Part 5: SQP methods for equality constrained optimization

Nick Gould (RAL)

 $\begin{array}{ll}
\text{minimize} & f(x) \text{ subject to } c(x) = 0\\
 & x \in \mathbb{R}^n
\end{array}$

MSc course on nonlinear optimization

EQUALITY CONSTRAINED MINIMIZATION

minimize f(x) subject to c(x) = 0

where the **objective function** $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ and the **constraints** $c : \mathbb{R}^n \longrightarrow \mathbb{R}^m \ (m \le n)$

- \circ assume that $f, c \in C^1$ (sometimes C^2) and Lipschitz
- \odot often in practice this assumption violated, but not necessary
- easily generalized to inequality constraints . . . but may be better to use interior-point methods for these

OPTIMALITY AND NEWTON'S METHOD

1st order optimality:

$$g(x,y) \equiv g(x) - A^{T}(x)y = 0$$
 and $c(x) = 0$

nonlinear system (linear in y)

 \Longrightarrow

use Newton's method to find a correction (s, w) to (x, y)

 \Longrightarrow

$$\begin{pmatrix} H(x,y) & -A^T(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ w \end{pmatrix} = -\begin{pmatrix} g(x,y) \\ c(x) \end{pmatrix}$$

ALTERNATIVE FORMULATIONS

unsymmetric:

$$\begin{pmatrix} H(x,y) & -A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ w \end{pmatrix} = -\begin{pmatrix} g(x,y) \\ c(x) \end{pmatrix}$$

or symmetric:

$$\begin{pmatrix} H(x,y) & A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ -w \end{pmatrix} = -\begin{pmatrix} g(x,y) \\ c(x) \end{pmatrix}$$

or (with $y^+ = y + w$) unsymmetric:

$$\begin{pmatrix} H(x,y) & -A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ y^{+} \end{pmatrix} = -\begin{pmatrix} g(x) \\ c(x) \end{pmatrix}$$

or symmetric:

$$\begin{pmatrix} H(x,y) & A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ -y^{+} \end{pmatrix} = - \begin{pmatrix} g(x) \\ c(x) \end{pmatrix}$$

DETAILS

• Often approximate with symmetric $B \approx H(x, y) \Longrightarrow$ e.g.

$$\begin{pmatrix} B & A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ -y^{+} \end{pmatrix} = - \begin{pmatrix} g(x) \\ c(x) \end{pmatrix}$$

- o solve system using
 - \diamond unsymmetric (LU) factorization of $\begin{pmatrix} B & -A^T(x) \\ A(x) & 0 \end{pmatrix}$
 - \diamond symmetric (indefinite) factorization of $\begin{pmatrix} B & A^T(x) \\ A(x) & 0 \end{pmatrix}$
 - \diamond symmetric factorizations of B and the Schur Complement $A(x)B^{-1}A^{T}(x)$
 - \diamond iterative method (GMRES(k), MINRES, CG within $\mathcal{N}(A), \ldots$)

AN ALTERNATIVE INTERPRETATION

QP: minimize $g(x)^T s + \frac{1}{2} s^T B s$ subject to A(x) s = -c(x)

- $\odot QP = \mathbf{quadratic} \ \mathbf{program}$
- \circ first-order model of constraints c(x+s)
- \odot second-order model of objective f(x+s) ... but B includes curvature of constraints

solution to QP satisfies

$$\begin{pmatrix} B & A^{T}(x) \\ A(x) & 0 \end{pmatrix} \begin{pmatrix} s \\ -y^{+} \end{pmatrix} = - \begin{pmatrix} g(x) \\ c(x) \end{pmatrix}$$

SEQUENTIAL QUADRATIC PROGRAMMING - SQP

or **successive** quadratic programming or **recursive** quadratic programming (RQP)

Given (x_0, y_0) , set k = 0Until "convergence" iterate: Compute a suitable symmetric B_k using (x_k, y_k) Find

$$s_k = \underset{s \in \mathbb{R}^n}{\min} g_k^T s + \frac{1}{2} s^T B_k s$$
 subject to $A_k s = -c_k$

along with associated Lagrange multiplier estimates y_{k+1} Set $x_{k+1} = x_k + s_k$ and increase k by 1

ADVANTAGES

- o simple
- o fast
 - \diamond quadratically convergent with $B_k = H(x_k, y_k)$
 - superlinearly convergent with good $B_k \approx H(x_k, y_k)$
 - $\, \triangleright \, \text{don't actually need } B_k \longrightarrow H(x_k,y_k)$

PROBLEMS WITH PURE SQP

- \circ how to choose B_k ?
- \odot what if QP_k is unbounded from below? and when?
- $\circ\:$ how do we globalize this iteration?

QP SUB-PROBLEM

minimize
$$g^T s + \frac{1}{2} s B s$$
 subject to $As = -c$

- need constraints to be consistent
 - \diamond OK if A is full rank
- \odot need B to be positive (semi-) definite when As = 0 \iff

 N^TBN positive (semi-) definite where the columns of N form a basis for null(A)

 \iff

$$\left(\begin{array}{cc} B & A^T \\ A & 0 \end{array}\right)$$

(is non-singular and) has m —ve eigenvalues

LINESEARCH SQP METHODS

$$s_k = \underset{s \in \mathbb{R}^n}{\min} g_k^T s + \frac{1}{2} s^T B_k s$$
 subject to $A_k s = -c_k$

Basic idea:

- \circ Pick $x_{k+1} = x_k + \alpha_k s_k$, where
 - $\diamond \ \alpha_k$ is chosen so that

$$\Phi(x_k + \alpha_k s_k, p_k)$$
"<" $\Phi(x_k, p_k)$

- $\Phi(x,p)$ is a "suitable" merit function
- \diamond p_k are parameters
- \circ vital that s_k is a descent direction for $\Phi(x, p_k)$ at x_k
- \circ normally require that B_k is positive definite

SUITABLE MERIT FUNCTIONS. I

The quadratic penalty function:

$$\Phi(x,\mu) = f(x) + \frac{1}{2\mu} \|c(x)\|_2^2$$

Theorem 5.1. Suppose that B_k is positive definite, and that (s_k, y_{k+1}) are the SQP search direction and its associated Lagrange multiplier estimates for the problem

minimize
$$f(x)$$
 subject to $c(x) = 0$

at x_k . Then if x_k is not a first-order critical point, s_k is a descent direction for the quadratic penalty function $\Phi(x, \mu_k)$ at x_k whenever

$$\mu_k \le \frac{\|c(x_k)\|_2}{\|y_{k+1}\|_2}$$

PROOF OF THEOREM 5.1

SQP direction s_k and associated multiplier estimates y_{k+1} satisfy

$$B_k s_k - A_k^T y_{k+1} = -g_k (1)$$

and

$$A_k s_k = -c_k. (2)$$

$$(1) + (2) \Longrightarrow s_k^T g_k = -s_k^T B_k s_k + s_k^T A_k^T y_{k+1} = -s_k^T B_k s_k - c_k^T y_{k+1}$$

$$(3)$$

$$(2) \Longrightarrow \frac{1}{\mu_k} s_k^T A_k^T c_k = -\frac{\|c_k\|_2^2}{\mu_k}.$$
 (4)

(3) + (4), the positive definiteness of B_k , the Cauchy-Schwarz inequality, the required bound on μ_k , and $s_k \neq 0$ if x_k is not critical \Longrightarrow

$$\begin{split} s_k^T \nabla_x \Phi(x_k) &= \ s_k^T \bigg(g_k + \frac{1}{\mu_k} A_k^T c_k \bigg) = - s_k^T B_k s_k - c_k^T y_{k+1} - \frac{\|c_k\|_2^2}{\mu_k} \\ &< \ - \|c_k\|_2 \bigg(\frac{\|c_k\|_2}{\mu_k} - \|y_{k+1}\|_2 \bigg) \leq 0 \end{split}$$

NON-DIFFERENTIABLE EXACT PENALTIES

The non-differentiable exact penalty function:

$$\Phi(x, \rho) = f(x) + \rho ||c(x)||$$

for any norm $\|\cdot\|$ and scalar $\rho > 0$.

Theorem 5.2. Suppose that $f, c \in C^2$, and that x_* is an isolated local minimizer of f(x) subject to c(x) = 0, with corresponding Lagrange multipliers y_* . Then x_* is also an isolated local minimizer of $\Phi(x, \rho)$ provided that

$$\rho > \|y_*\|_D,$$

where the **dual norm**

$$||y||_D = \sup_{x \neq 0} \frac{y^T x}{||x||}.$$

SUITABLE MERIT FUNCTIONS. II

The non-differentiable exact penalty function:

$$\Phi(x, \rho) = f(x) + \rho ||c(x)||$$

for any norm $\|\cdot\|$ (with dual norm $\|\cdot\|_D$) and scalar $\rho > 0$.

Theorem 5.3. Suppose that B_k is positive definite, and that (s_k, y_{k+1}) are the SQP search direction and its associated Lagrange multiplier estimates for the problem

minimize
$$f(x)$$
 subject to $c(x) = 0$

at x_k . Then if x_k is not a first-order critical point, s_k is a descent direction for the non-differentiable penalty function $\Phi(x, \rho_k)$ at x_k whenever $\rho_k \geq ||y_{k+1}||_D$

PROOF OF THEOREM 5.3

Taylor's theorem applied to f and $c + (2) \Longrightarrow (\text{for small } \alpha)$

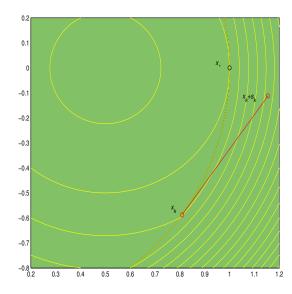
$$\begin{split} \Phi(x_k + \alpha s_k, \rho_k) - \Phi(x_k, \rho_k) &= \ \alpha s_k^T g_k + \rho_k \left(\|c_k + \alpha A_k s_k\| - \|c_k\| \right) + O(\alpha^2) \\ &= \ \alpha s_k^T g_k + \rho_k \left(\|(1 - \alpha) c_k\| - \|c_k\| \right) + O(\alpha^2) \\ &= \ \alpha \left(s_k^T g_k - \rho_k \|c_k\| \right) + O\left(\alpha^2\right) \end{split}$$

+ (3), the positive definiteness of B_k , the Hölder inequality, and $s_k \neq 0$ if x_k is not critical \Longrightarrow

$$\begin{split} \Phi(x_k + \alpha s_k, \rho_k) - \Phi(x_k, \rho_k) &= -\alpha \left(s_k^T B_k s_k + c_k^T y_{k+1} + \rho_k \|c_k\| \right) + O(\alpha^2) \\ &< -\alpha \left(-\|c_k\| \|y_{k+1}\|_D + \rho_k \|c_k\| \right) + O(\alpha^2) \\ &= -\alpha \|c_k\| \left(\rho_k - \|y_{k+1}\|_D \right) + O(\alpha^2) < 0 \end{split}$$

because of the required bound on ρ_k , for sufficiently small α . Hence sufficiently small steps along s_k from non-critical x_k reduce $\Phi(x, \rho_k)$.

THE MARATOS EFFECT



 ℓ_1 non-differentiable exact penalty function $(\rho = 1)$: $f(x) = 2(x_1^2 + x_2^2 - 1) - x_1$ and $c(x) = x_1^2 + x_2^2 - 1$ solution: $x_* = (1, 0), y_* = \frac{3}{2}$

Maratos effect: merit function may prevent acceptance of the SQP step arbitrarily close to $x_* \Longrightarrow$ slow convergence

AVOIDING THE MARATOS EFFECT

The Maratos effect occurs because the curvature of the constraints is not adequately represented by linearization in the SQP model:

$$c(x_k + s_k) = O(\|s_k\|^2)$$

 \implies need to correct for this curvature

 \implies use a **second-order correction** from $x_k + s_k$:

$$c(x_k + s_k + s_k^{\text{C}}) = o(\|s_k\|^2)$$

also do not want to destroy potential for fast convergence \Longrightarrow

$$s_k^{\scriptscriptstyle ext{C}} = o(s_k)$$

POPULAR 2ND-ORDER CORRECTIONS

 \circ minimum norm solution to $c(x_k + s_k) + A(x_k + s_k)s_k^c = 0$

$$\begin{pmatrix} I & A^{T}(x_k + s_k) \\ A(x_k + s_k) & 0 \end{pmatrix} \begin{pmatrix} s_k^{\text{C}} \\ -y_{k+1}^{\text{C}} \end{pmatrix} = -\begin{pmatrix} 0 \\ c(x_k + s_k) \end{pmatrix}$$

 \circ minimum norm solution to $c(x_k + s_k) + A(x_k)s_k^{\mathsf{C}} = 0$

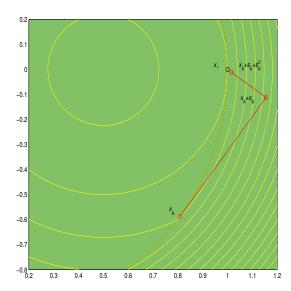
$$\begin{pmatrix} I & A^{T}(x_{k}) \\ A(x_{k}) & 0 \end{pmatrix} \begin{pmatrix} s_{k}^{c} \\ -y_{k+1}^{c} \end{pmatrix} = -\begin{pmatrix} 0 \\ c(x_{k} + s_{k}) \end{pmatrix}$$

 \odot another SQP step from $x_k + s_k$

$$\begin{pmatrix} H(x_k + s_k, y_k^+) & A^T(x_k + s_k) \\ A(x_k + s_k) & 0 \end{pmatrix} \begin{pmatrix} s_k^{\text{C}} \\ -y_{k+1}^{\text{C}} \end{pmatrix} = -\begin{pmatrix} g(x_k + s_k) \\ c(x_k + s_k) \end{pmatrix}$$

⊙ etc., etc.

2ND-ORDER CORRECTIONS IN ACTION



 ℓ_1 non-differentiable exact penalty function $(\rho = 1)$: $f(x) = 2(x_1^2 + x_2^2 - 1) - x_1$ and $c(x) = x_1^2 + x_2^2 - 1$ solution: $x_* = (1, 0), y_* = \frac{3}{2}$

- (very) fast convergence
- o $x_k + s_k + s_k^{\mbox{\tiny c}}$ reduces $\Phi \Longrightarrow$ global convergence

TRUST-REGION SQP METHODS

Obvious trust-region approach:

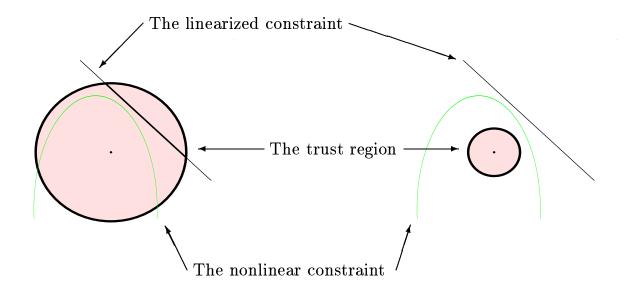
$$s_k = \underset{s \in \mathbb{R}^n}{\min} g_k^T s + \frac{1}{2} s^T B_k s$$
 subject to $A_k s = -c_k$ and $||s|| \le \Delta_k$

- \circ do not require that B_k be positive definite \implies can use $B_k = H(x_k, y_k)$
- \circ if $\Delta_k < \Delta^{\text{CRIT}}$ where

$$\Delta^{\text{CRIT}} \stackrel{\text{def}}{=} \min \|s\| \text{ subject to } A_k s = -c_k$$

- ⇒ no solution to trust-region subproblem
- \implies simple trust-region approach to SQP is flawed if $c_k \neq 0 \implies$ need to consider alternatives

INFEASIBILITY OF THE SQP STEP



ALTERNATIVES

- $\odot\,$ the $\mathrm{S}\ell_{\mathbf{p}}\mathrm{QP}$ method of Fletcher
- $\odot\,$ composite step SQP methods
 - constraint relaxation (Vardi)
 - constraint reduction (Byrd–Omojokun)
 - ⋄ constraint lumping (Celis–Dennis–Tapia)
- $\odot\,$ the filter-SQP approach of Fletcher and Leyffer

THE $S\ell_pQP$ METHOD

Try to minimize the ℓ_p -(exact) penalty function

$$\Phi(x, \rho) = f(x) + \rho ||c(x)||_p$$

for sufficiently large $\rho > 0$ and some ℓ_p norm $(1 \le p \le \infty)$, using a trust-region approach

Suitable model problem: $\ell_{\mathbf{p}}\mathbf{QP}$

minimize (f_k+) $g_k^T s + \frac{1}{2} s^T B_k s + \rho ||c_k + A_k s||_p$ subject to $||s|| \le \Delta_k$

- o model problem always consistent
- \circ when ρ and Δ_k are large enough, model minimizer = SQP direction
- \odot when the norms are polyhedral (e.g., ℓ_1 or ℓ_{∞} norms), $\ell_{\mathbf{p}}QP$ is equivalent to a quadratic program . . .

THE ℓ_1 QP SUBPROBLEM

 $\ell_1 \mathrm{QP}$ model problem with an ℓ_{∞} trust region

minimize
$$g_k^T s + \frac{1}{2} s^T B_k s + \rho \|c_k + A_k s\|_1$$
 subject to $\|s\|_{\infty} \leq \Delta_k$

But

$$c_k + A_k s = u - v$$
, where $(u, v) \ge 0$

 $\implies \ell_1 QP$ equivalent to quadratic program (QP):

minimize
$$g_k^T s + \frac{1}{2} s^T B_k s + \rho(e^T u + e^T v)$$

subject to $A_k s - u + v = -c_k$
 $u \ge 0, \quad v \ge 0$
and $-\Delta_k e \le s \le \Delta_k e$

- \odot good methods for solving QP
- \circ can exploit structure of u and v variables

PRACTICAL $S\ell_1QP$ METHODS

 \circ Cauchy point requires solution to $\ell_1 LP$ model:

minimize
$$g_k^T s + \rho \|c_k + A_k s\|_1$$
 subject to $\|s\|_{\infty} \leq \Delta_k$

- \odot approximate solutions to both $\ell_1 LP$ and $\ell_1 QP$ subproblems suffice
- \odot need to adjust ρ as method progresses
- \odot easy to generalize to inequality constraints
- globally convergent, but needs second-order correction for fast asymptotic convergence
- \circ if c(x) = 0 are inconsistent, converges to (locally) least value of infeasibility ||c(x)||

COMPOSITE-STEP METHODS

Aim: find composite step

$$s_k = n_k + t_k$$

where

the **normal step** n_k moves towards feasibility of the linearized constraints (within the trust region)

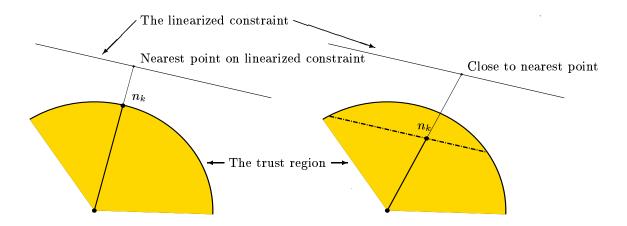
$$||A_k n_k + c_k|| < ||c_k||$$

(model objective may get worse)

the **tangential step** t_k reduces the model objective function (within the trust-region) without sacrificing feasibility obtained from n_k

$$A_k(n_k + t_k) = A_k n_k \implies A_k t_k = 0$$

NORMAL AND TANGENTIAL STEPS



Points on dotted line are all potential tangential steps

CONSTRAINT RELAXATION — VARDI

normal step: relax

$$A_k s = -c_k$$
 and $||s|| \le \Delta_k$

to

$$A_k n = -\sigma_k c_k$$
 and $||n|| \le \Delta_k$

where $\sigma_k \in [0, 1]$ is small enough so that there is a feasible n_k

tangential step:

(approximate) arg min
$$(g_k + B_k n_k)^T t + \frac{1}{2} t^T B_k t$$

subject to $A_k t = 0$ and $||n_k + t|| \leq \Delta_k$

Snags:

- \circ choice of σ_k
- \odot incompatible constraints

CONSTRAINT REDUCTION — BYRD-OMOJOKUN

normal step: replace

$$A_k s = -c_k$$
 and $||s|| \leq \Delta_k$

by

approximately minimize $||A_k n + c_k||$ subject to $||n|| \leq \Delta_k$

tangential step: as in Vardi

- use conjugate gradients to solve both subproblems
 ⇒ Cauchy points in both cases
- \odot globally convergent using ℓ_2 merit function
- \odot basis of successful KNITRO package

CONSTRAINT LUMPING — CELIS-DENNIS-TAPIA

normal step: replace

$$A_k s = -c_k$$
 and $||s|| \le \Delta_k$

by

$$||A_k n + c_k|| \le \sigma_k$$
 and $||n|| \le \Delta_k$

where $\sigma_k \in [0, ||c_k||]$ is large enough so that there is a feasible n_k

tangential step:

(approximate) arg min
$$(g_k + B_k n_k)^T t + \frac{1}{2} t^T B_k t$$

subject to $||A_k t + A_k n_k + c_k|| \le \sigma_k$ and $||t + n_k|| \le \Delta_k$

Snags:

- \circ choice of σ_k
- $\odot\,$ tangential subproblem is (NP?) hard

FILTER METHODS — FLETCHER AND LEYFFER

Rationale:

- \circ trust-region and linearized constraints compatible if c_k is small enough so long as c(x) = 0 is compatible
 - \implies if trust-region subproblem incompatible, simply move closer to constraints
- \odot merit functions depend on arbitrary parameters \implies use a different mechanism to measure progress

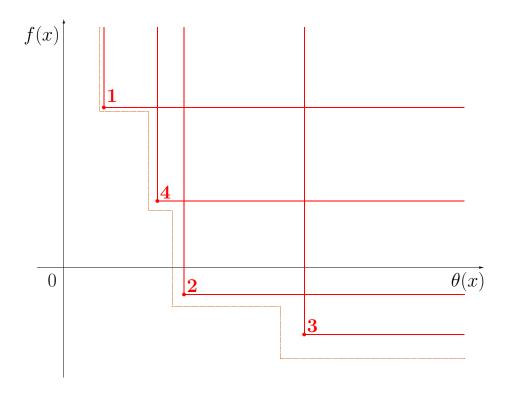
Let
$$\theta = ||c(x)||$$

A **filter** is a set of pairs $\{(\theta_k, f_k)\}$ such that no member dominates another, i.e., it does not happen that

$$\theta_i$$
 "<" θ_j and f_i "<" f_j

for any pair of filter points $i \neq j$

A FILTER WITH FOUR ENTRIES



BASIC FILTER METHOD

 \circ if possible find

$$s_k = \underset{s \in \mathbb{R}^n}{\min} g_k^T s + \frac{1}{2} s^T B_k s$$
 subject to $A_k s = -c_k$ and $||s|| \le \Delta_k$

otherwise, find s_k :

$$\theta(x_k + s_k)$$
"<" θ_i for all $i \le k$

- \odot if $x_k + s_k$ is "acceptable" for the filter, set $x_{k+1} = x_k + s_k$ and possibly increase Δ_k and "prune" filter
- \odot otherwise reduce Δ_k and try again

In practice, far more complicated than this!