Part 4: Interior-point methods
for inequality constrained optimization

Nick Gould (RAL)

minimize  f(x) subject to c(x) > 0
relR"

MSc course on nonlinear optimization




CONSTRAINED MINIMIZATION

Vv

minimize f(xz) subject to c¢(x) 0
r€IR"

where the objective function f : IR" — IR
and the constraints ¢ : IR" — IR

® assume that f, ¢ € C! (sometimes C?) and Lipschitz

® often in practice this assumption violated, but not necessary



CONSTRAINTS AND MERIT FUNCTIONS

Two conflicting goals:
® minimize the objective function f(x)

® satisfy the constraints

Overcome this by minimizing a composite merit function ®(x,p)
for which

® p are parameters

® (some) minimizers of ®(x, p) wrt x approach those of f(x) subject
to the constraints as p approaches some set P

® only uses unconstrained minimization methods



AN EXAMPLE FOR EQUALITY CONSTRAINTS

minimize f(z) subject to c(x) =0
r€IR"

Merit function (quadratic penalty function):

1
O, p) = flz) + ﬁ__%qi_w
® required solution as p approaches {0} from above

® may have other useless stationary points



A MERIT F* FOR INEQUALITY CONSTRAINTS

minimize f(x) subject to c(x) >0
relR"

Merit function (logarithmic barrier function):

O(z, 1) = f(z) — p MU log ¢;(z)

® required solution as p approaches {0} from above
® may have other useless stationary points
® requires a strictly interior point to start

® consequent points are interior



CONTOURS OF THE BARRIER FUNCTION

Barrier function for min 2% + 3 subject to x1 + x5 > 1



CONTOURS OF THE BARRIER FUNCTION (cont.)
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BASIC BARRIER FUNCTION ALGORITHM

Given po > 0, set k =0
Until “convergence” iterate:
Find «3 for which ¢(x}) > 0
Starting from 7, use an unconstrained
minimization algorithm to find an
“approximate” minimizer xj of ®(x, u)
Compute 1 > 0 smaller than py such
that limy_ ..o 1 = 0 and increase k by 1

® often choose jugy1 = 0.1 or even py.q = i

® might choose x;, =



MAIN CONVERGENCE RESULT

The active set A(z) = {i | ¢;(x) =0}

Theorem 4.1. Suppose that f, ¢ € C?, that (y;); o pi/ ci(xr)

for¢ =1,...,m, that
[V ® (@, i) |2 < €

where €5 converges to zero as k — oo, and that xj converges to x,
for which {a;(%+) }iec 4(z,) are linearly independent. Then x, satisfies
the first-order necessary optimality conditions for the problem

minimize f(x) subject to c(x) > 0
relR"

and {yx} converge to the associated Lagrange multipliers .




PROOF OF THEOREM 4.1

Let MY 01,0 omb, AY (i | ei(a) =0} and T M\ A
Generalized inv. A%(x) = o (Aa(z vxﬁ@vv A 4(x) bounded near x,.
Define

(Yr)i = Qﬁw\avk eM, (y)a= A (z)g(xs) and (y.)z = 0.

|(wi)zll2 < 2400/|Z1/ min fei(.) (1)

1€l
(if Z # () for all sufficiently large k. (1) + inner-it. termination —>

lg(x;) — \»ﬂ@wv@wf__w lg(z;.) — \»HA&S@\A:M + :&WA&\AXS@VN__M

def 2/ |1Zl[| A2

< € = €t
min;e7 |¢; (4]

(2)
:\»MA&\AVQA&\AV — () allz = :\»MA&\AVGA&\AV - \»MAS&X@\LL;M
2|| A% () |26

IA



= [ We)a = @)alls
< [[A4(z)g(w,) — Ag(e)g(@p)lls + [ A% ()9 — (yy)alls
+ (1) = {yr} — y.. Continuity of gradients + (2) =

g(z.) = AN (z)y. = 0

c(xy) > 0, defs. of yp and y. + c;(xr)(yr)i = o =
c(xy) >0, y. > 0 and ¢;(x4)(y«); = 0.

—> (T, ys) satisfies the first-order optimality conditions.



ALGORITHMS TO MINIMIZE ®(x, )

Can use
® linesearch methods

o should use specialized linesearch to cope with singularity of log
® trust-region methods

o need to reject points for which c(xy + s5) # 0

o (ideally) need to “shape” trust region to cope with contours of
the singularity



DERIVATIVES OF THE BARRIER FUNCTION

o VO, 1) = g(z,y(z))

© Vi ®(z, p) = H(z, y(x)) + pA (2)C~>(x) Az)
= H(z,y) + A" (2)CH(2)Y (z)A(z)
= H(z,y) + ;A" (2)Y?*(2) A()

where

© Lagrange multiplier estimates: y(z) = uC~1(z)e
where e is the vector of ones

o C(x) = diag(ci(x), ..., cn(T))
© Y(z)= %mm@;@t.;@i )
o g(x,y(x)) = g(x) — \»ﬂ@v (x): gradient of the Lagrangian

o H(x,y(x)) = MU? ): Lagrangian Hessian



LIMITING DERIVATIVES OF &

Let Z = inactive set at z, = {1,...,m} \ A
For small u: roughly

Vo®(x, p) = glz) — Ay(2)Y, (@) — pAz(2)Cr (z)e

7 \ - 7

Bo%mgdm m&\m:

~ g(w) — Ay(@)Y (2)e

V.o ®(a, 1) = H(z, y(2)) + pAL(2)Cy2(0) Agle) + w&@m@i@

~~

moderate small large

J%AVAV Al)

O @)Y ) A
= AL (@)% (0) A (@)




GENERIC BARRIER NEWTON SYSTEM

Newton correction s from x for barrier function is

(H(z,y(x)) + AT (2)C (@)Y (2)A(z)) s = —g(2,y(2))

LIMITING NEWTON METHOD

For small p: roughly

pAL(@)C (@) Au(2)s = — (g(x) — Ax(2)Y (2)e)



POTENTIAL DIFFICULTIES 1

Il1l-conditioning of the Hessian of the barrier function:
roughly speaking (non-degenerate case)

© m, eigenvalues &~ N\ (ALY FA )/ ik

© n —m, eigenvalues ~ \( N4 H(z,, y«) N )
where

m, = number of active constraints

A = active set at z,

Y = diagonal matrix of Lagrange multipliers
N 4 = orthogonal basis for null-space of A4

—> condition number of V., ®(xy, pr) = O(1/ )
—> may not be able to find minimizer easily



POTENTIAL DIFFICULTIES II

Value z;_ , = x, is a poor starting point: Suppose

V(g ) = g(ar) — A" (2x)C~ (g )e
glar) — AL () C (e

0

& U

Roughly speaking (non-degenerate case) Newton correction satisfies

pg 1 Al () C 2 () A ()8 & (ppr — ) Aly(2)C 4 (z))e
—> (full rank)

Alzy)s ~ G _ M vﬁ@@

Hk+1
—> (Taylor expansion)

calxr +8) = cqlar) + Aglzr)s = A — %v calxr) <0
HE+1

if pp1 < s => Newton step infeasible => slow convergence



PERTURBED OPTIMALITY CONDITIONS

First order optimality conditions for

minimize f(x) subject to c(x) >0

reR"
are:
glz) — Al(x)y =0 dual feasibility
C(x)y =0 complementary slackness

c(r)>0 and y >0

Consider the “perturbed” problem

g(z) — Al (z)y =0 dual feasibility
C(x)y = pe perturbed comp. slkns.
c(x) >0 and y >0

where > 0



PRIMAL-DUAL PATH-FOLLOWING METHODS

Track roots of
glx) — A (x)y =0 and C(z)y — pe =0
as 0 < p — 0, while maintaining ¢(z) > 0 and y > 0

® nonlinear system =—> use Newton’s method

Newton correction (s, w) to (x,y) satisfies
Hy) —AT@)) (s) [ 9@ - ATy
YA(x) C(z) w C(x)y — pe

Eliminate w =
(H(z,y) + A" (z)C (2)Y A(z)) s = — (g(z) — pA' (2)C(z)e)

c.f. Newton method for barrier minimization!



PRIMAL VS. PRIMAL-DUAL

Primal:
(H(z,y(x)) + AT ()07 (@)Y (z)A(z)) " = —g(z,y(z))
Primal-dual:
(H(z,y) + Al (z)C™H(2)Y A(2)) s = —g(z,y(z))

where

What is the difference?
© freedom to choose y in H(x,y) + Al (x)C~(z)Y A(x) for

primal-dual . . .vital

© Hessian approximation for small g

H(z,y) + A" (2)C " (2)Y Alx) = AL ()O3} (@)Y A ()



POTENTIAL DIFFICULTY II ... REVISITED

Value z; ;, = x; can be a good starting point:

® primal method has to choose y = y(z3) = pr1C(zr)e
o factor pgy1/ g too small for a good Lagrange multiplier estimate

® primal-dual method can choose y = 1x,C~Hzp)e — v,
Advantage: roughly (non-degenerate case) correction s satisfies
Eﬂ»ﬁ@t@%@lkhgt%o R (M1 — t\av\»m@wvoﬁxﬁvm
—> (full rank)

Ay(zy)s™ =~ Atwi — Hv calxr)
Hk

—> (Taylor expansion)
Q\%H\A |_| mwov R mkAva |_| \wkm&wvmg R t\w.l
\,\m

—> Newton step allowed = fast convergence

calzy) >0



PRIMAL-DUAL BARRIER METHODS

Choose a search direction s for ®(x, ux) by
(approximately) solving the problem

BWMWQE@ g(x,y(x)) s +1is" (H(z,y) + A" ()0 (2)Y A(z)) s

possibly subject to a trust-region constraint
o y(z) = pC~(z)e = g(z,y(z)) = V. 2(, 1)

©Yy=...
o y(x) = primal Newton method
o occasionally (ug_1/pr)y(x) = good starting point
o Yo" 4w = primal-dual Newton method

o max(y° + w°™, e(ug)e) for “small” e(pug) > 0
(e.g., €(py) = p;°) = practical primal-dual method



POTENTIAL DIFFICULTY I ... REVISITED
Il1l-conditioning #/=we can’t solve equations accurately:
roughly (non-degenerate case, Z = inactive set at x,)

H —A S g— Aly
= — ||L\v
YA C w Cy — ue
H —AYL AL s g— AQys— Azys
H + A7Cr'Y7A; —A) s\ _ [ 9—Alya—pAzCrle
Ay Q\m\\ﬂ W 4 Cyq— \b\\ﬂm

© potentially bad terms C7 Land M\MH bounded

® 1n the limit becomes well-behaved
H Ixﬁ S g — AL AY 4
Ay 0 W 4 0



PRACTICAL PRIMAL-DUAL METHOD

Given py > 0 and feasible (zf, y;), set k=0
Until “convergence” iterate:
Inner minimization: starting from (x3,y), use an

unconstrained minimization algorithm to find (xy, ) for which

1C(zp)yr — pre|| < pyp and ||g(xy) — AT (xp)y|| < pp200%

Set fuy,; = min(0.1p,, p""%)
Find (234, y},,) using a primal-dual Newton step from (z, yi)
If (23,4, y},) is infeasible, reset (x7_1,%7.,) to (T, Yr)

Increase k by 1




FAST ASYMPTOTIC CONVERGENCE

Theorem 4.2. Suppose that f, ¢ € C? that a subsequence
{(zk,yr)}, k € K, of the practical primal-dual method converges to
(4, yx) satisfying second-order sufficiency conditions, that A 4(z,)
is full-rank, and that (y.)4 > 0. Then the starting point satisfies the
inner-minimization termination test (i.e., (xg,yx) = (23,v;)) and
the whole sequence {(zy, yx)} converges to (., ys) at a superlinear
rate (Q-factor 1.9998).




OTHER ISSUES

® polynomial algorithms for many convex problems

o linear programming
o quadratic programming

o semi-definite programming . .
® excellent practical performance

© globally, need to keep away from constraint boundary until near
convergence, otherwise very slow

® initial interior point:
Ce . T
minimize e

(7,¢)

¢ subject to ¢(x)+¢ >0



