}\right)_{\mathcal{A}}=A_{\mathcal{A}}^{+}\left(x_{*}\right) g\left(x_{*}\right) \text { and }\left(y_{*}\right)_{\mathcal{I}}=0 . \\
\left\|\left(y_{k}\right)_{\mathcal{I}}\right\|_{2} \leq 2 \mu_{k} \sqrt{|\mathcal{I}|} / \min _{i \in \mathcal{I}}\left|c_{i}\left(x_{*}\right)\right| \tag{1}
\end{gather*}
$$

(if $\mathcal{I} \neq \emptyset$) for all sufficiently large k. (1) + inner-it. termination \Longrightarrow

$$
\begin{align*}
\left\|g\left(x_{k}\right)-A_{\mathcal{A}}^{T}\left(x_{k}\right)\left(y_{k}\right)_{\mathcal{A}}\right\|_{2} & \leq\left\|g\left(x_{k}\right)-A^{T}\left(x_{k}\right) y_{k}\right\|_{2}+\left\|A_{\mathcal{I}}^{T}\left(x_{k}\right)\left(y_{k}\right)_{\mathcal{I}}\right\|_{2} \\
\leq \bar{\epsilon}_{k} & \stackrel{\text { def }}{=} \epsilon_{k}+\mu_{k} \frac{2 \sqrt{|\mathcal{I}|} \mid A_{\mathcal{I}} \|_{2}}{\min _{i \in \mathcal{I}}\left|c_{i}\left(x_{*}\right)\right|} \tag{2}\\
\Longrightarrow\left\|A_{\mathcal{A}}^{+}\left(x_{k}\right) g\left(x_{k}\right)-\left(y_{k}\right)_{\mathcal{A}}\right\|_{2} & =\left\|A_{\mathcal{A}}^{+}\left(x_{k}\right)\left(g\left(x_{k}\right)-A_{\mathcal{A}}^{T}\left(x_{k}\right)\left(y_{k}\right)_{\mathcal{A}}\right)\right\|_{2} \\
& \leq 2\left\|A_{\mathcal{A}}^{+}\left(x_{*}\right)\right\|_{2} \bar{\epsilon}_{k}
\end{align*}
$$

$\Longrightarrow\left\|\left(y_{k}\right)_{\mathcal{A}}-\left(y_{*}\right)_{\mathcal{A}}\right\|_{2}$

$$
\leq\left\|A_{\mathcal{A}}^{+}\left(x_{*}\right) g\left(x_{*}\right)-A_{\mathcal{A}}^{+}\left(x_{k}\right) g\left(x_{k}\right)\right\|_{2}+\left\|A_{\mathcal{A}}^{+}\left(x_{k}\right) g\left(x_{k}\right)-\left(y_{k}\right)_{\mathcal{A}}\right\|_{2}
$$

$+(1) \Longrightarrow\left\{y_{k}\right\} \longrightarrow y_{*}$. Continuity of gradients $+(2) \Longrightarrow$

$$
g\left(x_{*}\right)-A^{T}\left(x_{*}\right) y_{*}=0
$$

$c\left(x_{k}\right)>0$, defs. of y_{k} and $y_{*}+c_{i}\left(x_{k}\right)\left(y_{k}\right)_{i}=\mu_{k} \Longrightarrow$ $c\left(x_{*}\right) \geq 0, y_{*} \geq 0$ and $c_{i}\left(x_{*}\right)\left(y_{*}\right)_{i}=0$.
$\Longrightarrow\left(x_{*}, y_{*}\right)$ satisfies the first-order optimality conditions.

ALGORITHMS TO MINIMIZE $\Phi(x, \mu)$

Can use

- linesearch methods
- should use specialized linesearch to cope with singularity of \log
- trust-region methods
\bullet need to reject points for which $c\left(x_{k}+s_{k}\right) \ngtr 0$
- (ideally) need to "shape" trust region to cope with contours of the singularity

DERIVATIVES OF THE BARRIER FUNCTION

$\odot \nabla_{x} \Phi(x, \mu)=g(x, y(x))$

- $\nabla_{x x} \Phi(x, \mu)=H(x, y(x))+\mu A^{T}(x) C^{-2}(x) A(x)$
$=H(x, y)+A^{T}(x) C^{-1}(x) Y(x) A(x)$
$=H(x, y)+\frac{1}{\mu} A^{T}(x) Y^{2}(x) A(x)$
where
- Lagrange multiplier estimates: $y(x)=\mu C^{-1}(x) e$ where e is the vector of ones
$\odot C(x)=\operatorname{diag}\left(c_{1}(x), \ldots, c_{m}(x)\right)$
$\odot Y(x)=\operatorname{diag}\left(y_{1}(x), \ldots, y_{m}(x)\right)$
- $g(x, y(x))=g(x)-A^{T}(x) y(x)$: gradient of the Lagrangian
$\odot H(x, y(x))=H(x)-\sum_{i=1}^{m} y_{i}(x) H_{i}(x)$: Lagrangian Hessian

LIMITING DERIVATIVES OF Φ

Let $\mathcal{I}=$ inactive set at $x_{*}=\{1, \ldots, m\} \backslash \mathcal{A}$
For small μ : roughly

$$
\begin{aligned}
\nabla_{x} \Phi(x, \mu) & =\underbrace{g(x)-A_{\mathcal{A}}^{T}(x) Y_{\mathcal{A}}^{-1}(x) e}_{\text {moderate }}-\underbrace{\mu A_{\mathcal{I}}^{T}(x) C_{\mathcal{I}}^{-1}(x) e}_{\text {small }} \\
& \approx g(x)-A_{\mathcal{A}}^{T}(x) Y_{\mathcal{A}}^{-1}(x) e \\
\nabla_{x x} \Phi(x, \mu) & =\underbrace{H(x, y(x))}_{\text {moderate }}+\underbrace{\mu A_{\mathcal{I}}^{T}(x) C_{\mathcal{I}}^{-2}(x) A_{\mathcal{I}}(x)}_{\text {small }}+\underbrace{\frac{1}{\mu} A_{\mathcal{A}}^{T}(x) Y_{\mathcal{A}}^{2}(x) A_{\mathcal{A}}(x)}_{\text {large }} \\
& \approx \frac{1}{\mu} A_{\mathcal{A}}^{T}(x) Y_{\mathcal{A}}^{2}(x) A_{\mathcal{A}}(x) \\
& =A_{\mathcal{A}}^{T}(x) C_{\mathcal{A}}^{-1}(x) Y_{\mathcal{A}}(x) A_{\mathcal{A}}(x) \\
& =\mu A_{\mathcal{A}}^{T}(x) C_{\mathcal{A}}^{-2}(x) A_{\mathcal{A}}(x)
\end{aligned}
$$

GENERIC BARRIER NEWTON SYSTEM

Newton correction s from x for barrier function is

$$
\left(H(x, y(x))+A^{T}(x) C^{-1}(x) Y(x) A(x)\right) s=-g(x, y(x))
$$

LIMITING NEWTON METHOD

For small μ : roughly

$$
\mu A_{\mathcal{A}}^{T}(x) C_{\mathcal{A}}^{-2}(x) A_{\mathcal{A}}(x) s \approx-\left(g(x)-A_{\mathcal{A}}^{T}(x) Y_{\mathcal{A}}^{-1}(x) e\right)
$$

POTENTIAL DIFFICULTIES I

Ill-conditioning of the Hessian of the barrier function:
roughly speaking (non-degenerate case)

- m_{a} eigenvalues $\approx \lambda_{i}\left(A_{\mathcal{A}}^{T} Y_{\mathcal{A}}^{2} A_{\mathcal{A}}\right) / \mu_{k}$
- $n-m_{a}$ eigenvalues $\approx \lambda_{i}\left(N_{\mathcal{A}}^{T} H\left(x_{*}, y_{*}\right) N_{\mathcal{A}}\right)$
where
$m_{a}=$ number of active constraints
$\mathcal{A}=$ active set at x_{*}
$Y=$ diagonal matrix of Lagrange multipliers
$N_{\mathcal{A}}=$ orthogonal basis for null-space of $A_{\mathcal{A}}$
\Longrightarrow condition number of $\nabla_{x x} \Phi\left(x_{k}, \mu_{k}\right)=O\left(1 / \mu_{k}\right)$
\Longrightarrow may not be able to find minimizer easily

POTENTIAL DIFFICULTIES II

Value $x_{k+1}^{\mathrm{S}}=x_{k}$ is a poor starting point: Suppose

$$
\begin{aligned}
0 & \approx \nabla_{x} \Phi\left(x_{k}, \mu_{k}\right)=g\left(x_{k}\right)-\mu_{k} A^{T}\left(x_{k}\right) C^{-1}\left(x_{k}\right) e \\
& \approx g\left(x_{k}\right)-\mu_{k} A_{\mathcal{A}}^{T}\left(x_{k}\right) C_{\mathcal{A}}^{-1}\left(x_{k}\right) e
\end{aligned}
$$

Roughly speaking (non-degenerate case) Newton correction satisfies

$$
\mu_{k+1} A_{\mathcal{A}}^{T}\left(x_{k}\right) C_{\mathcal{A}}^{-2}\left(x_{k}\right) A_{\mathcal{A}}\left(x_{k}\right) s \approx\left(\mu_{k+1}-\mu_{k}\right) A_{\mathcal{A}}^{T}\left(x_{k}\right) C_{\mathcal{A}}^{-1}\left(x_{k}\right) e
$$

\Longrightarrow (full rank)

$$
A_{\mathcal{A}}\left(x_{k}\right) s \approx\left(1-\frac{\mu_{k}}{\mu_{k+1}}\right) c_{\mathcal{A}}\left(x_{k}\right)
$$

\Longrightarrow (Taylor expansion)

$$
c_{\mathcal{A}}\left(x_{k}+s\right) \approx c_{\mathcal{A}}\left(x_{k}\right)+A_{\mathcal{A}}\left(x_{k}\right) s \approx\left(2-\frac{\mu_{k}}{\mu_{k+1}}\right) c_{\mathcal{A}}\left(x_{k}\right)<0
$$

if $\mu_{k+1}<\frac{1}{2} \mu_{k} \Longrightarrow$ Newton step infeasible \Longrightarrow slow convergence

PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x) \text { subject to } c(x) \geq 0
$$

are:

$$
\begin{array}{cc}
g(x)-A^{T}(x) y=0 & \text { dual feasibility } \\
C(x) y=0 & \text { complementary slackness } \\
c(x) \geq 0 \text { and } y \geq 0 &
\end{array}
$$

Consider the "perturbed" problem

$$
\begin{array}{cc}
g(x)-A^{T}(x) y=0 & \text { dual feasibility } \\
C(x) y=\mu e & \text { perturbed comp. slkns. } \\
c(x)>0 \text { and } y>0 &
\end{array}
$$

where $\mu>0$

PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of

$$
g(x)-A^{T}(x) y=0 \text { and } C(x) y-\mu e=0
$$

as $0<\mu \rightarrow 0$, while maintaining $c(x)>0$ and $y>0$
\odot nonlinear system \Longrightarrow use Newton's method

Newton correction (s, w) to (x, y) satisfies

$$
\left(\begin{array}{cc}
H(x, y) & -A^{T}(x) \\
Y A(x) & C(x)
\end{array}\right)\binom{s}{w}=-\binom{g(x)-A^{T}(x) y}{C(x) y-\mu e}
$$

Eliminate $w \Longrightarrow$

$$
\left(H(x, y)+A^{T}(x) C^{-1}(x) Y A(x)\right) s=-\left(g(x)-\mu A^{T}(x) C^{-1}(x) e\right)
$$

c.f. Newton method for barrier minimization!

PRIMAL VS. PRIMAL-DUAL

Primal:

$$
\left(H(x, y(x))+A^{T}(x) C^{-1}(x) Y(x) A(x)\right) s^{\mathrm{P}}=-g(x, y(x))
$$

Primal-dual:

$$
\left(H(x, y)+A^{T}(x) C^{-1}(x) Y A(x)\right) s^{\mathrm{PD}}=-g(x, y(x))
$$

where

$$
y(x)=\mu C^{-1}(x) e
$$

What is the difference?

- freedom to choose y in $H(x, y)+A^{T}(x) C^{-1}(x) Y A(x)$ for primal-dual ... vital
- Hessian approximation for small μ

$$
H(x, y)+A^{T}(x) C^{-1}(x) Y A(x) \approx A_{\mathcal{A}}^{T}(x) C_{\mathcal{A}}^{-1}(x) Y_{\mathcal{A}} A_{\mathcal{A}}(x)
$$

POTENTIAL DIFFICULTY II ...REVISITED

Value $x_{k+1}^{\mathrm{s}}=x_{k}$ can be a good starting point:

- primal method has to choose $y=y\left(x_{k}^{\mathrm{S}}\right)=\mu_{k+1} C^{-1}\left(x_{k}\right) e$
- factor μ_{k+1} / μ_{k} too small for a good Lagrange multiplier estimate
\odot primal-dual method can choose $y=\mu_{k} C^{-1}\left(x_{k}\right) e \rightarrow y_{*}$
Advantage: roughly (non-degenerate case) correction s^{PD} satisfies

$$
\mu_{k} A_{\mathcal{A}}^{T}\left(x_{k}\right) C_{\mathcal{A}}^{-2}\left(x_{k}\right) A_{\mathcal{A}}\left(x_{k}\right) s^{\mathrm{PD}} \approx\left(\mu_{k+1}-\mu_{k}\right) A_{\mathcal{A}}^{T}\left(x_{k}\right) C_{\mathcal{A}}^{-1}\left(x_{k}\right) e
$$

\Longrightarrow (full rank)

$$
A_{\mathcal{A}}\left(x_{k}\right) s^{\mathrm{PD}} \approx\left(\frac{\mu_{k+1}}{\mu_{k}}-1\right) c_{\mathcal{A}}\left(x_{k}\right)
$$

\Longrightarrow (Taylor expansion)

$$
c_{\mathcal{A}}\left(x_{k}+s^{\mathrm{PD}}\right) \approx c_{\mathcal{A}}\left(x_{k}\right)+A_{\mathcal{A}}\left(x_{k}\right) s^{\mathrm{PD}} \approx \frac{\mu_{k+1}}{\mu_{k}} c_{\mathcal{A}}\left(x_{k}\right)>0
$$

\Longrightarrow Newton step allowed \Longrightarrow fast convergence

PRIMAL-DUAL BARRIER METHODS

Choose a search direction s for $\Phi\left(x, \mu_{k}\right)$ by (approximately) solving the problem

$$
\underset{s \in \mathbb{R}^{n}}{\operatorname{minimize}} g(x, y(x))^{T} s+\frac{1}{2} s^{T}\left(H(x, y)+A^{T}(x) C^{-1}(x) Y A(x)\right) s
$$

possibly subject to a trust-region constraint

- $y(x)=\mu C^{-1}(x) e \Longrightarrow g(x, y(x))=\nabla_{x} \Phi(x, \mu)$
- $y=\ldots$
- $y(x) \Longrightarrow$ primal Newton method
\bullet occasionally $\left(\mu_{k-1} / \mu_{k}\right) y(x) \Longrightarrow$ good starting point
$\bullet y^{\text {OLD }}+w^{\text {OLD }} \Longrightarrow$ primal-dual Newton method
$\bullet \max \left(y^{\text {OLD }}+w^{\text {oLD }}, \epsilon\left(\mu_{k}\right) e\right)$ for "small" $\epsilon\left(\mu_{k}\right)>0$ (e.g., $\left.\epsilon\left(\mu_{k}\right)=\mu_{k}^{1.5}\right) \Longrightarrow$ practical primal-dual method

POTENTIAL DIFFICULTY I ... REVISITED

Ill-conditioning \nRightarrow we can't solve equations accurately:
roughly (non-degenerate case, $\mathcal{I}=$ inactive set at x_{*})

$$
\begin{gathered}
\left(\begin{array}{cc}
H & -A^{T} \\
Y A & C
\end{array}\right)\binom{s}{w}=-\binom{g-A^{T} y}{C y-\mu e} \Longrightarrow \\
\left(\begin{array}{ccc}
H & -A_{\mathcal{A}}^{T} & -A_{\mathcal{I}}^{T} \\
Y_{\mathcal{A}} A_{\mathcal{A}} & C_{\mathcal{A}} & 0 \\
Y_{\mathcal{I}} A_{\mathcal{I}} & 0 & C_{\mathcal{I}}
\end{array}\right)\left(\begin{array}{c}
s \\
w_{\mathcal{A}} \\
w_{\mathcal{I}}
\end{array}\right)=-\left(\begin{array}{c}
g-A_{\mathcal{A}}^{T} y_{\mathcal{A}}-A_{\mathcal{I}}^{T} y_{\mathcal{I}} \\
C_{\mathcal{A}} y_{\mathcal{A}}-\mu e \\
C_{\mathcal{I}} y_{\mathcal{I}}-\mu e
\end{array}\right) \Longrightarrow \\
\left(\begin{array}{cc}
H+A_{\mathcal{I}}^{T} C_{\mathcal{I}}^{-1} Y_{\mathcal{I}} A_{\mathcal{I}} & -A_{\mathcal{A}}^{T} \\
A_{\mathcal{A}} & C_{\mathcal{A}} Y_{\mathcal{A}}^{-1}
\end{array}\right)\binom{s}{w_{\mathcal{A}}}=-\binom{g-A_{\mathcal{A}}^{T} y_{\mathcal{A}}-\mu A_{\mathcal{I}}^{T} C_{\mathcal{I}}^{-1} e}{c_{\mathcal{A}}-\mu Y_{\mathcal{A}}^{-1} e}
\end{gathered}
$$

- potentially bad terms $C_{\mathcal{I}}^{-1}$ and $Y_{\mathcal{A}}^{-1}$ bounded
\odot in the limit becomes well-behaved

$$
\left(\begin{array}{cc}
H & -A_{\mathcal{A}}^{T} \\
A_{\mathcal{A}} & 0
\end{array}\right)\binom{s}{w_{\mathcal{A}}}=-\binom{g-A_{\mathcal{A}}^{T} y_{\mathcal{A}}}{0}
$$

PRACTICAL PRIMAL-DUAL METHOD

Given $\mu_{0}>0$ and feasible $\left(x_{0}^{\mathrm{S}}, y_{0}^{\mathrm{S}}\right)$, set $k=0$
Until "convergence" iterate:
Inner minimization: starting from $\left(x_{k}^{s}, y_{k}^{s}\right)$, use an unconstrained minimization algorithm to find $\left(x_{k}, y_{k}\right)$ for which $\left\|C\left(x_{k}\right) y_{k}-\mu_{k} e\right\| \leq \mu_{k}$ and $\left\|g\left(x_{k}\right)-A^{T}\left(x_{k}\right) y_{k}\right\| \leq \mu_{k}^{1.00005}$
Set $\mu_{k+1}=\min \left(0.1 \mu_{k}, \mu_{k}^{1.9999}\right)$
Find $\left(x_{k+1}^{\mathrm{S}}, y_{k+1}^{\mathrm{S}}\right)$ using a primal-dual Newton step from $\left(x_{k}, y_{k}\right)$
If $\left(x_{k+1}^{\mathrm{s}}, y_{k+1}^{\mathrm{s}}\right)$ is infeasible, reset $\left(x_{k+1}^{\mathrm{s}}, y_{k+1}^{\mathrm{S}}\right)$ to $\left(x_{k}, y_{k}\right)$
Increase k by 1

FAST ASYMPTOTIC CONVERGENCE

Theorem 4.2. Suppose that $f, c \in \mathcal{C}^{2}$, that a subsequence $\left\{\left(x_{k}, y_{k}\right)\right\}, k \in \mathcal{K}$, of the practical primal-dual method converges to $\left(x_{*}, y_{*}\right)$ satisfying second-order sufficiency conditions, that $A_{\mathcal{A}}\left(x_{*}\right)$ is full-rank, and that $\left(y_{*}\right)_{\mathcal{A}}>0$. Then the starting point satisfies the inner-minimization termination test (i.e., $\left.\left(x_{k}, y_{k}\right)=\left(x_{k}^{s}, y_{k}^{s}\right)\right)$ and the whole sequence $\left\{\left(x_{k}, y_{k}\right)\right\}$ converges to $\left(x_{*}, y_{*}\right)$ at a superlinear rate (Q-factor 1.9998).

OTHER ISSUES

- polynomial algorithms for many convex problems
- linear programming
- quadratic programming
- semi-definite programming ...
- excellent practical performance
- globally, need to keep away from constraint boundary until near convergence, otherwise very slow
- initial interior point:

$$
\underset{(x, c)}{\operatorname{minimize}} e^{T} c \text { subject to } c(x)+c \geq 0
$$

