for inequality constrained optimization Part 4: Interior-point methods

Nick Gould (RAL)

MSc course on nonlinear optimization

CONSTRAINED MINIMIZATION

minimize
$$f(x)$$
 subject to $c(x) \begin{cases} \geq \\ = \end{cases} 0$

where the objective function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ and the constraints $c: \mathbb{R}^n \longrightarrow \mathbb{R}^m$

- \circ assume that $f, c \in C^1$ (sometimes C^2) and Lipschitz
- often in practice this assumption violated, but not necessary

CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:

- \circ minimize the objective function f(x)
- o satisfy the constraints

for which Overcome this by minimizing a composite **merit function** $\Phi(x,p)$

- \circ p are parameters
- \circ (some) minimizers of $\Phi(x,p)$ wrt x approach those of f(x) subject to the constraints as p approaches some set \mathcal{P}
- only uses **unconstrained** minimization methods

AN EXAMPLE FOR EQUALITY CONSTRAINTS

minimize
$$f(x)$$
 subject to $c(x) = 0$
 $x \in \mathbb{R}^n$

Merit function (quadratic penalty function):

$$\Phi(x,\mu) = f(x) + \frac{1}{2\mu} \|c(x)\|_2^2$$

- \circ required solution as μ approaches $\{0\}$ from above
- o may have other useless stationary points

A MERIT Fⁿ FOR INEQUALITY CONSTRAINTS

minimize
$$f(x)$$
 subject to $c(x) \ge 0$
 $x \in \mathbb{R}^n$

Merit function (logarithmic barrier function):

$$\Phi(x,\mu) = f(x) - \mu \sum_{i=1}^{\infty} \log c_i(x)$$

- \circ required solution as μ approaches $\{0\}$ from above
- o may have other useless stationary points
- o requires a strictly interior point to start
- o consequent points are interior

CONTOURS OF THE BARRIER FUNCTION

CONTOURS OF THE BARRIER FUNCTION (cont.)

BASIC BARRIER FUNCTION ALGORITHM

Given $\mu_0 > 0$, set k = 0Until "convergence" iterate: Find x_k^s for which $c(x_k^s) > 0$ Starting from x_k^s , use an unconstrained minimization algorithm to find an "approximate" minimizer x_k of $\Phi(x, \mu_k)$ Compute $\mu_{k+1} > 0$ smaller than μ_k such

o often choose $\mu_{k+1} = 0.1 \mu_k$ or even $\mu_{k+1} = \mu_k^2$

that $\lim_{k\to\infty} \mu_{k+1} = 0$ and increase k by 1

 \circ might choose $x_{k+1}^{s} = x_k$

MAIN CONVERGENCE RESULT

The active set $\mathcal{A}(x) = \{i \mid c_i(x) = 0\}$

Theorem 4.1. Suppose that $f, c \in \mathcal{C}^2$, that $(y_k)_i \stackrel{\text{def}}{=} \mu_k/c_i(x_k)$

$$\|\nabla_x \Phi(x_k, \mu_k)\|_2 \le \epsilon_k$$

for $i = 1, \ldots, m$, that

the first-order necessary optimality conditions for the problem for which $\{a_i(x_*)\}_{i\in\mathcal{A}(x_*)}$ are linearly independent. Then x_* satisfies where ϵ_k converges to zero as $k \to \infty$, and that x_k converges to x_*

minimize
$$f(x)$$
 subject to $c(x) \ge 0$
 $x \in \mathbb{R}^n$

and $\{y_k\}$ converge to the associated Lagrange multipliers y_* .

PROOF OF THEOREM 4.1

Generalized inv. $A_{\mathcal{A}}^+(x) \stackrel{\text{def}}{=} (A_{\mathcal{A}}(x)A_{\mathcal{A}}^T(x))^{-1} A_{\mathcal{A}}(x)$ bounded near x_* . Let $\mathcal{M} \stackrel{\text{def}}{=} \{1, \ldots, m\}$, $\mathcal{A} \stackrel{\text{def}}{=} \{i \mid c_i(x_*) = 0\}$ and $\mathcal{I} \stackrel{\text{def}}{=} \mathcal{M} \setminus \mathcal{A}$.

$$(y_k)_i = \frac{\mu_k}{c_i(x_k)}, i \in \mathcal{M}, \ (y_*)_{\mathcal{A}} = A_{\mathcal{A}}^+(x_*)g(x_*) \text{ and } (y_*)_{\mathcal{I}} = 0.$$

(if $\mathcal{I} \neq \emptyset$) for all sufficiently large k. (1) + inner-it. termination \Longrightarrow $||(y_k)_{\mathcal{I}}||_2 \le 2\mu_k \sqrt{|\mathcal{I}|/\min_{i\in\mathcal{I}}|c_i(x_*)|}$

$$||g(x_k) - A_{\mathcal{A}}^T(x_k)(y_k)_{\mathcal{A}}||_2 \le ||g(x_k) - A^T(x_k)y_k||_2 + ||A_{\mathcal{I}}^T(x_k)(y_k)_{\mathcal{I}}||_2$$

$$\le \bar{\epsilon}_k \stackrel{\text{def}}{=} \epsilon_k + \mu_k \frac{2\sqrt{|\mathcal{I}|} ||A_{\mathcal{I}}||_2}{\min_{i \in \mathcal{I}} |c_i(x_*)|}$$
(2)

$$\implies \|A_{\mathcal{A}}^{+}(x_{k})g(x_{k}) - (y_{k})_{\mathcal{A}}\|_{2} = \|A_{\mathcal{A}}^{+}(x_{k})(g(x_{k}) - A_{\mathcal{A}}^{T}(x_{k})(y_{k})_{\mathcal{A}})\|_{2} \leq 2\|A_{\mathcal{A}}^{+}(x_{*})\|_{2}\bar{\epsilon}_{k}$$

$$\Rightarrow \|(y_k)_{\mathcal{A}} - (y_*)_{\mathcal{A}}\|_2$$

$$\leq \|A_{\mathcal{A}}^+(x_*)g(x_*) - A_{\mathcal{A}}^+(x_k)g(x_k)\|_2 + \|A_{\mathcal{A}}^+(x_k)g(x_k) - (y_k)_{\mathcal{A}}\|_2$$

$$+ (1) \Rightarrow \{y_k\} \longrightarrow y_*. \text{ Continuity of gradients} + (2) \Rightarrow$$

$$g(x_*) - A^T(x_*)y_* = 0$$

$$c(x_k) > 0, \text{ defs. of } y_k \text{ and } y_* + c_i(x_k)(y_k)_i = \mu_k \Rightarrow$$

$$c(x_*) \geq 0, y_* \geq 0 \text{ and } c_i(x_*)(y_*)_i = 0.$$

$$\Rightarrow (x_*, y_*) \text{ satisfies the first-order optimality conditions.}$$

ALGORITHMS TO MINIMIZE $\Phi(x,\mu)$

Can use

- linesearch methods
- should use specialized linesearch to cope with singularity of log
- trust-region methods
- \diamond need to reject points for which $c(x_k + s_k) \not> 0$
- (ideally) need to "shape" trust region to cope with contours of the singularity

DERIVATIVES OF THE BARRIER FUNCTION

where

- Lagrange multiplier estimates: $y(x) = \mu C^{-1}(x)e$ where e is the vector of ones
- $C(x) = \operatorname{diag}(c_1(x), \ldots, c_m(x))$
- $Y(x) = \operatorname{diag}(y_1(x), \dots, y_m(x))$
- $\circ g(x,y(x)) = g(x) A^{T}(x)y(x)$: gradient of the Lagrangian
- $\odot~H(x,y(x))=H(x)-\sum y_i(x)H_i(x)$: Lagrangian Hessian

LIMITING DERIVATIVES OF Φ

Let $\mathcal{I} = \text{inactive set at } x_* = \{1, \dots, m\} \setminus \mathcal{A}$

For small
$$\mu$$
: roughly
$$\nabla_x \Phi(x,\mu) = g(x) - A_{\mathcal{A}}^T(x) Y_{\mathcal{A}}^{-1}(x) e - \mu A_{\mathcal{I}}^T(x) C_{\mathcal{I}}^{-1}(x) e$$

$$\approx g(x) - A_{\mathcal{A}}^T(x) Y_{\mathcal{A}}^{-1}(x) e$$

$$\approx g(x) - A_{\mathcal{A}}^T(x) Y_{\mathcal{A}}^{-1}(x) e$$

$$\nabla_{xx} \Phi(x,\mu) = H(x,y(x)) + \mu A_{\mathcal{I}}^T(x) C_{\mathcal{I}}^{-2}(x) A_{\mathcal{I}}(x) + \frac{1}{\mu} A_{\mathcal{A}}^T(x) Y_{\mathcal{A}}^2(x) A_{\mathcal{A}}(x)$$

$$\approx \frac{1}{\mu} A_{\mathcal{A}}^T(x) Y_{\mathcal{A}}^2(x) A_{\mathcal{A}}(x)$$

$$= A_{\mathcal{A}}^T(x) C_{\mathcal{A}}^{-1}(x) Y_{\mathcal{A}}(x) A_{\mathcal{A}}(x)$$

$$= \mu A_{\mathcal{A}}^T(x) C_{\mathcal{A}}^{-1}(x) A_{\mathcal{A}}(x)$$

GENERIC BARRIER NEWTON SYSTEM

Newton correction s from x for barrier function is

$$\left(H(x,y(x)) + A^T(x)C^{-1}(x)Y(x)A(x)\right)s = -g(x,y(x))$$

LIMITING NEWTON METHOD

For small μ : roughly

$$\mu A_{\mathcal{A}}^T(x) C_{\mathcal{A}}^{-2}(x) A_{\mathcal{A}}(x) s \approx -\left(g(x) - A_{\mathcal{A}}^T(x) Y_{\mathcal{A}}^{-1}(x) e\right)$$

POTENTIAL DIFFICULTIES I

roughly speaking (non-degenerate case) Ill-conditioning of the Hessian of the barrier function:

- o m_a eigenvalues $\approx \lambda_i (A_A^T Y_A^2 A_A)/\mu_k$
- $onuple n-m_a \text{ eigenvalues} \approx \lambda_i(N_A^T H(x_*, y_*) N_A)$

where

 $m_a = \text{number of active constraints}$

 $\mathcal{A} = \text{active set at } x_*$

Y = diagonal matrix of Lagrange multipliers

 $N_{\mathcal{A}} = \text{orthogonal basis for null-space of } A_{\mathcal{A}}$

- \implies condition number of $\nabla_{xx}\Phi(x_k,\mu_k) = O(1/\mu_k)$
- ⇒ may not be able to find minimizer easily

POTENTIAL DIFFICULTIES II

Value $x_{k+1}^{s} = x_k$ is a poor starting point: Suppose

$$0 \approx \nabla_x \Phi(x_k, \mu_k) = g(x_k) - \mu_k A^T(x_k) C^{-1}(x_k) e$$

$$\approx g(x_k) - \mu_k A^T_{\mathcal{A}}(x_k) C^{-1}_{\mathcal{A}}(x_k) e$$

Roughly speaking (non-degenerate case) Newton correction satisfies

$$\mu_{k+1} A_{\mathcal{A}}^T(x_k) C_{\mathcal{A}}^{-2}(x_k) A_{\mathcal{A}}(x_k) s \approx (\mu_{k+1} - \mu_k) A_{\mathcal{A}}^T(x_k) C_{\mathcal{A}}^{-1}(x_k) e^{-t} + t^{-t} + t^{-t}$$

 \implies (full rank)

$$A_{\mathcal{A}}(x_k)s \approx \left(1 - \frac{\mu_k}{\mu_{k+1}}\right)c_{\mathcal{A}}(x_k)$$

 \implies (Taylor expansion)

$$c_{\mathcal{A}}(x_k+s) \approx c_{\mathcal{A}}(x_k) + A_{\mathcal{A}}(x_k)s \approx \left(2 - \frac{\mu_k}{\mu_{k+1}}\right)c_{\mathcal{A}}(x_k) < 0$$

if $\mu_{k+1} < \frac{1}{2}\mu_k \Longrightarrow$ Newton step infeasible \Longrightarrow slow convergence

PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize
$$f(x)$$
 subject to $c(x) \ge 0$
 $x \in \mathbb{R}^n$

are:

$$g(x) - A^T(x)y = 0$$
 dual feasibility $C(x)y = 0$ complementary slackness $c(x) \ge 0$ and $y \ge 0$

Consider the "perturbed" problem

$$g(x) - A^T(x)y = 0$$
 dual feasibility $C(x)y = \mu e$ **perturbed** comp. slkns $c(x) > 0$ and $y > 0$

where $\mu > 0$

PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of

$$g(x) - A^{T}(x)y = 0$$
 and $C(x)y - \mu e = 0$

as $0 < \mu \to 0$, while maintaining c(x) > 0 and y > 0

○ nonlinear system ⇒ use Newton's method

Newton correction (s, w) to (x, y) satisfies

$$\left(\begin{array}{cc} H(x,y) & -A^T(x) \\ YA(x) & C(x) \end{array} \right) \left(\begin{array}{c} s \\ w \end{array} \right) = - \left(\begin{array}{c} g(x) - A^T(x)y \\ C(x)y - \mu e \end{array} \right)$$

Eliminate $w \Longrightarrow$

$$\left(H(x,y) + A^T(x)C^{-1}(x)YA(x)\right)s = -\left(g(x) - \mu A^T(x)C^{-1}(x)e\right)$$

c.f. Newton method for barrier minimization!

PRIMAL VS. PRIMAL-DUAL

Primal:

$$(H(x, y(x)) + A^{T}(x)C^{-1}(x)Y(x)A(x)) s^{P} = -g(x, y(x))$$

Primal-dual:

$$(H(x,y) + A^{T}(x)C^{-1}(x)YA(x)) s^{PD} = -g(x,y(x))$$

where

$$y(x) = \mu C^{-1}(x)e$$

What is the difference?

- o freedom to choose y in $H(x,y) + A^{T}(x)C^{-1}(x)YA(x)$ for primal-dual ... vital
- $_{\odot}$ Hessian approximation for small μ

$$H(x,y) + A^T(x)C^{-1}(x)YA(x) \approx A_{\mathcal{A}}^T(x)C_{\mathcal{A}}^{-1}(x)Y_{\mathcal{A}}A_{\mathcal{A}}(x)$$

POTENTIAL DIFFICULTY II ... REVISITED

Value $x_{k+1}^{s} = x_k$ can be a good starting point:

- o primal method has to choose $y = y(x_k^s) = \mu_{k+1}C^{-1}(x_k)e$
- \diamond factor μ_{k+1}/μ_k too small for a good Lagrange multiplier estimate
- o primal-dual method can choose $y = \mu_k C^{-1}(x_k)e \to y_*$

Advantage: roughly (non-degenerate case) correction s^{PD} satisfies

$$\mu_k A_{\mathcal{A}}^T(x_k) C_{\mathcal{A}}^{-2}(x_k) A_{\mathcal{A}}(x_k) s^{\text{pd}} \approx (\mu_{k+1} - \mu_k) A_{\mathcal{A}}^T(x_k) C_{\mathcal{A}}^{-1}(x_k) e^{-\mu_k x_k} C_{\mathcal{A}}^{-1}(x_k) e^{-\mu_k$$

 \implies (full rank)

$$A_{\mathcal{A}}(x_k)s^{\text{PD}} \approx \left(\frac{\mu_{k+1}}{\mu_k} - 1\right)c_{\mathcal{A}}(x_k)$$

 \implies (Taylor expansion)

$$c_{\mathcal{A}}(x_k + s^{\text{PD}}) \approx c_{\mathcal{A}}(x_k) + A_{\mathcal{A}}(x_k)s^{\text{PD}} \approx \frac{\mu_{k+1}}{\mu_k}c_{\mathcal{A}}(x_k) > 0$$

⇒ Newton step allowed ⇒ fast convergence

PRIMAL-DUAL BARRIER METHODS

Choose a search direction s for $\Phi(x, \mu_k)$ by

(approximately) solving the problem minimize
$$g(x,y(x))^Ts+\frac{1}{2}s^T\left(H(x,y)+A^T(x)C^{-1}(x)YA(x)\right)s$$

possibly subject to a trust-region constraint

$$\quad \circ \ \ y(x) = \mu C^{-1}(x) e \Longrightarrow \ g(x,y(x)) = \nabla_x \Phi(x,\mu)$$

- $y = \dots$
- $\diamond y(x) \Longrightarrow \text{primal Newton method}$
- \diamond occasionally $(\mu_{k-1}/\mu_k)y(x) \Longrightarrow \text{good starting point}$
- $\diamond y^{\text{OLD}} + w^{\text{OLD}} \Longrightarrow \text{primal-dual Newton method}$
- $\Rightarrow \max(y^{\text{old}} + w^{\text{old}}, \epsilon(\mu_k)e) \text{ for "small" } \epsilon(\mu_k) > 0$ (e.g., $\epsilon(\mu_k) = \mu_k^{1.5}$) \Longrightarrow practical primal-dual method

POTENTIAL DIFFICULTY I ... REVISITED

Ill-conditioning \Rightarrow we can't solve equations accurately

roughly (non-degenerate case, $\mathcal{I}=$ inactive set at $x_*)$

$$\begin{pmatrix} H & -A^T \\ YA & C \end{pmatrix} \begin{pmatrix} s \\ w \end{pmatrix} = -\begin{pmatrix} g - A^Ty \\ Cy - \mu e \end{pmatrix} \Longrightarrow \begin{pmatrix} H & -A_A^T - A_I^T \\ Y_AA_A & C_A & 0 \\ Y_TA_I & 0 & C_I \end{pmatrix} \begin{pmatrix} s \\ w_I \end{pmatrix} = -\begin{pmatrix} g - A_A^Ty_A - A_I^Ty_I \\ C_Ay_A - \mu e \\ C_Iy_I - \mu e \end{pmatrix} \Longrightarrow \begin{pmatrix} H + A_I^TC_I^{-1}Y_IA_I & -A_A^T \\ A_A & C_AY_A^{-1} \end{pmatrix} \begin{pmatrix} s \\ w_A \end{pmatrix} = -\begin{pmatrix} g - A_A^Ty_A - \mu A_I^TC_I^{-1}e \\ G_AY_A - \mu Y_A^{-1}e \end{pmatrix}$$
o potentially bad terms C_I^{-1} and Y_A^{-1} bounded

o in the limit becomes well-behaved

$$\begin{pmatrix} H & -A_{\mathcal{A}}^T \\ A_{\mathcal{A}} & 0 \end{pmatrix} \begin{pmatrix} s \\ w_{\mathcal{A}} \end{pmatrix} = -\begin{pmatrix} g - A_{\mathcal{A}}^T y_{\mathcal{A}} \\ 0 \end{pmatrix}$$

PRACTICAL PRIMAL-DUAL METHOD

Given $\mu_0 > 0$ and feasible (x_0^s, y_0^s) , set k = 0

Until "convergence" iterate:

Inner minimization: starting from (x_k^s, y_k^s) , use an

unconstrained minimization algorithm to find (x_k, y_k) for which $||C(x_k)y_k - \mu_k e|| \le \mu_k \text{ and } ||g(x_k) - A^T(x_k)y_k|| \le \mu_k^{1.00005}$

Set $\mu_{k+1} = \min(0.1\mu_k, \mu_k^{1.9999})$

Find (x_{k+1}^s, y_{k+1}^s) using a primal-dual Newton step from (x_k, y_k)

If $(x_{k+1}^{s}, y_{k+1}^{s})$ is infeasible, reset $(x_{k+1}^{s}, y_{k+1}^{s})$ to (x_k, y_k)

Increase k by 1

FAST ASYMPTOTIC CONVERGENCE

rate (Q-factor 1.9998). the whole sequence $\{(x_k, y_k)\}$ converges to (x_*, y_*) at a superlinear inner-minimization termination test (i.e., $(x_k, y_k) = (x_k^s, y_k^s)$) and is full-rank, and that $(y_*)_{\mathcal{A}} > 0$. Then the starting point satisfies the (x_*, y_*) satisfying second-order sufficiency conditions, that $A_{\mathcal{A}}(x_*)$ **Theorem 4.2.** Suppose that $f, c \in \mathbb{C}^2$, that a subsequence $\{(x_k,y_k)\}, k \in \mathcal{K}$, of the practical primal-dual method converges to

OTHER ISSUES

- o polynomial algorithms for many convex problems
- linear programming
- quadratic programming
- semi-definite programming ...
- excellent practical performance
- o globally, need to keep away from constraint boundary until near convergence, otherwise very slow
- o initial interior point:

minimize
$$e^T c$$
 subject to $c(x) + c \ge 0$
 (x,c)