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Exercises for Part 1.

1. Let cE(x) and cI(x) be twice-continuously differentiable vector functions of x,
and let f ∈ C2. Consider the problem

minimize
x∈IR

n

f(x) subject to both cE(x) = 0 and cI(x) ≥ 0.

(a) Write down first-order necessary optimality conditions for a point x∗ to
solve this problem (Hint: combine the conditions in Theorems 1.6 and 1.8,
using different vectors yE and yI for the equality and inequality constraints).

(b) Write down second-order necessary optimality conditions for a point x∗ to
solve this problem (Hint: combine the conditions in Theorems 1.7 and 1.9).

2. Suppose that fi(x), i = 1, . . . , m, are twice-continuously differentiable functions
of x. Consider the non-differentiable optimization problem

minimize
x∈IR

n

f(x) = max
1≤i≤m

|fi(x)|. (1)

(a) Why might this problem be “non-differentiable”?

(b) Argue that this problem is equivalent to the differentiable problem

minimize
x∈IR

n
u∈IR

u subject to − u ≤ fi(x) ≤ u

for some additional variable u.

(c) Hence or otherwise deduce first-order necessary optimality conditions for
(1).
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Exercises for Part 2.

1. Consider applying the method of steepest descent with exact line–searches to
the problem

minimize
x

1

2
xT Hx,

where H is a positive definite Hessian.

(a) Show that x∗ = 0 solves the above problem.

(b) Show that the steplength α obtained by performing an exact line–search
from x in the direction p is given by

α = − pT g

pT Hp
,

where g is the gradient at x.

(c) Let H be a diagonal matrix given by

H =







λ1

. . .

λn






, where λ1 ≥ λ2 ≥ · · · ≥ λn > 0.

If the starting point x1 =

(

σ

λ1

, 0, . . . , 0,
1

λn

)T

is chosen, where σ = ±1, show

that

x2 =
λ1 − λn

λ1 + λn

(−σ

λ1

, 0, . . . , 0,
1

λn

)T

.

Hence show that at iteration k + 1 the iterate is

xk+1 =

(

λ1 − λn

λ1 + λn

)k (

(−1)kσ

λ1

, 0, . . . , 0,
1

λn

)T

.

What can you say about the speed of convergence, if
(i) λ1 = λn and if
(ii) λ1 is much greater than λn (λ1 � λn) ?
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Exercises for Part 3.

1. Solve the “trust-region” sub-problem

minimize
s∈IR

n

sT g + 1

2
sT Bs subject to ‖s‖2 ≤ ∆

in the following cases:

(a)

B =





1 0 0
0 2 0
0 0 2



 , g =





1
0
1



 and ∆ = 2,

(b)

B =





1 0 0
0 2 0
0 0 2



 , g =





1
0
1



 and ∆ = 5/12

[Hint: a root of the nonlinear equation

1

(1 + λ)2
+

1

(2 + λ)2
= 25/144

is λ = 2.],

(c)

B =





−2 0 0
0 −1 0
0 0 −1



 , g =





1
0
1



 and ∆ = 5/12,

(d)

B =





−2 0 0
0 −1 0
0 0 −1



 , g =





0
0
1



 and ∆ = 1/2, and

(e)

B =





−2 0 0
0 −1 0
0 0 −1



 , g =





0
0
1



 and ∆ =
√

2.
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Exercises for Part 4.

1. Consider the problem

minimize
x∈IR

n

1

2
x2

1 + x2 subject to x2 ≥ 0

(a) What is the minimizer of this problem? What is the value of its Lagrange
multiplier?

(b) Write down the logarithmic barrier function Φ(x, µ) for the problem. What
is the minimizer x(µ) of the barrier function as a function of the barrier param-
eter µ? What Lagrange multiplier estimate does this minimizer give?

(c) Compute the Hessian matrix of the logarithmic barrier function. What
are its eigenvalues at the minimizer of the barrier function? How do these
eigenvalues behave as the barrier parameter decreases to zero?

(d) Find the primal-dual step at x(µ) when µ is reduced to µ̄. How good is this
step as an approximation for the minimizer of Φ(x, µ̄)?

2. Consider the trust-region subproblem

minimize
x∈IR

n

xT g + 1

2
xT Bx subject to ‖x‖2 ≤ ∆

(a) By observing that the constraints may be written as xT x ≤ ∆2, write down
the logarithmic barrier function and its gradient and Hessian matrix.

(b) Write down the first-order optimality conditions. How do they relate to
Theorem 3.9?
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Exercises for Part 5.

1. Suppose that we wish to solve the equality-constrained quadratic program

minimize
x∈IR

n

gT x + 1

2
xT Bx subject to Ax = b,

where g = −(1, 1, 1)T , A = (1 1 0) and b = 2. Solve the problem when

(a)

B =





2 0 0
0 −1 0
0 0 1



 ,

(b)

B =





1 0 0
0 −1 0
0 0 1



 , and

(c)

B =





1 0 0
0 −2 0
0 0 1



 .

2. Suppose that Bk is positive definite, that yk are existing Lagrange multiplier
estimates, and that (sk, yk+1) are the SQP search direction and its associated
Lagrange multiplier estimates for the problem

minimize
x∈IR

n

f(x) subject to c(x) = 0

at xk. Then if xk is not a first-order critical point, show that sk is a descent
direction for the augmented Lagrangian function

Φ(x, yk, µk) = f(x) − yT

k
c(x) +

1

2µk

‖c(x)‖2

2

whenever

µk ≤ ‖c(xk)‖2

‖yk+1 − yk‖2

.

[This suggests that if we can adjust yk as the iteration proceeds so that yk+1 −
yk → 0, we may not need µk to converge to zero. This is indeed the case for
algorithms based upon the augmented Lagrangian function.]


