Solutions to exercises for Part 1.

1(a). The first-order optimality conditions are that there exist vectors of Lagrange multipliers $y_{\mathcal{E} *}$ and $y_{\mathcal{I}_{*}}$ such that

$$
\begin{array}{rlrl}
c_{\mathcal{E}}\left(x_{*}\right)=0 & & \text { and } c_{\mathcal{I}}\left(x_{*}\right) \geq 0 & \\
\text { (primal feasibility), } \\
g\left(x_{*}\right)-A_{\mathcal{E}}^{T}\left(x_{*}\right) y_{\mathcal{E} *}-A_{\mathcal{I}}^{T}\left(x_{*}\right) y_{\mathcal{I}_{*}}=0 & \text { and } y_{\mathcal{I}_{*} \geq 0} & \text { (dual feasibility) and } \\
c_{i}\left(x_{*}\right)\left[y_{*}\right]_{i}=0 & \text { for all } i \in \mathcal{I} & \text { (complementary slackness). }
\end{array}
$$

1(b). The second-order optimality conditions are that necessarily

$$
s^{T} H\left(x_{*}, y_{*}\right) s \geq 0 \text { for all } s \in \mathcal{N}_{+},
$$

where

$$
\mathcal{N}_{+}=\left\{\begin{array}{l|l}
s \in \Re^{n} & \begin{array}{l}
s^{T} a_{i}\left(x_{*}\right)=0 \text { if } i \in \mathcal{E} \\
s^{T} a_{i}\left(x_{*}\right)=0 \text { if } i \in \mathcal{I} \text { \& both } c_{i}\left(x_{*}\right)=0 \&\left[y_{*}\right]_{i}>0 \text { and } \\
s^{T} a_{i}\left(x_{*}\right) \geq 0 \text { if } i \in \mathcal{I} \& \text { both } c_{i}\left(x_{*}\right)=0 \&\left[y_{*}\right]_{i}=0
\end{array}
\end{array}\right\},
$$

and $y_{*}=\left(\begin{array}{ll}y_{\mathcal{E} *}^{T}, & y_{\mathcal{I} *}^{T}\end{array}\right)^{T}$.
2(a). The problem might be non-differentiable because small perturbations in x may cause different terms $f_{i}(x)$ to define the objective $f(x)$. For example, suppose $m=2$, $f_{1}(x)=x+1$ and $f_{2}(x)=-x+1$. Then for $x \geq 0, f(x)=x+1$ while for $x \leq 0$, $f(x)=-x+1$, and there is a derivative discontinuity at $x=0$. It might also be non-differentiable because of the $|\cdot|$ term. For instance if $m=1$ and $f_{1}(x)=x, f(x)$ is non-differentiable at $x=0$.
2(b). Clearly $\left|f_{i}(x)\right| \leq u$ is equivalent to $-u \leq f_{i}(x) \leq u$. Minimizing the largest $\left|f_{i}(x)\right|$ is equivalent to minimizing the largest upper bound on $\left|f_{i}(x)\right|$.
2(c). The constraints $-u \leq f_{i}(x) \leq u$ may be rewritten as $f_{i}(x)+u \geq 0$ and $u-$ $f_{i}(x) \geq 0$. Let y_{i}^{L} and y_{i}^{U} (respectively) be Lagrange multipliers for these constraints, and let $A(x)$ be the Jacobian of the vector of f_{i}.

First-order necessary optimality conditions are that the y^{L} and y^{U} satisfy

$$
\binom{0}{1}-\binom{A(x)}{e^{T}} y^{\mathrm{L}}-\binom{-A(x)}{e^{T}} y^{\mathrm{U}}=0
$$

and that

$$
\left(f^{\max }+f_{i}(x)\right) y_{i}^{\mathrm{L}}=0 \text { and }\left(f^{\max }-f_{i}(x)\right) y_{i}^{\mathrm{U}}=0
$$

where $f^{\max }$ is the optimal objective value. This is to say that

$$
\begin{aligned}
A(x)\left(y^{\mathrm{L}}-y^{\mathrm{U}}\right) & =0 \\
e^{T}\left(y^{\mathrm{L}}+y^{\mathrm{U}}\right) & =1 \text { and }\left(y^{\mathrm{L}}, y^{\mathrm{U}}\right) \geq 0 .
\end{aligned}
$$

If $f^{\max }>0$ only one of the pair $\left(y_{i}^{\mathrm{L}}, y_{u}^{\mathrm{L}}\right)$ can be nonzero.

Solutions to exercises for Part 2.

1(a). The gradient of the objective function is $g=H x$ and $g\left(x_{*}\right)=H x_{*}=H 0=0$, so that x_{*} is a stationary point which is a minimum, since H is positive definite.
1(b). Line-search in direction p from x gives

$$
\begin{aligned}
f(x+\alpha p) & =\frac{1}{2}(x+\alpha p)^{T} H(x+\alpha p) \\
& =\frac{1}{2} \alpha^{2} p^{T} H p+\alpha p^{T} H x+\frac{1}{2} x^{T} H x .
\end{aligned}
$$

Hence, the exact line-search condition $\frac{d f}{d \alpha}=0$, using $g=g(x)=H x$ is equivalent to

$$
\alpha p^{T} H p+p^{T} g=0 \Leftrightarrow \alpha=-\frac{p^{T} g}{p^{T} H p},
$$

where we have used the positive definiteness of H, which ensures that $p^{T} H p>0$ for all $p \neq 0$.
$1(\mathrm{c})$. If x_{1} is chosen as in the question, then the gradient

$$
g_{1}=(\sigma, 0, \ldots, 0,1)^{T}=-p_{1}
$$

is the steepest descent direction. Next, compute

$$
-p_{1}^{T} g_{1}=\sigma^{2}+1=2 \text { and } p_{1}^{T} H p_{1}=\lambda_{1}+\lambda_{n},
$$

and using the step-length from (b), it follows that

$$
\alpha_{1}=\frac{2}{\lambda_{1}+\lambda_{n}} .
$$

Now compute the next iterate as

$$
x_{2}=x_{1}+\alpha_{1} p_{1}=\left(\begin{array}{c}
\frac{\sigma}{\lambda_{1}} \\
0 \\
\vdots \\
0 \\
\frac{1}{\lambda_{n}}
\end{array}\right)+\frac{2}{\lambda_{1}+\lambda_{n}}\left(\begin{array}{c}
-\sigma \\
0 \\
\vdots \\
0 \\
-1
\end{array}\right)=\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}}\left(\begin{array}{c}
\frac{\sigma}{\lambda_{1}} \\
0 \\
\vdots \\
0 \\
\frac{1}{\lambda_{n}}
\end{array}\right) .
$$

Each subsequent iteration only differs from iteration 1 by the factor $\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}}$. Note that the step-length is independent of this factor. Each iteration "adds" one factor to the expression for x_{k+1} giving the desired formula.
1 (c) (i). If $\lambda_{1}=\lambda_{n}$, then $x_{2}=0$ is optimal.

1(c) (ii). If $\lambda_{1} \gg \lambda_{n}$, then steepest descent converges very slowly, since $\lambda_{1}-\lambda_{n} \simeq \lambda_{1}$, the sequence $\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}}$ approaches zero very slowly. The rate of convergence is linear, since

$$
\frac{\left\|x_{k+1}\right\|_{2}}{\left\|x_{k}\right\|_{2}}=\left(\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}}\right)^{\frac{1}{2}}=: c
$$

and the convergence constant, c, is close to 1 .

Solutions to exercises for Part 3.

1(a). The unconstrained minimizer $-(1,0,1 / 2)^{T}$ has ℓ_{2}-norm $1<\sqrt{5} / 2<2$. Thus, since B is positive definite, the unconstrained minimizer solves the problem.
1(b). The unconstrained minimizer has too large a ℓ_{2}-norm, so the solution must lie on the boundary of the constraint. The solution must be of the form $-(1 /(1+$ $\lambda), 0,1 /(2+\lambda))^{T}$. To satisfy the trust-region constraint, we then must have

$$
\frac{1}{(1+\lambda)^{2}}+\frac{1}{(2+\lambda)^{2}}=\Delta^{2}=\frac{25}{144}
$$

which has a root $\lambda=2$. Thus the required solution is $-(1 / 3,0,1 / 4)^{T}$.
1(c). The Hessian is indefinite so the solution must lie on the boundary of the constraint. The solution is then of the form $-(1 /(-2+\lambda), 0,1 /(-1+\lambda))^{T}$. To satisfy the trust-region constraint, we then must have

$$
\frac{1}{(-2+\lambda)^{2}}+\frac{1}{(-1+\lambda)^{2}}=\Delta^{2}=\frac{25}{144}
$$

which has a root $\lambda=5$ (c.f. the previous equation with a change of variables $\hat{\lambda}=\lambda+3$) at which $B+\lambda I$ is positive semi-definite. Thus again the solution is $-(1 / 3,0,1 / 4)^{T}$.

1(d). Again B is indefinite, and so the solution must be of the form $-(\omega, 0,1 /(-1+$ $\lambda))^{T}$, where $\omega=0 /(-2+\lambda)$ can only be nonzero if $\lambda=2-$ note that $B+\lambda I$ is only positive semi-definite when $\lambda \geq 2$. Suppose that $\lambda>2$. To satisfy the trust-region constraint, we then must have

$$
\frac{1}{(-1+\lambda)^{2}}=\Delta^{2}=\frac{1}{4}
$$

which has roots 1 ± 2. The desired root is $\lambda=3$, from which we deduce the solution is $-(0,0,1 / 2)^{T}$.
$1(\mathrm{e})$. As in (d), if we guess that $\lambda>2$, we find that the roots of

$$
\frac{1}{(-1+\lambda)^{2}}=\Delta^{2}=2
$$

are $1 \pm 1 / \sqrt{2}<2$. So λ must be 2 , and the solution is of the form $-(\omega, 0,1)^{T}$. To satisfy the trust-region constraint, we then must have

$$
\omega^{2}+1=\Delta^{2}=2
$$

and hence $\omega= \pm 1$. Thus the required solution is $-(\pm 1,0,1)^{T}$.

Solutions to exercises for Part 4.

1(a). The first-order optimality conditions (Theorem 1.8) are that $x_{2} \geq 0$ (primal feasibility),

$$
\binom{x_{1}}{1}-y\binom{0}{1}=0
$$

and $y \geq 0$ (dual feasibility), and $y \cdot x_{2}=0$ (complementary slackness). Dual feasibility says that $y=1$ and $x_{1}=0$, from which we deduce that $x_{2}=0$ from complementary slackness. Second-order optimality conditions are simply that

$$
s_{1}^{2}=\left(s_{1}, s_{2}\right)^{T}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\binom{s_{1}}{s_{2}} \geq 0
$$

for all $s \neq 0$ for which $s_{2}=0$ which are automatically satisfied. Thus the solution is $x=(0,0)$ with Lagrange multiplier $y=1$.
1 (b). The logarithmic barrier function is

$$
\Phi(x, \mu)=\frac{1}{2} x_{1}^{2}+x_{2}-\mu \log x_{2} .
$$

The first-order optimality conditions for the unconstrained minimization of Φ are that

$$
\binom{x_{1}}{1}-\mu\binom{0}{x_{2}^{-1}}=0
$$

If we let $x(\mu)$ be the desired minimizer, the optimality conditions indicate that $x(\mu)=$ $(0, \mu)$, while the Lagrange multiplier estimates are $y(\mu)=c(x(\mu)) / \mu=1$. The Hessian is positive definite
1(c). The Hessian matrix is

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & \mu x_{2}^{-2}
\end{array}\right) ;
$$

at the minimizer of $\Phi(x, \mu)$, the Hessian is

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & \mu^{-1}
\end{array}\right) .
$$

The eigenvalues are 1 and μ^{-1}. As μ goes to zero, one eigenvalue diverges to infinity, while the other one stays fixed at 1 .
$1(\mathrm{~d})$. The primal-dual system at $x(\mu)$ is

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & \mu^{-1}
\end{array}\right)\binom{s_{1}}{s_{2}}=-\left[\binom{0}{1}-\bar{\mu}\binom{0}{\mu^{-1}}\right]
$$

Thus $s_{1}=0$, while $s_{2}=-\mu+\bar{\mu}$. In particular $x(\mu)+s=\bar{\mu}=x(\bar{\mu})$, the minimizer of $\Phi(x, \bar{\mu})$!
2(a). The logarithmic barrier function is

$$
\Phi(x, \mu)=x^{T} g+\frac{1}{2} x^{T} B x-\mu \log \left(\Delta^{2}-x^{T} x\right)
$$

Its gradient is

$$
\nabla_{x} \Phi(x, \mu)=g+B x+\frac{2 \mu}{\Delta^{2}-x^{T} x} x
$$

and its Hessian is

$$
\nabla_{x x} \Phi(x, \mu)=B+\frac{2 \mu}{\Delta^{2}-x^{T} x} I+\frac{2 \mu}{\left(\Delta^{2}-x^{T} x\right)^{2}} x x^{T}
$$

2(b). The first-order optimality condition is that

$$
\begin{equation*}
\left(B+\frac{2 \mu}{\Delta^{2}-x^{T} x} I\right) x=-g \tag{1}
\end{equation*}
$$

If we define

$$
\lambda(\mu)=\frac{2 \mu}{\Delta^{2}-x^{T} x},
$$

(1) is precisely the requirement

$$
(B+\lambda(\mu) I) x=-g
$$

from Theorem 3.9. Moreover, $\lambda(\mu)>0$. However,

$$
\lambda(\mu)\left(\Delta^{2}-x^{T} x\right)=2 \mu
$$

and we need μ to converge to zero to satisfy all of the first-order requirements in Theorem 3.9.

Solutions to exercises for Part 5.

1(a). We first need to check that $s^{T} B s \geq 0$ when $A s=0$, as otherwise the solution lies at infinity. In all cases B is diagonal, so we write $B=\operatorname{diag}\left(\begin{array}{lll}b_{11} & b_{22} & b_{33}\end{array}\right)$. It is easy to see that the columns of the matrix

$$
N=\left(\begin{array}{cc}
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

form a basis for the null-space of A, so we need to check that

$$
N^{T} B N=\left(\begin{array}{cc}
b_{1}+b_{2} & 0 \\
0 & b_{3}
\end{array}\right)
$$

is positive semi-definite. For our first example $N^{T} B N$ has all its eigenvalues at 1 , so the minimizer is finite. The minimizer satisfies

$$
\left(\begin{array}{cccc}
2 & 0 & 0 & 1 \\
0 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
y
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
2
\end{array}\right)
$$

which gives $x=(-2,4,1)$ and $y=5$.
1 (b). In this case $N^{T} B N$ has eigenvalues 0 and 1 , so there is a solution if and only if

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
y
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
2
\end{array}\right)
$$

is consistent. The system gives $x_{3}=1$, but then the remaining equations lead to both $-x_{2}+y=1$ and $-x_{2}+y=-1$. Thus the problem is unbounded from below.
1(c). In this case $N^{T} B N$ has eigenvalues -1 and 1 , so the problem is unbounded from below, and the solution lies at infinity.
2. The gradient of the augmented Lagrangian function at x_{k}, y_{k}, μ_{k} is

$$
\nabla_{x} \Phi\left(x_{k}\right)=g_{k}+A_{k}^{T}\left(\frac{c_{k}}{\mu_{k}}-y_{k}\right) .
$$

The SQP search direction s_{k} and its associated Lagrange multiplier estimates y_{k+1} satisfy

$$
\begin{equation*}
B_{k} s_{k}-A_{k}^{T} y_{k+1}=-g_{k} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{k} s_{k}=-c_{k} . \tag{3}
\end{equation*}
$$

Premultiplying (2) by s_{k} and using (3) gives that

$$
\begin{equation*}
s_{k}^{T} g_{k}=-s_{k}^{T} B_{k} s_{k}+s_{k}^{T} A_{k}^{T} y_{k+1}=-s_{k}^{T} B_{k} s_{k}-c_{k}^{T} y_{k+1} \tag{4}
\end{equation*}
$$

Likewise (3) gives

$$
\begin{equation*}
\frac{1}{\mu_{k}} s_{k}^{T} A_{k}^{T} c_{k}=-\frac{\left\|c_{k}\right\|_{2}^{2}}{\mu_{k}} . \tag{5}
\end{equation*}
$$

Combining (4) and (5), and using the positive definiteness of B_{k}, the Cauchy-Schwarz inequality and the fact that $s_{k} \neq 0$ if x_{k} is not critical, yields

$$
\begin{aligned}
s_{k}^{T} \nabla_{x} \Phi\left(x_{k}\right) & =s_{k}^{T}\left[g_{k}+A_{k}^{T}\left(\frac{c_{k}}{\mu_{k}}-y_{k}\right)\right] \\
& =-s_{k}^{T} B_{k} s_{k}-c_{k}^{T}\left(y_{k+1}-y_{k}\right)-\frac{\left\|c_{k}\right\|_{2}^{2}}{\mu_{k}} \\
& <-\left\|c_{k}\right\|_{2}\left(\frac{\left\|c_{k}\right\|_{2}}{\mu_{k}}-\left\|y_{k+1}-y_{k}\right\|_{2}\right)^{2} \\
& \leq 0
\end{aligned}
$$

because of the required bound on μ_{k}.

